File Edit View Insert Cell Kernel Help Trusted Python3 O

B o+ qua 4 v ¥ B C =

Notebooks are still at: https://github.com/minrk/ipython-cse17

Or follow along on JupyterHub at https://cse17.jupyter.org

Profiling and Optimising

IPython provides some tools for making it a bit easier to profile and optimise your code.

Smatplotlib inline
import numpy as np
import matplotlib.pyplot as plt

try:
import seaborn as sns
except ImportError:
print("That's okay")

$timeit

The main IPython tool we are going to use here is $timeit, a magic that automates measuring how long it



File Edit View Insert Cell Kernel Help Trusted Python3 O

B + xx B 4 ¥ N B C =

Notebooks are still at: mmm;gmmmmbagﬁﬂl

Or follow along on JupyterHub at https://cse17.jupyter.org

Profiling and Optimising

IPython provides some tools for making it a bit easier to profile and optimise your code.

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

try:
import seaborn as sns
except ImportError:

print("That's okay")

$timeit

The main |IPython tool we are going to use here is $timeit, a magic that automates measuring how long it



File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B + x &2 B 24 v N BB C =

10 loops, best of 3: 24.9 ms per loop
Size: 2000 x 2000
1 loop, best of 3: 253 ms per loop

Let's look at what options $timeit can take.

%timeit?

Docstring:
Time execution of a Python statement or expression

Usage, in line mode:

$timeit [-n<N> -r<R> [-t|-c] -g -p<P> -0] statement
or in cell mode:
$%timeit [-n<N> -r<R> [-t|-c] -g -p<P> -0] setup code

code '

Cﬂdﬂ.-.

Time execution of a Python statement or expression using the ti
meit

module. This function can be used both as a line and cell magi
Cc:

- In line mode you can time a single-line statement (though mul
tiple
ones can be chained with using semicolons).




File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B + x & B 4 v N BB C =

S e e
$timeit [-n<N> -r<R> [-t|-c] -g -p<P> -0] statement
or in cell mode:
%3timeit [-n<N> -r<R> [-t|-c] -q -p<P> -0] setup code
code
code. ..

Time execution of a Python statement or expression using the ti
meit

module. This function can be used both as a line and cell magi
3

- In line mode you can time a single-line statement (though mul
tiple
ones can be chained with using semicolons).

- In cell mode, the stateﬁent in the first line is used as setu
p code

(executed but not timed) and the body of the cell is timed.
The cell

body has access to any variables created in the setup code.

Options:

-n<N>: execute the given statement <N> times in a loop. If this
value

is not given, a fitting value is chosen.

-r<R>: repeat the loop iteration <R> times and take the best re



File  Edit View Inset  Cell Kemel  Help Trusted | Python3 O

B + x &2 B 4 vy N B C =

r
[

I
!

[
[
[
i

!
!

-0.50

-
]

-
T -

-y
-

np_r = %timeit -o blur_np(x, steps)
t_np = np_r.best

100 loops, best of 3: 11.3 ms per loop

times.append(t_np)
labels.append( ' numpy"')

L
def plot_times():
ind = np.arange(len(times))
plt.bar(ind, times, log=True)
plt.xticks(ind + 6.3, labels, rotation=30)
plt.ylim(.1 * min(times), times[0])
plot_times()




File Edit View Insert Cell Kernel Help Trusted | Python3 O

B+ X @@ B+ ¥ N R C =
plot_times()

& o

So vectorizing the inner loop brings us from 1 second to 25 milliseconds, an
improvement of 40x:




File Edit View Insert Cell Kernel Help Trusted | Python3 O

B + x 4 B 2+ % N BB C &=
plut;timést) '

o

So vectorizing the inngr loop brings us from 1 second to 25 milliseconds, an
improvement of 40x:




File Edit View Insert Cell Kernel Help Trusted 4 |Pyr.hnn3 O

B + X @B 24 vy N B C =

& o

So vectorizing the inner loop brings us from 1 second to 25 milliseconds, an
improvement of 40x:

In [ ]: t_ref / t_np|




File Edit View Insert Cell Kernel Help Trusted ] Python3 @
B + x @B 2+ ¥ M B C =

+02: import numpy as np
03:
+04: def blur cython(x, steps=1024):
+05: x=1* x # copy
+06: y = np.empty like(x)
+07: y[0] = x[0]
+08: vI-17] = x[-1]
+09: for in range(steps):
+10: for i in range(l, len(x)-1):
+11: y[i] = .25 * ( x[i-1] + 2 * x[i] + x[i+1] )
+12¢ X, Y=Y, X # swap for next step
+13: return x

cl = %timeit -o y = blur_cython(x, steps)
t_cl = cl.best

times.append(t_cl)

labels.append("cython (no hints)")

plot_times()

Without annotations, we don't get much improvement over the pure Python

version. We can note the types of the input arguments, to get some improvements:




File  Edit  View Inset  Cell Kermel  Help Trusted | Python3 O

B+ X 4B 4 vy MR C =
LV YIVU] = x|u]
+08: vi-1] = x[-1]
+09: for _ in range(steps):
+10: for i in range(l, len(x)-1):
+11: y[i] = .25 * ( x[i-1] + 2 * x[i] + x[i+1] )
+14% X, Y=Y, x # swap for next step
+13: return x

cl = %timeit -o y = blur_cython(x, steps)
t_cl = cl.best

times.append(t_cl)

labels.append("cython (no hints)")

1 loop, best of 3: 649 ms per loop

plot_times()




File Edit View Insert Cell Kernel Help Trusted | Python3 O

I+5~af&]l}.++nlc

.. -'HJ H-F!-“I"l-"" H*HF“"

f— g - " | - b o _J S EE e - W J

t_cl = cl best
times.append(t_cl)
labels.append("cython (no hints)")

1 loop, best of 3: 649 ms per loop

In [30]: plot_times()

m‘.m I - I

l'h 'I.'




File Edit View Insert Cell Kernel Help Trusted | Python3 @

+ ||| A(B|+|$(H W C
TV ¥ = np.empty LiRe|(x)
+08: y[0] = x[0]
+09: vi-1] = x[-1])
+10: cdef int i, N = len(x)
+11: for in range(steps):
+12: for i in range(l, N-1):
+13: v[i] = .25 * ( x[i-1l] + 2 * x{i] + x[i+]l] )
+14: X, Y =v, x # swap for next step
+15: return x

c2 = %timeit -o blur_cython2(x, steps)
t_c2 = c2.best

times.append(t_c2)
labels.append("cython (loops)")
plot_times()

Just by making sure the iteration variables are defined as integers, we can save
about 25% of the time.

The biggest key to optimizing with Cython is getting that yellow out of your loops.
The more deeply nested a bit of code is within a loop, the more often it is called,
and the more value you can get out of making it fast. In Cython, fast means avoiding
Python (getting rid of yellow). To get rid of Python calls, we need to tell Python
about the numpy arrays x and y:




File Edit View Insert Cell Kernel Help Trusted | Python3 O

B + xx & B 22 v M B C =

In [32]: ¢2 = %timeit -0 blur_cython2(x, steps)
t_c2 = c2.best

times.append(t_c2)
labels.append("cython (loops)")
plot_times()

1 loop, best of 3: 453 ms per loop

&
10-1
m_? .
3 )
ol ol R




File Edit View Insert Cell Kernel Help Trusted 4 [P',rthnn.'ﬂ O

B+ x &a0B 4+ ¥ N R C =

& o

L AS 2
R Sl

o

o

Just by making sure the iteration variables are defined as integers, we can save
about 25% of the time.

