
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Parallel Network Analysis

Cynthia A. Phillips

Sandia National Laboratories

Topical presentation 2009 SIAM Annual Meeting, July 10

Slide 2

My Topic

• What’s new with me (Sandia National Laboratories) in
 Discrete math/algorithms ∩
 High-performance computing ∩
 Applications?

Why would we want to use a parallel algorithm for an application?
• When we have to:

– Too Slow
– Too Big
– Too Inaccurate

• Application evolution
– More constraints
– Finer discretization
– Larger instances

Slide 3

Overview

• Applications
– Sensor network design/management
– Analysis of large-scale (e.g. social) networks

• Methods
– Coarse-grained (“embarrassing” parallelism)
– Unusual (for us) hardware/architecture

• Old primitives
– Memory reduction → parallel algorithms

Slide 4

A Sensor Placement Problem

Issue: Contamination released in a
municipal water network

Goal: Place k sensors on network
nodes as an early warning system

– Protect human populations
– Limit network remediation

costs

Sponsored by the US Environmental
Protection Agency (EPA) National
Homeland Security Research Center
(NHSRC)

Slide 5

One Water Sensor Placement Formulation

Given an enumerable set of events: (location, time) pairs
• Simulate the evolution of a contaminant plume
• For each event determine

– Where event can be observed
– Impact prior to that observation

• Assume first sensor witness of contamination signals general alarm

• Minimize average impact

There can be 100,000s to millions of scenarios.
– Parallelize the simulations and impact calculations

Obvious, but important: from weeks to hours using cluster

Slide 6

Finding an Approximate Solution

• For more complex versions, can express as an integer program
– Linear objective, linear and integrality constraints

• Benchmarks heuristics
• A good approximate solution

– Speeds search (enables pruning)
– Allows early stop

• Use linear programming relaxation (drop integrality)
• LP optimum gives lower bound, fractional solution
• Goal: “round” to a real solution

• Trials completely independent

Slide 7

Given N variables with 0 < xi
* < 1 for i = 1..N and

• Select k of the xi
* such that probability of selecting i is reasonably

related to xi
*

In multiple applications, this selection is the main (only) decision
• Sensor placement
• Mobile sink scheduling for wireless sensor networks
• Picking a tail in robust optimization formulations
• Enforcing node degree in graph generation

k of N selection

Slide 8

Randomized Rounding

• Simplest form: treat 0 ≤ xi ≤ 1 as probability

• Set yi = 1 with probability xi and yi = 0 otherwise

• If don’t select exactly k, try again (and again…)

• But can use conditional Poisson sampling to efficiently sample from
this “lucky” distribution (Chen, Dempster, Lui, 2004)

• Use dynamic programming to precompute conditional probabilities
• Decode a random toss to a feasible solution

• Selects uniformly over “lucky” tosses.

Slide 9

Rounding with One Cardinality Constraint

Doerr (2004), motivated by Srinivasen (2001)

Finds a randomized rounding y such that:

•Pr(yi = 1) = xi*

• (respects cardinality constraint)

Slide 10

Simple (base) case

All xi* are 1/2.
Let X be the set of xi* with value 1/2.

|X| is even because and k is integer

Pair elements of X: (xi*,xj*)

Set (yi,yj) = (1,0) or (0,1) each with probability 1/2.

Slide 11

General Case

• Do the base case for lowest order bit (most to right of binary
point)

• After this operation, the rightmost bit is in place - 1.
• Iterate to compute y in O(n) time.

– n = number of variables 0 < xi* < 1
– = lowest order bit of any of the xi*, maybe 1000

• Numerical issue: In (floating point) practice, not an integer

!

l

!

l

!

l

!

l

Slide 12

Cardinality-Constrained Rounding Summary

• Doerr
– O(nL) time (multiprecision)
– Paired total correlation, otherwise independent
– Pr(yi = 1) = xi*

• Conditional Poisson sampling
– O(k(n-k)) preprocessing (k < 100), then O(n) sampling
– Pairwise independence
–

– 3 orders of magnitude faster
– Any subset is possible

!

p(yi =1) = p(yi =1 k selected)

Slide 13

Embrace “Embarrassing” Parallelism

• Other recent uses
– Integer programming pseudocost initialization
– Feasibility pump integer programming heuristic
– Progressive Hedging for stochastic programs
– Constraint generation for scheduling mobile sinks in a wireless

network

• Embarrassing parallelism increases the maximum feasible problem
size

• Buys time to do the harder parallelization if necessary
• Using it can present other interesting algorithmic questions