The biggest key to optimizing with Cython is getting that yellow out of your loops.
The more deeply nested a bit of code is within a loop, the more often it is called,
and the more value you can get out of making it fast. In Cython, fast means avoiding
Python (getting rid of yellow). To get rid of Python calls, we need to tell Python
about the numpy arrays x and y:

In [ ]: %%cython -a

| ]
import numpy as np
cimport numpy as np

def blur_cython_typed(np.ndarray[double, ndim=1] x_, int steps=1



File Edit View Insert Cell Kernel Help Trusted [ Python3 @

B + ¥ & B 24 vy N B C =

+10: xX=1*x

+11: y = np.empty like(x )

+12: Y[0] = x[0]

+13: v[=-1] = x[-1]

+14: for in range(steps):

+15: for i in range(l, N-1):

+16: y[i] = .25 * ( y[i-1] + 2 * y[i] + y[i+l] )
+17: X, Y=Y, X # swap for next step

+18: return x

t = %timeit -o y = blur_cython_typed(x, steps)

ct.best

C —
L _CE

times.append(t_ct)
labels.append("cython (types)")
plot_times()

100 loops, best of 3: 7.27 ms per loop

We can furter optimize with Cython macros, which disable bounds checking and
negative indexing, and avoiding the Python variable swaping by using indices into
a single array:

In [ ]: %%cython -a



File  Edit  View Inset  Cell Kemel  Help Trusted | Python3 O

B + < @ B 24 vy N B C =

LA A MEp F T Jr &8 T awal Aavi HITA LT DLoLS

+18: return x

ct =
tick

%timeit -o y = blur_cython_typed(x, steps)
= ct.best

times.append(t_ct)
labels.append("cython (types)")
plot_times()

100 loops, best of 3: 7.27 ms per loop




File  Edit View Insert  Cell  Kemel  Help Trusted | Python3 O

B + ¥ & B 24 vy N B C =

101

10-2

i
ﬁﬁ”

N 2\ Al
’ ?pw‘*ﬁ ﬁoﬂé @Q"&

o o o5

We can furter optimize with Cython macros, which disable bounds checking and
negative indexing, and avoiding the Python variable swaping by using indices into
a single array:

%%cython -a
#cython: boundscheck=False
#cython: wraparound=False



File Edit View Insert Cell Kernel Help Trusted 4 [PythnnB O

B + < @& B 2« ¥ N B C =

11"}-3 . . . .
o o ' g

w ﬁ"‘l W‘\
PO o

We can furter optimize with Cython macros, which disable bounds checking and
negative indexing, and avoiding the Python variable swaping by using indices into
a single array:

%%cython -a
#cython: boundscheck=False
#cython: wraparound=False

import nympy as np
cimport numpy as np

def blur_cython_optimized(np.ndarray[double, ndim=1] x, int step
cdef size_t N = x.shape[@]
cdef np.ndarray[double, ndim=2] vy
y = np.empty((2, N), dtype=np.float64)
y[0,:] X
y[ljﬂl x[ﬂ]




File Edit View Insert Cell Kernel Help Trusted & [P',rthnn?: O

B 4+ < & 0D 2 v N B C =

+13: vi-1] = x[-1]
+14: for in range(steps):

+15: for i in range(l, N-1):

+16: y YIi] = .25 * ( y[i-1] *+ 2 * y[i] + y[i+l] )
+1:72 X, Y=Y, X ¥ swap for next step

+18: return x

ct = %timeit -o y = blur_cython_typed(x, steps)
t_ct = ct.best

times.append(t_ct)
labels.append("cython (types)")
plot_times()

100 loops, best of 3: 7.27 ms per loop




File  Edit View Inset  Cell  Kermel  Help Trusted ¢ |Python3 O

B + < & B 4+« 3 N BB C =
}

+17: X, ¥ Yy, X # swap for next step
+18: return x

ct = %timeit -o y = blur_cython_typed(x, steps)
t_ct = ct.best

times.append(t_ct)
labels.append("cython (types)")
plot_times()

100 loops, best of 3: 7.27 ms per loop




File Edit View Insert Cell Kernel Help Trusted & [F",rthnnB O

B + x &2 B 44 vy N B C =

lﬂ_? I.II

“#f,\ \OQQG\ -;:q‘f‘h
el A

We can furter optimize with Cython macros, which disable bounds checking and
negative indexing, and avoiding the Python variable swaping by using indices into
a single array:

In [ ]: cython -a
ython: boundscheck=False
ython: wraparound=False



File Edit View Insert Cell Kernel Help Trusted 4 [P',rlhnn 3 0

B + << &2 0B 2« Yy NEB C| =

ﬁp dmp‘\ '”'l M@qﬁ;\

&

We can furter optimize with Cython macros, which disable bounds checking and
negative indexing, and avoiding the Python variable swaping by using indices into
a single array:

%%cython -a
#cython: boundsg¢heck=False
#cython: wraparound=False
import numpy as np
cimport numpy as np

def blur_cython_optimized(np.ndarray[double, ndim=1] x, int step
cdef size_t N = x.shape[@]

cdef np.ndarray[double, ndim=2] vy

y = np. empty{(l, N), dtype=np.float64)

y[0,:] =
y[1,0] = x[ﬂ]




File Edit View Insert Cell Kernel Help Trusted 4 ]Pythnn 3 0O

B + X B |2 ¥y MNEB C| =
o

y = blur_cython_optimized(x, steps)
plE.plot(t, x, '—")
plt.plot(t, y)

[<matplotlib.lines.Line2D at 0x11ff6b358>]

1.00

-
g =
-
=~

1
I 1
I I
! !
i i
I I
I I
! i
I i
i I
i 1
I I
I I
i I
I I

- e e .-
R -
e S e e S

-
-
-




File Edit View Insert Cell Kernel Help Trusted 4 lP}-thnn 30

B + ¥ & B 424 vy N B C =

In [37): y = blur_cython_optimized(x, steps)
plt.plot(t, x, '-—'")
plt.plot(t, y)

Out[37]: [<matplotlib.lines.Line2D at 0x11£f£6b358>]
I

1.00

s

R R W W

T

i

-

- e I - e . -'—'-‘

. S T

—— e = e =
-
-



File Edit View Insert Cell Kernel Help Trusted 4 [Pythnn 30

B + X & B 24 vy N B C =

gelneidieu uy LYLUiun V. Jd.L

Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.
+01: #cython: boundscheck=False
02: #cython: wraparound=False
03:
+04: import numpy as np
05: cimport numpy as np
06:
+07: def blur cython optimized(np.ndarray[double, ndim=1] x, in
t steps=1024):
+08: cdef size t N = x.shape[0]
09: cdef np.ndarray[double, ndim=2] y
+10: y = np.empty((2, N), dtype=np.floaté64)
+11: v[0,:] = x
+123 v[1l,0] = x[0]
+13: y[1,N-1] = x[N-1]
14:
+15: cdef size t , i, j=0, k=1
+16: for in range(steps):
+17: = : 2

J
+18: k=1-73j

+19: for i in range(l, N-1):



File Edit View Insert Cell Kernel Help Trusted 4 [P\_.rlhnn 30

B + < & DB 4 vy N B C =

+11°z v[0,:] = x
+12: vi1,0] = x[0]
+13: yil,N-1] = x[N-1]
14:
+15: cdef size t , i, j=0, k=1
+16: for _ in range(steps):
173 ] = % 2
+18: =1 -3
+19: i in range(l, N-1):
+20: yik,i] = .25 * ( y[j,i-1] + 2 * y[],1i] + y[].i
+1] )
+21's return y[k]

Note how there is now zero yellow called in any of the loops, only in the initial copy
of the input array.

I
copt = %timeit -o y = blur_cython_optimized(x, steps)
t_copt = copt.best
times.append(t_copt)
labels.append("cython (optimized)")
plot_times()

1000 loops, best of 3: 820 us per loop




File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B + < & B 2+ vy N AE C =

In [39]: nb = %timeit -o blur_numba(x, steps)
t_nb = nb.best
times.append(t_nb)
labels.append("numba")
plot_times()

100 loops, best of 3: 3.62 ms per loop

2 e ‘“«\‘?‘1 “\tﬁf’\ ‘ ,‘Pn?g' ‘ @Qﬁ@ @ & w@



File  Edit  View Inset  Cell Kemel Help Trusted | Python3 O

B + ¥ &2 B 24 vy N B C =

import os
import glob
List(os.walk('/tmp'))

Overwriting profileme.py

In [41]: !python -m cProfile profileme.py

931 function calls (906 primitive calls) in 0.004 seco
nds

Ordered by: standard name ,
ncalls tottime percall cumtime percall filename:lineno(f
unction)
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:102(release)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:142(_ init )
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:146(__enter )
2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:153(__exit )
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:159(_get module lock)
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:173(cb)
2/1 0.000 0.000 0.001 0.001 <frozen importlib




File

B+ x4/ B 4+ ¥

Edit

View Insert Cell Kernel

H B C =

=

ncalls tottime percall
unction)
2 0.000 0.000
. _bootstrap>:102(release)
2 0.000 0.000
. _bootstrap>:142(_ init )
2 0.000 0.000
. _bootstrap>:146(__enter )
2 0.000 0.000
. bootstrap>:153(__exit )
2 0.000 0.000

Help

cumtime
0.000
0.000
0.000
0.000

Q.000

. _bootstrap>:159(_get module lock)

2 0.000 0.000
. _bootstrap>:173(cb)

2/1 0.000 0.000

0.000

0.001

percall
0.000
0.000
0.000
0.000
0.000
0.000

0.001

._bootstrap>:197(_call_with_frames_removed)

34 0.000 0.000

0.000

. bootstrap>:208( verbose message)

. 0.000 0.000
. _bootstrap>:293(__init )
2 0.000 0.000
._bootstrap>:297(__enter_ )
2 0.000 0.000
. bootstrap>:304( exit )
8 0.000 0.000
. bootstrap>:307(<genexpr>)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Trusted

filename:lineno(f
<frozen importlib
<frozen importlib
<frozen importlib
<frozen importlib
<frozen importlib
<frozen importlib

<frozen

importlib

importlib

<frozen
<frozen importlib
<frozen importlib
<frozen importlib

<frozen importlib

| Python3 O



File

B+ x4/ B 4+ ¥

Edit

View Insert Cell Kernel

H B C =

=

ncalls tottime percall
unction)
2 0.000 0.000
. _bootstrap>:102(release)
2 0.000 0.000
. _bootstrap>:142(_ init )
2 0.000 0.000
. _bootstrap>:146(__enter )
2 0.000 0.000
. bootstrap>:153(__exit )
2 0.000 0.000

Help

cumtime
0.000
0.000
0.000
0.000

Q.000

. _bootstrap>:159(_get module lock)

2 0.000 0.000
. _bootstrap>:173(cb)

2/1 0.000 0.000

0.000

0.001

percall
0.000
0.000
0.000
0.000
0.000
0.000

0.001

._bootstrap>:197(_call_with_frames_removed)

34 0.000 0.000

0.000

. bootstrap>:208( verbose message)

. 0.000 0.000
. _bootstrap>:293(__init )
2 0.000 0.000
._bootstrap>:297(__enter_ )
2 0.000 0.000
. bootstrap>:304( exit )
8 0.000 0.000
. bootstrap>:307(<genexpr>)

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Trusted

filename:lineno(f
<frozen importlib
<frozen importlib
<frozen importlib
<frozen importlib
<frozen importlib
<frozen importlib

<frozen

importlib

importlib

<frozen
<frozen importlib
<frozen importlib
<frozen importlib

<frozen importlib

| Python3 O



File Edit

B + xaa b 4+ ¥

In [41]:

View Insert

Cell Kemel

H B C =

Help

!python -m cProfile profileme.py

Trusted

931 function calls (906 primitive calls) in 0.004 seco

nds

Ordered by: standard name

ncalls tottime percall

unction)
2

. _bootstrap>:

2

. _bootstrap>:

2

. _bootstrap>:

2

. _bootstrap>:

2

0.000 0.000
102 (release)
0.000 0.000
142(__init )
0.000 0.000
146(__enter )
0.000 0.000
153(__exit )
0.000 0.000

cumtime

0.000

0.000

i 0.000

0.000

0.000

._bootstrap>:159(_get_module_lock)

2

._bootstrap>:

2/1

0.000
173(cb)
0.000

0.000

0.000

0.000

0.001

percall
0.000
0.000
0.000
0.000
0.000
0.000

0.001

. bootstrap>:197( call with frames removed)

34

0.000 0.000

0.000

._bootstrap>:208(_verbose_message)

2

0.000 0.000

. bootstrap>:293(__ init )

0.000

0.000

0.000

filename:lineno(f

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

importlib
importlib

importlib
importlib
importlib
importlib
importlib
importlib

importlib

| Python3 O




File Edit

B + xaa b 4+ ¥

In [41]:

View Insert

Cell Kemel

H B C =

Help

!python -m cProfile profileme.py

Trusted

931 function calls (906 primitive calls) in 0.004 seco

nds

Ordered by: standard name

ncalls tottime percall

unction)
2

. _bootstrap>:

2

. _bootstrap>:

2

. _bootstrap>:

2

. _bootstrap>:

2

0.000 0.000
102 (release)
0.000 0.000
142(__init )
0.000 0.000
146(__enter )
0.000 0.000
153(__exit )
0.000 0.000

cumtime

0.000

0.000

i 0.000

0.000

0.000

._bootstrap>:159(_get_module_lock)

2

._bootstrap>:

2/1

0.000
173(cb)
0.000

0.000

0.000

0.000

0.001

percall
0.000
0.000
0.000
0.000
0.000
0.000

0.001

. bootstrap>:197( call with frames removed)

34

0.000 0.000

0.000

._bootstrap>:208(_verbose_message)

2

0.000 0.000

. bootstrap>:293(__ init )

0.000

0.000

0.000

filename:lineno(f

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

importlib
importlib

importlib
importlib
importlib
importlib
importlib
importlib

importlib

| Python3 O




File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B+ = @D 2« v N B C =

%%writefile profileme.py
import os

import glob
list(os.walk('/tmp'))

Overwriting profileme.py

!python -m cProfile profileme.py

931 function calls (906 primitive calls) in 0.004 seco
nds

&
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(f

unction)

2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:102(release)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:142(__ init )

2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:146(___enter_ )

2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:153(__exit_ )

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:159( get module lock




File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B+ = D 2« v N B C =

e

In [40): %%writefile profileme.py
import os
import glob
list(os.walk('/tmp'))

Overwriting profileme.py

!python -m cProfile profileme.py

931 function calls (906 primitive calls) in 0.004 seco
nds

.
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(f

unction)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:102(release)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:142(_ init )

2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:146(___enter )

2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:153(__exit )

2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:159(_get_module_ lock)




File Edit View Insert Cell Kernel Help Trusted l Python3 O

B + 2 & B 24 3 N R C =

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:173(cb)
2/1 0.000 0.000 0.001 0.001 <frozen importlib
. bootstrap>:197(_call with frames removed)
34 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:208(_verbose message)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:293(__ init )
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:297(__enter )
2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:304(__exit_ )
8 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:307(<genexpri)
2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap>:35(_new_module)
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:355(__init )
4 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:389(cached)
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap>:402(parent)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:410(has_location)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:493(_init module attrs)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap>:553(module from spec




File Edit View Insert Cell Kernel

B+ X A B+ ¥

—_— -

H B C =

2 0.000  0.000

._bootstrap>:355(__init_ )

4 0.000 0.000
. bootstrap>:389(cached)

2 0.000 0.000
. bootstrap>:402(parent)

2 0.000 0.000

. bootstrap>:410(has location)

2 0.000 0.000

Help

0.000
0.000
0.000
0.000

0.000

. bootstrap>:493(_init module attrs)

2 0.000 0.000

0.000

. bootstrap>:553(module from spec)

2 0.000 0.000

. bootstrap>:57(_init )*©
2/1 0.000 0.000
._bootstrap>:641(_load unlocked)

2 0.000 0.000
. bootstrap>:698(find spec)

2 0.000 0.000
. bootstrap>:77(acquire)

2 0.000 0.000
. bootstrap>:771(find spec)

6 0.000 0.000
. _bootstrap>:834(___enter )

6 0.000 0.000
._bootstrap>:838(__exit_ )

2 0.000 0.000

3 T - s = i

0.000

0.001

0.000

0.000

0.000

0.000

0.000

0.000

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

<frozen

Trusted

importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib

importlib

| Python3 O




File Edit View Insert Cell Kernel Help Notebock saved  Trusted l Python3 O

B + < & B 224 vy N B C =

2/1 0.000 0.000 0.001 0.001 <frozen importlib
._bootstrap>:931(_find and load unlocked)
2/1 0.000 0.000 0.001 0.001 <frozen importlib

. bootstrap>:958( find and load)

8 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap external>:1080(_path importer cache)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:1117( get spec)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:1149(find spec)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:1228( get spec)

6 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:1233(£find spec)

4 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap external>:263(cache from source)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:361(_get cached)

6 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:37( _relax case)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:393( check name wrapper)

2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap external>:430( validate bytecode header)

2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:485( compile bytecode)
4 0.000 0.000 0.000 0.000 <frozen importlib




File Edit View Insert Cell Kernel Help Notebock saved  Trusted l Python3 O

B + < & B 22 vy N B C =

. _bootstrap external>:li33j(rina_spec)
4 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap external>:263(cache_from source)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:361( get cached)
6 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap external>:37(_relax case)
2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap external>:393(_check name wrapper)
2 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:430( validate bytecode header)
2 0.000 0.000 0.000 0.000 <frozen importlib
._bootstrap external>:485(_compile bytecode)
- 0.000 0.00Q0 0.000 0.000 <frozen importlib
. _bootstrap external>:52(_r long)
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap external>:524(spec_from file location)
32 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:57( path join)
32 0.000 0.000 0.000 0.000 <frozen importlib
. bootstrap external>:59(<listcomp>)
4 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap external>:63(_path split)
2 0.000 0.000 0.000 0.000 <frozen importlib
. _bootstrap external>:669(create_module)
2/1 0.000 0.000 0.001 0.001 <frozen importlib
. bootstrap external>:672(exec_module)
2 0.000 0.000 0.000 0.000 <frozen importlib