Slide 14

Graph Analysis

• Nodes (circles) represent entities
• Edges (lines) represent a relationship between a pair of entities
• Nodes and/or edges can have labels (names) and weights (values)

Alice

Bob

Carla

Talk, 15min

Email, 3

Phone call, 20min

Text msg, 2

Text msg, 6

Communication Graph

Slide 15

A Semantic Relationship Graph

Every path between two points represents a potential relationship

John

Political
Fundraising

Event

Dave Greg

JillSusan
Married to

Works with

Bridge partner

Dentist/patient
Neighbor

Attended
Catered

Kids are
friends

Slide 16

Analysis of Massive Graphs

• Finding communities
– Subgraphs where nodes are more connected to each other than

to the rest of the graph
• Exploring relationships between individuals
• Finding patterns (normal/abnormal)

• Power law degree distribution common

Twitter social network (|V|≈200M)

 [Akshay Java, 2007]
[Clauset, 2007] Degree (log scale)

Frequency
(log scale)

Slide 17

Graph Algorithms

• There are many good serial algorithms (powerful modeling tool)
– Generally nodes gather information from neighbors, traversals
– Large amount of communication relative to computation
– Limited locality, unpredictable

This is hard for
• Distributed memory: how to partition the graph?
• SMP (shared): cache management

1 1

a
c

d

h
i

e f g

b

1
2

1 2

2

3

0

Breadth-First Search Levels

Slide 18

Caveat

There are lots of parallel architectures/systems, many new
• Distributed memory - tightly coupled or cluster
• Symmetric Memory Processors (SMP)
• Grid
• Cloud
• Multicore
• Graphical Processing Units (GPUs)
• Massive multithreading (XMT)

For any given application, one of these may be faster and/or give
better performance/unit cost.

Example (Devine, Plimpton): matrix-vector multiplication on a
distributed-memory machine (pagerank, some graph traversal)

Slide 19

Massive Multithreading: The Cray MTA-2

• Slow clock rate (220Mhz)

• 128 “streams” per processor

• Global address space

• Word-level synchronization
• Atomic increments

• Simple, serial-like programming model

• Advanced parallelizing compilers

Latency Tolerant:

important for Graph
Algorithms

No Processor Cache

Hashed Memory

Slide 20

Cray MTA Processor

• Each thread can have up to 8 memory refs in flight

• Round trip to memory ~150 cycles (MTA-2)

• New Cray XMT combines up to 8192 MTA proc. with Red
Storm network

• Faster clock, but less network bandwidth

• More memory (up to 128TB), but slower memory

Slide 21

Additional Challenges

• Deep pipeline (21)
• One instruction per thread in the pipe

The good news: FAST context switches (one clock cycle)
The bad news: Context switch is mandatory every clock cycle

• Example: 40 streams, each with 4 memory references in flight will
tolerate latency

• One processor is approximately equal to a linux box if using
perfectly

Slide 22

Unweighted S-T Connectivity

• Compute the minimum number of edges between two specific nodes

BFS from both s and t till they meet

Computational example:
• Erdos-Renyi graphs
• Expected shortest path is constant sized
• 5 trials for each of 10 random s-t pairs

a
c

d

h
i

e f g

b Shortest i-to-g
path is length 3

Slide 23

XMT Strong Scaling
BlueGene/L 32,000p (2005)

PBGL (on 2GHz Cluster) w/ghost nodes

XMT 512p

96p
120p

XMT 16p

XMT 4p

Slide 24

Programming the XMT

• Compiler directives
– As with Cilk++, permission, not commands

• Negotiate with the compiler
• Multithreaded graph library (MTGL) encapsulates some primitives

(e.g. BFS)
• Compiler recognizes a reduction:

ba c d

e f
r

10

2 7 1

8

18
total := 0
For i := 1 to n
 total += x[i]

8x:

Slide 25

A+B+C+D

P0
P1

P2

P3

A
B

D
C

A
A+B

A+B+C
Scan

Parallel Prefix (Prefix-sum, Scan)

• Introduced by Blelloch [1990].
• “Sum” is binary associative (+,*,min,max, left-copy)
• Applications: lexically comparing strings of characters, adding

multiprecision numbers, evaluating polynomials, sorting and
searching.