File Edit View Insert Cell Kernel Help Notebook saved  Trusted

B + < & B 422 vy N B C =

——— o ——— o s

. = g — - - ——

2 0.000 0.000 0.000 0.000 <frozen
. bootstrap external>:393( check name wrapper)
2 0.000 0.000 0.000 0.000 <frozen
._bootstrap external>:430(_validate bytecode header)
2 0.000 0.000 0.000 0.000 <frozen
. bootstrap external>:485( compile bytecode)
4 0.000 0.000 0.000 0.000 <frozen
. _bootstrap external>:52(_r long)
2 0.000 0.000 0.000 0.000 <frozen
._bootstrap external>:524(spec_from file location)
32 0.000 0.000 0.000 0.000 <frozen
. bootstrap external>:57( path join)
32 0.000 0.000 0.000 0.000 <frozen
._bantstrap_gxternal}:Sﬂtklistcnmpbj
4 0.000 0.000 0.000 0.000 <frozen
._bootstrap external>:63(_path split)
2 0.000 0.000 0.000 0.000 <frozen
. bootstrap external>:669 (create module)
2/1 0.000 0.000 0.001 0.001 <frozen
. bootstrap external>:672(exec module)
2 0.000 0.000 0.000 0.000 <frozen
._bootstrap external>:743(get code)
10 0.000 0.000 0.000 0.000 <frozen
. _bootstrap external>:75( path stat)
2 0.000 0.000 0.000 0.000 <frozen
. bootstrap external>:800(_ init )
2 0.000 0.000 0.000

4

0.000 <frozen

importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib
importlib

importlib

| Python3 O




File Edit View Insert

B+ XA B + ¥

o
8
4
1

dule>)
1

Cell

Kernel

H B C &=

V. vuu

0.000

0.000

0.000

0.000

pdate wrapper)

1

lru_cache)
1

decorating function)

1

>)
14/6

4
islink)

4
get_sep)

4
olin)

i
odule>)

2

)
2

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000

V.uvuu

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000

ﬂ'-nuﬂ

0.000

0.000

0.000

0.000

Help

Motebook saved  Trusted

SHUm. PY:£0D|__ Cal
enum.py:515(__ new
enum.py:797(__and
fnmatch.py:11(<mo
functools.py:44(u
functools.py:449(
functools.py:480(
glob.py:1(<module

os.py:277(walk)
posixpath.py:166(

posixpath.py:39(_
posixpath.py:73 (3
profileme.py:1(<m
re.py:231(compile

re.py:286( compil

| Python3 O




File

B+ X & B 4+ ¥

Edit

View Insert

E” _“*_-i".

2
__dinit_ )
16
__hext)
16
match)
12
get)
8
tell)
4/2
_parse_sub)
4/2
_parse)
2
_init )
8
roups)
2
fix flags)
2
pengroup)
2
parse)
2
losegroup)
2

Cell

Kernel

H B C &=

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

D-uuu

0.000

0.000

0.000

0.000

0.000

0.000

0.000
L

0.000

0.000

0.000

0.000

0.000

0.000

ﬂ.ﬂuﬂ

Help

Trusted

sre parse.py:223(
sre parse.py:232(
sre parse.py:248(
sre parse.py:253(
sre_parse.py:285|(
sre parse.py:407(
sre parse.py:469(
sre_parse.py:76{(_
sre parse.py:81l(g
sre_parse.py:829(
sre parse.py:84(o
sre parse.py:845(
sre parse.py:96{c

{built-in method

| Python3 O




File Edit View Insert Cell Kernel Help

+ x B 2+ v N R C

i oLL VA T LD

4 0.000 0.000 0.000
th' of 'str' objects}

2 0.000 0.000 0.000
e' of 'bytearray' objects}

1 0.000 0.000 0.000
of 'dict' objects}

Trusted 4 [P}rlhnn3 O

0.000 {method 'startswi
0.000 {method 'translat

0.000 {method 'update’

import os
import cProfile
cProfile.run("list(os.walk('/tmp'))")

%prun Llist(os.walk('/tmp'))

%load_ext snakeviz

%snakeviz list(os.walk('/usr/local'))




File Edit View Insert Cell

B4 | X A B[+ ¥

Kermnel

H B C &=

CEFUTTAE . TUIY, LISL{US..Walny funp 2y )

Help

Trusted

134 function calls (126 primitive calls) in 0.002 seco

nds

Ordered by: standard name

ncalls
unction)
1 0.000
e>)
14/6 0.000
4 0.000
islink)
4 0.000
get sep)
4 0.000
oin)
4 0.000
_stat.S_ ISLNK}
i § 0.000
builtins.exec}
4 0.000
builtins.isinstance}
| 0.001
builtins.next}
9 0.000
posix.fspath}

tottime percall

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.002

0.002
0.000

0.000

0.000

%
0.000

0.002

0.000

0.001

0.000

cumtime percall

0.002

0.000
0.000

0.000

0.000

0.000

0.002

0.000

0.000

0.000

filename:lineno(f

<string>:1(<modul

os.py:277 (walk)
posixpath.py:166(

posixpath.py:39(_

posixpath.py:73(]

{built-in
{built-in
{built-in
{built-in

{built-in

-

method

method

method

method

method

| Python3 O




File Edit View Insert Cell

B4 | X AB|+| ¥

Kermnel

H B C &=

Help

Trusted

134 function calls (126 primitive calls) in 0.002 seco

nds

Ordered by: standard name

ncalls tottime percall

unction)
1 0.000
e>)
14/6 0.000
4 0.000
islink)
4 0.000
get_sep)
4 0.000
oin)
4 0.000
_stat.S_ISLNK}
: § 0.000
builtins.exec}
4 0.000
builtins.isinstance}
27 0.001
builtins.next}
9 0.000
posix.fspath}
4 0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.002

0.002
0.000

0.000
0.000
0% 000
0.002
0.000
0.001
0.000

0.000

cumtime percall

0.002

0.000
0.000

0.000

0.000

0.000

0.002

0.000

0.000

0.000

0.000

filename:lineno(f

<string>:1(<modul

os.py:277(walk)

posixpath.

posixpath.

posixpath.

{built-in
{built-in
{built-in
{built-in
{built-in

{built-in

PY:166(

PY:39(_

PY:73(]

method

method

method

method

method

method

| Python3 O




File Edit View Insert Cell

B4+ | X AB|+| ¥

nas

Ordered by: standard name

Kermnel

H B C &=

ncalls tottime percall

unction)
1 0.000
a>)
14/6 0.000
4 0.000
islink)
4 0.000
get sep)
4 0.000
oin)
4 0.000
_stat.S_ ISLNK})
1 0.000
builtins.exec}
4 0.000
builtins.isinstance}
27 0.001
builtins.next}
9 0.000
posix.fspath}
4 0.000
posix.lstat}
5 0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Help

0.002

0.002
0.000

0.000

0.000

0.000

0% 002

0.000

0.001

0.000

0.000

0.000

cumtime percall

0.002

0.000
0.000

0.000

0.000

0.000

0.002

0.000

0.000

0.000

0.000

0.000

Trusted

filename:lineno(f

<string>:1(<modul

os.py:277(walk)
posixpath.py:166(

posixpath.py:39(

posixpath.py:73(]

{built-in
{built-in
{built-in
{built-in
{built-in
{built-in

{built-in

method

method

method

method

method

method

method

| Python3 O




File Edit View Insert Cell Kernel Help Trusted 4 [P}fthnnS O

B + x4 DB 4 vy N B C =

posix.scandir}

22 0.000 0.000 0.000 0.000 ‘append’
of 'list' objects}

1 0.000 0.000 0.000 0.000 ‘disable’
of ' lsprof.Profiler' objects}

4 0.000 0.000 0.000 0.000 ‘endswith
" of 'str' objects}

22 0.000 0.000 0.000 0.000 'is_dir'
of 'posix.DirEntry' objects}

) 0.000 0.000 0.000 0.000 'startswi
th' of 'str' objects}

%prun list(os.walk('/tmp'))

%load_ext snakeviz

%snakeviz list(os.walk('/usr/local'))




File  Edit  View Inset  Cell Kemel  Help Trusted & |Python3 O

+ x &2 B 2 ¥+ M AEC
A A Woe W Uoe WU 1S Liiwnd L= o A A
of 'list' objects}
1 0.000 0.000 {method 'disable’
of ' lsprof.Profiler' objects}
4 0.000 0.000 {method 'endswith
' of 'str' objects}
22 0.000 0.000 {method 'is_dir’
of 'posix.DirEntry' objects}
4 0.000 0.000 {method 'startswi
th' of 'str' objects}

Sprunilist(os.walk('/tmp'))

134 function calls (126 primitive calls) in 0.001 seco
nds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(f
unction)
27 0.001 0.000 0.001 0.000 {built-in method
builtins.next}
5 0.000 0.000 0.000 0.000 {built-in method
posix.scandir}
14/6 0.000 0.000 0.001 0.000 os.py:277(walk)
4 0.000 0.000 0.000 0.000 {built-in method




File Edit View Insert Cell Kernel Help Trusted & [PythnnB O

H B C =

"bytearray” objects}
1 0.000 0.000
of 'dict' objects}

B + X a B 4+ ¥
e’ ot

0.000 0.000 {method 'update’

import os
import cProfile
cProfile.run("list(os.walk('/tmp)")

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(f

unction)

1
e>)

14/6

4
islink)

4
get sep)

4
oin)

4

stat.S5S ISLNK

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.002

0.002
0.000

0.000

0.000

0.000

0.002

0.000
0.000

0.000

0.000

0.000

<string>:1(<modul

0s.py:277 (walk)
posixpath.py:166(

posixpath.py:39(_
posixpath.py:73(j

{built-in method




File Edit View Insert Cell Kernel Help Trusted & [PythnnB O

H B C =

"bytearray” objects}
1 0.000 0.000
of 'dict' objects}

B + X a B 4+ ¥
e’ ot

0.000 0.000 {method 'update’

import os
import cProfile
cProfile.run("list(os.walk('/tmp)")

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(f

unction)

1
e>)

14/6

4
islink)

4
get sep)

4
oin)

4

stat.S5S ISLNK

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.002

0.002
0.000

0.000

0.000

0.000

0.002

0.000
0.000

0.000

0.000

0.000

<string>:1(<modul

0s.py:277 (walk)
posixpath.py:166(

posixpath.py:39(_
posixpath.py:73(j

{built-in method




File Edit View Insert Cell Kernel Help Trusted 4 [PythunB O

B 4+ X @B 24 vy N B C =

22 0.000 0.000 0.000 {method 'append’
of 'list' objects}
1 0.000 0.000 0.000 {method 'disable’
of ' lsprof.Profiler' objects}
4 0.000 0.000 0.000 {method 'endswith
of 'str' objects}
22 0.000 0.000 0.000 {method 'is dir’
of 'posix.DirEntry’' objects}
4 0.000 0.000 0.000 {method 'startswi
th' of 'str' objects}

%prun Llist(os.walk('/tmp'))

134 function calls (126 primitive calls) in 0.001 seco
nds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(f
unction)
27 0.001 0.000 0.001 0.000 {built-in method
builtins.next}
5 0.000 0.000 0.000 0.000 {built-in method
posix.scandir}
14/6 0.000 0.000 0.001 0.000 os.py:277(walk)

) - UL ) . UDL ) . UL ) . UUL * =17 Mmethod




File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B + < &2 B 24 vy N B C =

posix.scandir}

22 0.000 0.000 0.000 'append’
of 'list' objects}

i | 0.000 0.000 0.000 ‘disable’
of ' lsprof.Profiler' objects}

4 0.000 0.000 0.000 ‘endswith
"' of "str’' objects}

22 0.000 0.000 0.000 ‘i8 dairx’
of 'posix.DirEntry' objects}

4 0.000 0.000 0.000 'startswi
th' of 'str' objects}

%prun list(os.walk('/tmp'))

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(f
unction)
# o | 0.001 0.000 0.001 0.000 {built-in method
builtins.next}
5 0.000 0.000 0.000 0.000 {built-in method
posix.scandir}
3/ b J . DU L ) . UOC ) « UL




File Edit View Insert Cell Kernel Help Trusted [ Python3 O

B + X &2 B 424 v N B C =

4 0.000 0.000 0.000 0.000 {method 'startswi
th' of 'str' objects}

%prun Llist(os.walk('/tmp'))

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(f

unction)

27 0.001 0.000 0.001 0.000 {built-in method
builtins.next}

5 0.000 0.000 0.000 0.000 {built-in method
posix.scandir}

14/6 0.000 0.000 0.002 0.000 os.py:277(walk)

4 0.000 0.000 0.000 0.000 {built-in method

posix.lstat}

4 0.000 0.000 !ﬂ.ﬂﬂﬂ 0.000 posixpath.py:73(]

1 0.000 0.000 0.002 0.002 {built-in method

builtins.exec}
4 0.000 0.000 0.000 0.000 posixpath.py:166(

islink)

oin)

0.00C D .000 D0.000 {me 'is dir'



File Edit View Insert Cell Kernel

B + x &2 B 424 v N B C =

| U.UUuuy
th' of 'str' objects}

U.uUuu

%prun Llist(os.walk('/tmp'))

Help

V.uuv

V.uUuu

Notebook saved | Trusted

imeTnoa STtartswi

134 function calls (126 primitive calls) in 0.002 seco

nds

Ordered by: internal time

ncalls tottime percall
unction)
27 0.001
builtins.next}
5 0.000
posix.scandir}
14/6 0.000
G 0.000
posix.lstat}
4 0.000

0.000
0.000

0.000
0.000

0.000
oin)
1 0.000
builtins.exec}
4 0.000
islink)
22 0.000

0.000

0.000

0.000

0.001

0.000

0.002
0.000

0.000
*

0.002

0.000

0.000

cumtime percall

0.000

0.000

0.000
0.000

0.000

0.002

0.000

0.000

filename:lineno(f
{built-in method
{built-in method

os.py:277(walk)
{built-in method

posixpath.py:73(]
{built-in method
posixpath.py:166(

{method 'is dir’

| Python3 O




File Edit View Insert Cell Kernel Help Trusted 4 ]P}fthnn?: @

B 4+ < DB 4 4% N B C|l=

of 'list' objects}
b 0.000 0.000 0.000 0.000 {built-in method
builtins.isinstance}
9 0.000 0.000 0.000 0.000 {built-in method
posix.fspath}
4 0.000 0.000 0.000 0.000 {method 'endswith
of 'str' objects}
4 0.000 0.000 0.000 0.000 {built-in method
_stat.S_ISLNK}
1 0.000 0.000 0.000 0.000 {method 'disable’
of ' lsprof.Profiler' objects}

In [45]: %load_ext snakeviz

In [*]: %snakeviz Llist(os.walk('/usr/local'))

I In [ ]: |







8 Safari Fle Edt View History Bookmarks Develop Window Help ‘ae 8 T 00K BE Thulsds Q

& 9 I a IO TS0 snakern 7 NI K loiders 17 gr i TF Fvrtrg i et Salr T ESmpnc O000g~ 37 TRIFTmpa 7 r_pid = (4]

: o *“Hﬂ_llt'l- P Ao, Ay Popewrs AgyierCon, Aupes 71 - 5 1 el r ik 4
e al 1 -

¢

style: | Sunburst #)

soens (55)

Cutoff: [1 - 1000 ’:]




8 Safari File Edt View History Bookmarks Develop Window Help

0@ T « wWONEE Thulsds Q =

® o <

ol

4

F MMMLMMMIW -\_-:-r-;'li'.'D-:-‘i-ﬁ-F‘pﬁH soryTiE o

g= DL~ wew P~ [Fi= M

of 'list' objects}
b 0.000 0.000 0.000 0.000 {built-in method
builtins.isinstance}
9 0.000 0.000 0.000 0.000 {built-in method
posix.fspath}
4 0.000 0.000 0.000 0.000 {method 'endswith
of 'str' objects}
4 0.000 0.000 0.000 0.000 {built-in method
_stat.S_ISLNK}
1 0.000 0.000 0.000 0.000 {method 'disable’
of ' lsprof.Profiler' objects}

%load_ext snakeviz

%snakeviz list(os.walk('/usr/local'))

*** Profile stats marshalled to file '/var/folders/gr/3vxfnplx2
t1fw55dr288mphc0000gn/T/tmpa7 r pld'.




File  Edit View Inset  Cell  Kemel  Help Trusted | Python3 O

B + & B 42 v N B C =

of ' lsprof.Profiler' objects}

4 0.000 0.000 0.000 0.000 {method 'endswith
' of 'str' objects}

22 0.000 0.000 0.000 0.000 {method 'is dir’
of 'posix.DirEntry' objects}

4 0.000 0.000 0.000 0.000 {method 'startswi
th' of 'str' objects}

Sprun Llist(os.walk('/tmp'))

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: internal time

ncalls tottime percall cumtime filename:lineno(f

unction)

27 0.001 0.000 0.001 {built-in method
builtins.next}

5 0.000 0.000 0.000 {built-in method
posix.scandir}

14/6 0.000 0.000 0.002 os.py:277(walk)

4 0.000 0.000 0.000 {built-in method
posix.lstat}

4 0.000 0.000 0.000 posixpath.py:73(]




Trusted

File Edit View Insert Cell

Kernel Help [ Python3 O

H B C =

Lo T

B+ | X A B+ v

th' of 'str' objects}
2 0.000 0.000
e' of 'bytearray' objects}
1 0.000 0.000
of 'dict' objects}

ek A e T

L T Lo | R e B el

0.000 0.000 {method 'translat

0.000 0.000 {method 'update’