C+D

P0
P1

P2

P3

A
B

D
C

A
A+B
 C

Segmented Scan

1
1

1
0

Slide 26

Parallel prefix example in BFS

• Parallelize each level of a breadth-first search
• Create C chunks by equally dividing the neighborhood of the nodes

currently in the queue

0 1 2 3

thread 0 thread 1 thread 2

Slide 27

Parallel prefix example in BFS
• Total work 12. Each thread gets four (I + 1 to 4i).

7 10 11 12

thread 0 thread 1 thread 2

7 3 1 1 degree

cumulative degree

Slide 28

Connected Components Problem

• Give each node a label
• Two nodes have the same label if there is a path between them

a
c

d

h
i

e f g

b
j

l
k

nm

r
qp

C1

C4

C3

C2

Slide 29

Connected Components on XMT (Power Law)

• Do a parallel BFS from the node of largest degree
– Will likely label the largest (great) component

Giant Connected Component

Slide 30

Connected Components on XMT (Power Law)

• Clean up with Shiloach-Vishkin PRAM algorithm
• Hook with edges, pointer jumping to create a star

a
c

d

h
i

e f g

b
Start as own leader (label)

e
a
b

i
h

c d f g
Component small.
No significant hot spot

Slide 31

Community Detection

• We are applying unconstrained facility location to finding
communities on the XMT [See Jon Berry (MS75, 10:30) for a bit
more]

• Motivated by EPA water sensor network problem
– EPA wanted low-memory algorithms (run on PC)
– Sensor placement problem is p-median (facility location)
– We adapted code from COIN-OR for unconstrained facility

location

Slide 32

Low-Memory to Parallel

• Streaming algorithms

• Answer a question as the data set streams by
– Use much less local space than the stream size

• Example: Watch a permutation of 1..n (n known) with one number
missing. You have space for one number. Determine the missing
number.

• Answer: store the sum of the numbers you have seen.

Slide 33

W-Stream

• Read a stream, write a stream for another pass

• Unroll for a parallel machine that keeps the streams in flight/use:

Stream 0 Stream i+1

Stream 0 Stream 1 Stream 2

Slide 34

Connected Components, W-Stream

• Input: edges of finite graph in a stream (v1, v2), …, (vi, vj)
• Output: (edge, label) pairs [label will be a vertex name, star]

Stream has two parts:
A: edges between partial components

– Initially the graph edges
B: (node, label) pairs

– Initially (vi, vi) implicitly

Slide 35

W-Stream Connected Components

• For each processor (stage), accept edges from the A stream and
compute connected components (stars) until memory full

e b

hf g

a
c

d

h
i

e f
g

b

Slide 36

W-Stream Connected Components

For rest of A stage
• Map known nodes to labels
• Drop intracomponent edges

e b

hf g

a
c

d

h
i

e f
g

b

A Output: (i,b) for (i,h)
 (c,e) for (c,g)
 drop (e,g)
 rest unchanged

Slide 37

Connected Components W-Stream

• At first stage, after last end, output A/B boundary marker and list
the components:

e b

hf g

Output: (f,e), (g,e), (e,e), (h,b)

Slide 38

Connected Components W-stream

• Repeat A phase
• On B update labels as necessary

a
c

d

h
i

e f
g

b e

b

i

b a d

c

e

Output:
A: (i,c) from (a,c) and (a,e)
B: (f,c) for (f,e)
 (g,c) for (g,e)
 (e,c) for (e,e)
 (h,i) for (h,b)
After marker: (b,i), (a,i), (d,i) (i,i) (c,c)
Note: e was done in phase A

Slide 39

The interconnection of concepts

• Thanks to: Jon Berry, Bruce Hendrickson, Karen Devine, Steve Plimpton,
Bill Hart, Erik Boman, Cray Inc, The US EPA, Michael Bender, Nick Edmonds,
Jeremiah Willcock, David Mizell

Sensor
networks

Social
networks

K of N
Scenario

simulations

Facility
location

Low memory

XMT

Streams

Coarse-grained
parallelism

Progressive
hedging

Bad Santa

Community
detection Connected

components

s-t connectivity

BFS

scans

CM2

Machine/model

Problem

Application

Method/
Primitive