In [hé'éﬂ““r':*':?!ﬁﬁ%?ﬂ s
import cProfile
cProfile.run("list(os.walk('/tmp)")

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(f

unction)

1

e>)
14/6

4
islink)

4
get sep)

4

0.000

0.000
0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.002

0.002
0.000

0.000

0.000

0.002

0.000
0.000

0.000

0.000

<string>:1(<modul

08.py:277 (walk)
posixpath.py:166(

posixpath.py:39(_

posixpath.py:73(]




File Edit

View Insert Cell Kernel Help Trusted

B + & B 22 v N B C =

In [42]:

18 0.000 0.000 ‘rpartiti
on' of 'str' objects}
68 0.000 0.000 ‘rstrip’
of 'str' objects}
4 0.000 0.000 'startswi
th' of 'str' objects}
2 0.000 0.000 'translat
e’ of 'bytearray' objects}
1 0.000 0.000 'update’

e % nersl h;-:bﬂ!l-:ﬂ_‘ﬂ_'; ! ﬂhjEﬂtE}

import os
import cProfile
cProfile.run("list(os.walk('/tmp)")

134 function calls (126 primitive calls) in 0.002 seco
nds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(f
unction)
i 0.000 0.000 0.002 0.002 <string>:1(<modul
e>)
14/6 0.000 0.000 0.002 0.000 os.py:277(walk)
4 0.000 0.000 0.000 0.000 posixpath.py:166

| Python3 O




Edit View Insert Cell

@ B 1+ ¥

r- L b _ L L L o b b :

10 0.000
posix.stat}

72 0.000

of 'list’' objects}

1 0.000

of ' lsprof.Profiler' cbjects}

b 0.000
of 'str' objects}
* -4 0.000
——rTor—118t" objects}

10 0.000

'bytearray' objects}

22 0.000

of 'posix.DirEntry' objects}

2 0.000
f 'dict' objects}
36 0.000
'str' objects}
2 0.000
' i0.FileIO' objects}
18 0.000
on' of 'str' objects}
68 0.000
of 'str' objects}
4 0.000
th' of 'str' objects}
2 0.000

Kernel

H B C =

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Help

0.000

0.000

'ﬂ.ﬂﬂu

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

{built-in method

{method
{method
{method
{method
{method
{method

{method

{method

{method
{method
{method
{method

{method

Trusted

'append’

‘disable’

"endswith

‘extend’

'find' of

“ap dir’

"items' o
'jJoin' of
‘'read' of

‘rpartiti

‘rstrip’

‘startswi

'translat

| Python3 O




Edit View Insert Cell

@ B 1+ ¥

r- L b _ L L L o b b :

10 0.000
posix.stat}

72 0.000

of 'list’' objects}

1 0.000

of ' lsprof.Profiler' cbjects}

b 0.000
of 'str' objects}
* -4 0.000
——rTor—118t" objects}

10 0.000

'bytearray' objects}

22 0.000

of 'posix.DirEntry' objects}

2 0.000
f 'dict' objects}
36 0.000
'str' objects}
2 0.000
' i0.FileIO' objects}
18 0.000
on' of 'str' objects}
68 0.000
of 'str' objects}
4 0.000
th' of 'str' objects}
2 0.000

Kernel

H B C =

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Help

0.000

0.000

'ﬂ.ﬂﬂu

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

{built-in method

{method
{method
{method
{method
{method
{method

{method

{method

{method
{method
{method
{method

{method

Trusted

'append’

‘disable’

"endswith

‘extend’

'find' of

“ap dir’

"items' o
'jJoin' of
‘'read' of

‘rpartiti

‘rstrip’

‘startswi

'translat

| Python3 O




File  Edit View Inset  Cell Kemel  Help Trusted | Python3 O

x 2 B 2 v W EH C
PUBDLA.DUCaQUULL }
10 0.000 0.000 0.000 {built-in method
posix.stat}
72 0.000 0.000 0.000 {method 'append’
of 'list' objects}
1 0.000 0.000 0.000 {method 'disable'
of ' lsprof.Profiler' objects}
6 0.000 0.000 0.000 {method 'endswith
of 'str' objects}
e — 0.000 0.000 0.000 {method 'extend’
' of 'list' objects}
10 0.000 0.000 0.000 {method 'find' of
‘bytearray’' objects}
22 0.000 0.000 0.000 {method 'is dir’
of 'posix.DirEntry’' objects}
2 0.000 0.000 0.000 {method 'items' o
f 'dict' objects}
36 0.000 0.000 0.000 {method 'join' of
‘str' objects}
2 0.000 0.000 0.000 {method 'read' of
' i0.FileIO' objects}
18 0.000 0.000 0.000 {method 'rpartiti
on' of 'str' objects}
68 0.000 0.000 0.000 {method 'rstrip'
of 'str' objects}
4 0.000 0.000 0.000 {method 'startswi
th' of 'str' objects}
2 0.000 0.000 0.000 {method 'translat

0




File

Edit View Insert

R IR LA SN &0 12 el

e)
2

3(_compile charset)

2

0( optimize charset)

2
6( mk bitmap)
2
8(<listcomp>)
4/2

4( get literal prefix)

2

1(_get _charset prefix)

2

Cell

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2(_compile info)

4
9(isstring)
2

0.000

0.000

Kernel

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Help

Trusted

posixpath.py:39(_
posixpath.py:73(]j
profileme.py:1(<m

re.py:231(compile

re.py:286( compil

sre compile.py:22
sre compile.py:25
sre compile.py:37
sre compile.py:37
sre_complle.py:41
sre compile.py:44
sre_compile.py:48
sre compile.py:53

sre compile.py:54

| Python3 O




File Edit

B+ X @B+ ¢

View Insert Cell

pdate wrapper)

1 0.000
lru cache)

1 0.000
decorating function)

1 0.000
>)

14/6 0.000
4 0.000

i B8 BEEn vAIE oo £ en 10 Nk

i e i e B ’

4 0.000
get sep)
0.000
oin)
0.000
odule>)
0.000
)
2 0.000
e)
2 0.000
3(_compile charset)
2 0.000
0(_optimize charset)
2 0.000
6(_mk_bitmap)
2 0.000
B (<listcomp

Kernel

H B C =

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Help

Trusted

functools.py:449(
functools.py:480(
glob.py:1(<module

os.py:277(walk)
posixpath.py:166(

posixpath.py:39(_

posixpath.py:73(3
profileme.py:1(<m
re.py:231(compile
re.py:286( compil
sre compile.py:22
sre compile.py:25
sre compile.py:37

sre compile.py:37

| Python3 O




@ Safarl File Edit View History Bookmarks Develop Window  Help O ® T « WwxBE Thuidds O

* @9 il [ ] locaiegt BRBA T et L Rt ey % Fane N T g 7 D 2R T Oy o 0 u 7

ims g DL~ nw P~ IFiw &
- - - T e -

e e S R S mmn

i I
I 1
I I
I I
i I
I I
I 1
I i
i I
[ 1
I 1
I |
I 1
I I
I 1

-

el
LT - —

-
-

numba

numba is a library that attempts to automatically do type-based optimizations like
we did with Cython. To use numba, you decorate functions with @autojit.

import numba







File Edit

CREIRCEG T Saving every 120s  Trusted

View Insert Cell Kernel Widgets Help

B+ x @3B 4 ¥ N A C =

| Python3 O

Loading [MathJax)extensions/Safe.js

Notebook file format

Notebooks are stored on disk as JSON files. JSON is a really simple way of

representing data: it looks exactly like Python lists and dictionaries, so you already
know how to read it.

{
"key": "value",
"ultimate answer": 42,
"iisgts”: [(“1ike”, "this"]

}

At the top level of the notebook file there are four fields:

* nbformat & nbformat minor: The version of the format this notebook is
stored in. The current version is 4.1.




File Edit View Insert Cell Kernel Widgets Help Trusted ] Python3 O

B + ¥ & B 424 vy N BB C =
{

"key": "value",
"ultimate answer": 42,
"lists": ["like", "this"]

}

At the top level of the notebook file there are four fields:

e nbformat & nbformat minor: The version of the format this notebook is
stored in. The current version is 4.1.

» metadata: Information about the notebook, like the language it's written in.

e cells: List of cells with the notebook content

Challenges

Open the notebooks in this directory in your text editor and look at the structure.

1. What distinguishgs a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It describes the structure of
notebook files in detail.




File Edit View Insert Cell Kernel Widgets Help Trusted ] Python3 O

+ X 4B |+ ¥ N EC
* NDIOIMAT & NDIOIMAT MLMNOI. INE VEersion Ol e 1ormdL unis Nnoweooox 1s
stored in. The current version is 4.1.
 metadata: Information about the notebook, like the language it's written in.
e cells: List of cells with the notebook content

Challenges
Open the notebooks in this directory in your text editor and look at the structure.

1. What distinguishes a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It describes the structure of
notebook files in detail.

Manipulating notebooks in Python code |

The IPython.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

In [ ]J: dmport nbformat



File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

+ X @B 2+ vy N C
Upen the notebooks in this directory in your text editor and look at the structure.

1. What distinguishes a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It describes the structure of
notebook files in detail.

Manipulating notebooks in Python code

The IPython.nbformat package has functions to load and save notebooks,

convert between different versions of the format, and validate notebooks against
the specification.

import nbformat
nb = nbformat.read('Notebook file format.ipynb', as_version=4)

nb

{'cells’': [{'cell type': 'markdown',

‘'metadata’: {},

'source': '# Notebook file format\n\nNotebooks are stored on
disk as JSON files. JSON is a really simple way of representing
data: it looks exactly like Python lists and dictionaries, so y
ou already know how to read it.\n\n "~ javascripti\n{\n “key": "
value",\n "ultimate answer": 42,\n "lists": ["like", "this"]\




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + <X & B 42 vy N R C =

Manipulating notebooks in Python code

The IPython.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

import nbformat
nb = nbformat.read('Notebock file format.ipynb', as_version=4)
nb

{'cells': [{'cell type': 'markdown',

'metadata’: {},

'source': '# Notebook file format\n\nNotebooks are stored on
disk as JSON files. JSON is a really simple way of representing
data: it looks exactly like Python lists and dictionaries, so y
ou already know how to read it.\n\n" "~ javascript\n{\n “"key": "
value",\n "ultimate answer": 42,\n "lists": ["like", "this"]\
n}\n" " "\n\nAt the top level of the noteboock file there are four
fields:\n\n* "nbformat™ & “nbformat minor®: The version of the
format this notebook is stored in. The current version is 4.1.\
n* "“metadata : Information about the notebook, like the languag
e it\'s written in.\n* “cells” : List of cells with the notebook
content '},

{'cell type': 'markdown',




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + < &4 DB 2+« vy N R C =

Manipulating notebooks in Python code

The 1Python.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

import nbformat
nb = nbformat.read('Notebook file format.ipynb', as_version=4)
nb

{'cells': [{'cell type': 'markdown',

‘metadata’: {},

‘source’': '# Notebook file format\n\nNotebooks are stored on
disk as JSON files. JSON is a really simple way of representing
data: it looks exactly like Python lists and dictionaries, so ¥y
ou already know how to read it.\n\n "~ ~javascript\n{\n “"key": "
value”,\n ™ ultimate answer": 42,\n "lists": ["like", "this"]\
n}\n~ " "\n\nAt the top level of the notebook file there are four
fields:\n\n* "nbformat™ & "nbformat minor : The version of the
format this notebook is stored in. The current version is 4.1.\
n* "metadata : Information about the notebook, like the languag
e it\'s written in.\n* “cells : List of cells with the notebook
content '},

{'cell type': 'markdown’,

'metadata’: {},

'source': '## Challenges\n\nOpen the notebooks in this direc

e




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + < &4 DB 2+« vy N R C =

Manipulating notebooks in Python code

The 1Python.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

import nbformat
nb = nbformat.read('Notebook file format.ipynb', as_version=4)
nb

{'cells': [{'cell type': 'markdown',

‘metadata’: {},

‘source’': '# Notebook file format\n\nNotebooks are stored on
disk as JSON files. JSON is a really simple way of representing
data: it looks exactly like Python lists and dictionaries, so ¥y
ou already know how to read it.\n\n "~ ~javascript\n{\n “"key": "
value”,\n ™ ultimate answer": 42,\n "lists": ["like", "this"]\
n}\n~ " "\n\nAt the top level of the notebook file there are four
fields:\n\n* "nbformat™ & "nbformat minor : The version of the
format this notebook is stored in. The current version is 4.1.\
n* "metadata : Information about the notebook, like the languag
e it\'s written in.\n* “cells : List of cells with the notebook
content '},

{'cell type': 'markdown’,

'metadata’: {},

'source': '## Challenges\n\nOpen the notebooks in this direc

e




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + < &4 DB 2+« vy N R C =

Manipulating notebooks in Python code

The 1Python.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

import nbformat
nb = nbformat.read('Notebook file format.ipynb', as_version=4)
nb

{'cells': [{'cell type': 'markdown',

‘metadata’: {},

‘source’': '# Notebook file format\n\nNotebooks are stored on
disk as JSON files. JSON is a really simple way of representing
data: it looks exactly like Python lists and dictionaries, so ¥y
ou already know how to read it.\n\n "~ ~javascript\n{\n “"key": "
value”,\n ™ ultimate answer": 42,\n "lists": ["like", "this"]\
n}\n~ " "\n\nAt the top level of the notebook file there are four
fields:\n\n* "nbformat™ & "nbformat minor : The version of the
format this notebook is stored in. The current version is 4.1.\
n* "metadata : Information about the notebook, like the languag
e it\'s written in.\n* “cells : List of cells with the notebook
content '},

{'cell type': 'markdown’,

'metadata’: {},

'source': '## Challenges\n\nOpen the notebooks in this direc

e




File

Edit

View Insert Cell Kernel Widgets Help Trusted

A W R o o B o - ---' LE L — - t E & _ L o ¥ - ‘ -

n}\n~""\n\nAt the top level of the notebook file there are four
fields:\n\n* “nbformat™ & “nbformat_minor®: The version of the
format this notebook is stored in. The current version is 4.1.\
n* "metadata’: Information about the notebook, like the languag
e it\'s written in.\n* “cells : List of cells with the notebook
content '},

{'cell type': 'markdown',

‘metadata’: {},

‘source': '## Challenges\n\nOpen the notebooks in this direc
tory in your text editor and look at the structure.\n\nl. What
distinguishes a markdown cell from a code cell?\n2. How many di
fferent kinds of output can you see?\n\nThe [notebook format do
cumentation] (http://ipython.org/ipython-doc/3/notebook/nbformat
.html) has the answers. It describes the structure of notebook
files in detail.'},

{'cell type': 'markdown',

‘metadata’: {},

'sourcei: '## Manipulating notebooks in Python code\n\nThe ~
IPython.nbformat™ package has functions to load and save notebo
oks, convert between different versions of the format, and vali
date notebooks against the specification.'},

{'cell type': 'code’,

'execution_count': None,

'metadata’: {'collapsed': True},

‘outputs‘: [],

'source’': "import nbformat\nnb = nbformat.read( 'Notebook fil
e format.ipynb', as version=4)\nnb"},

| Python3 O




File Edit View Insert Cell Kernel Widgets Help Trusted l Python3 O

B + X A B |+ ¥ N A C e

n}\n"""\n\nAt the top level of the notebook file there are four
fields:\n\n* "nbformat™ & “nbformat minor : The version of the
format this notebook is stored in. The current version is 4.1.\
n* "“metadata’ : Information about the notebook, like the languag
e it\'s written in.\n* “cells  : List of cells with the notebook
content '},

{'cell _type': 'markdown’,

‘'metadata’: {},

'source': '## Challenges\n\nOpen the notebooks in this direc
tory in your text editor and look at the structure.\n\nl. What
distinguishes a markdown cell from a code cell?\n2. How many di
fferent kinds of output can you see?\n\nThe [notebook format do
cumentation] (http://ipython.org/ipython-doc/3/notebook/nbformat
.html) has the answers. It describes the structure of notebook
files in detail.'},

{'cell type': 'markdown’,

‘'metadata’: {}.,

'source': '## Manipulating notebooks in Python code\n\nThe °
IPython.nbformat™ package has functions to load and save notebo
oks, convert between different versions of the format, and vali
date notebooks against the specification.'},

{'cell type': 'code',

‘execution count': None,

‘metadata’: {'collapsed': True},

‘outputs’': [],

'source': "import nbformat\nnb = nbformat.read( 'Notebook fil
e format.ipynb', as version=4)\nnb"},

i (R |
= IDE S0e




File Edit View Insert Cell Kernel Widgets Help Trusted l Python3 O

x @B 2+ v M AR C
sl J UMD LI QUDWTLOs 4k UMTOWLLALWTD LIHE DLLUVGLULT Wi UVLCLWUOUR
files in detail.'},

{'cell_type': 'markdown’,

'metadata’: {},

'source': '## Manipulating notebooks in Python code\n\nThe ~
IPython.nbformat™ package has functions to load and save notebo
oks, convert between different versions of the format, and vali
date notebooks against the specification. '},

{'cell type': 'code',

'execution count': None,

‘'metadata’: {'collapsed': True},

‘outputs': [],

'source': "import nbformat\nnb = nbformat.read( 'Notebook fil
e format.ipynb', as version=4)\nnb"},

{'cell type': 'code',

'execution count': None,

‘metadata’: {'collapsed’': True},

'‘outputs': [],

'source': 'print(nb.cells[2].socurce)'},

{'cell type': 'code',

‘execution count': None,

‘metadata’: {'collapsed’': True},

‘outputs': [],

i 'source': "# Run this, then reload the page to see the chang
e\nnb.cells.insert(0, nbformat.v4.new markdown cell('**Look at
me!**"'))\nnbformat.write(nb, 'Notebook file format.ipynb')"},

{'cell type': 'code’,

‘execution_count': None,




File Edit View Insert Cell Kernel Widgets Help Trusted l Python3 O

x @B 2+ ¥y N B C =

files in detail.'},
{'cell type': 'markdown’,

'metadata’: {}.,

‘'source': '## Manipulating notebooks in Python code\n\nThe
IPython.nbformat™ package has functions to load and save notebo
oks, convert between different versions of the format, and wvali
date notebooks against the specification.'},

{'cell _type': ‘code’,

‘execution count': None,

'metadata’: {'collapsed’': True},

'outputs': [],

‘'source': "import nbformat\nnb = nbformat.read('Notebook fil
e format.ipynb', as_version=4)\nnb"},

{'cell type': 'code’,

'execution count': None,

‘metadata’: {'collapsed’': True},

‘outputs’': [],

‘'source’': 'print(nb.cells[2].source)'},

{'cell type': 'code',

‘execution_count': None,

‘'metadata’: {'collapsed': True},

‘outputs': [],

'source': "# Run this, then reload the page to see the chang
e\nnb.cells.insert(0, nbformat.v4.new _markdown cell('**Look at
me!**'))\nnbformat.write(nb, 'Notebook file format.ipynb')"},

{'cell type': 'code',

'execution count': None,

‘metadata’: {'collapsed': True

-




File Edit View Insert Cell Kernel Widgets Help Trusted

* @A B 2+ ¥ N B C =

{'cell type': 'markdown’,

'metadata’: {},

'source': '## Manipulating notebooks in Python code\n\nThe
IPython.nbformat™ package has functions to load and save notebo
oks, convert between different versions of the format, and wvali
date notebooks against the specification.'},

{'cell type': 'code’,

'execution_count': None,

'metadata’: {'collapsed': True},

‘outputs’': [],

‘source': "import nbformat\nnb = nbformat.read('Notebook fil
e format.ipynb', as_wversion=4)\nnb"},

{'cell type': 'code’,

'execution count': None,

'metadata’: {'collapsed’': True},

‘'outputs’': [1,

‘'source': 'print(nb.cells[2].source)'},

‘cell type': 'code’,

'execution_count’': None,

'metadata’: {'collapsed': True},

‘outputs': [1],

'source': "# Run this, then reload the page to see the chang
e\nnb.cells.insert(0, nbformat.v4.new markdown_cell('**Look at
me!**'))\nnbformat.write(nb, 'Notebook file format.ipynb')"},

{'cell type': 'code',

'execution count': None,

‘metadata’': {'collapsed': True},

‘outputs': [].,

-

| Python3 O




File Edit View Insert Cell Kernel Widgets Help Trusted

* @A B 2+ ¥ N B C =

{'cell type': 'markdown’,

'metadata’: {},

'source': '## Manipulating notebooks in Python code\n\nThe
IPython.nbformat™ package has functions to load and save notebo
oks, convert between different versions of the format, and wvali
date notebooks against the specification.'},

{'cell type': 'code’,

'execution_count': None,

'metadata’: {'collapsed': True},

‘outputs’': [],

‘source': "import nbformat\nnb = nbformat.read('Notebook fil
e format.ipynb', as_wversion=4)\nnb"},

{'cell type': 'code’,

'execution count': None,

'metadata’: {'collapsed’': True},

‘'outputs’': [1,

‘'source': 'print(nb.cells[2].source)'},

‘cell type': 'code’,

'execution_count’': None,

'metadata’: {'collapsed': True},

‘outputs': [1],

'source': "# Run this, then reload the page to see the chang
e\nnb.cells.insert(0, nbformat.v4.new markdown_cell('**Look at
me!**'))\nnbformat.write(nb, 'Notebook file format.ipynb')"},

{'cell type': 'code',

'execution count': None,

‘metadata’': {'collapsed': True},

‘outputs': [].,

-

| Python3 O




File Edit View Insert Cell Kernel Widgets Help Trusted

* @A B 2+ ¥ N B C @

{'cell type ' : "markdown-’,

'metadata’: {},

‘source': '## Manipulating notebooks in Python code\n\nThe
IPython.nbformat ™ package has functions to load and save notebo
oks, convert between different versions of the format, and vali
date notebooks against the specification.'},

{'cell type': 'code’,

'execution count': None,

'metadata’: {'collapsed': True},

‘outputs’:z [],

‘source’': "import nbformat\nnb = nbformat.read('Notebook fil
e format.ipynb', as version=4)\nnb"},

{'cell type': 'code’,

'execution count': None,

'metadata’: {'collapsed': True},

‘outputs’': [],

'source': 'print(nb.cells[2].source)'},

'cell type': 'code',

'execution count': None,

'metadata’: {'collapsed': True},

'nutputs': [0

‘source': "# Run this, then reload the page to see the chang
e\nnb. nella.inaert[u, nbformat.v4.new markdown_cell('**Look at
mal**'j}\nnhfurn&t;writatnh, 'Notebook file furmat.lprnh h Yol 5

{'cell type': 'code’,
'execution count': None,

'metadata’: {'collapsed': True},

‘outputs’': [],

=

| Python3 O




File Edit View Insert Cell Kernel Widgets Help Trusted

x @B 44 ¥y N B C =

‘source ‘': ° IDPEI'I "Notebook tile tormat.html”™" },
{'cell type': ‘code’,
'execution count': None,
‘'metadata’: {'collapsed’': True},
‘outputs': [],
'source': 'from nbconvert import get export names\nget expor
t names() '},
{'cell type': 'code',
‘execution count': None,
‘'metadata’: {'collapsed’': True},
‘outputs’: [],
'source': '!jupyter nbconvert --to script "nbval.ipynb"\n%py
cat nbval.py'}.,
{'cell_type': 'code’,
‘execution count': None,
'metadata’: {'collapsed': True},
‘outputs’: [],
'source': '!jupyter nbconvert --to pdf "nbval.ipynb"'},
{'cell type': 'code',
‘execution_count’': None,
‘metadata’: {'collapsed’': True},
‘outputs': [],
'source': 'lopen nbval.pdf'}],
'metadata’': {'kernelspec': {'display name': 'Python 3',
'language’': 'python’,
'name': 'python3'},
'language _info': {'codemirror mode': {'name': 'ipython', 'ver
sion': 3},

| Python3 O




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

< @G B 44 vy N B C =

sion': 3},

‘file extension': '.py',
'mimetype’: 'text/x-nvthon'.
‘'name': 'python’', o
‘nbconvert e xpnrt.l o Yo i M o il
'pygments lexer':
'version': '3.6.0

‘nbformat': 4,

"'nbformat minor': 1}

print(nb.cells[2].source)

## Manipulating notebooks in Python code

The " IPython.nbformat™ package has functions to load and save n
otebooks, convert between different versions of the format, and
validate notebocks against the specification.

# Run this, then reload the paoge to see the change
nb.cells.insert(0®, nbformat.v4.new_markdown_cell('#*xLook at me!=*
nbformat.write(nb, 'Notebock file format.ipynb')

[ 1: !jupyter nbconvert --to html "Notebook file format.ipynb"

: lopen "Notebook file format.html"




Saving every 120s Pvthon

il

[ 3

Markdown -~ CellToolbar

Look at me!

Challenges

Open the notebooks in this directory in your text editor and look at the structure.

1. What distinguishes a markdown cell from a code cell?
2. How many difterent kinds of output can you see?

The notebook format documentation has the answers. It describes the structure ot
notebook files in detail.

Manipulating notebooks in Python code

The IPython.nbformat package has functions to load and save notebooks

Loading [Math Jax)/extensions/Safe. js




Saving every 120s  Not Trusted | Python3 O

File Edit View Insert Cell Kernel Widgets Help

B + x @B 4 3%y B C =

lnnl-z. at me!

Notebook file format

Notebooks are stored on disk as JSON files. JSON is a really simple way of
representing data: it looks exactly like Python lists and dictionaries, so you already
know how to read it.

{
"key": "value"”,
"ultimate answer": 42,
"lists": [“"1like", "this"])

}

At the top level of the notebook file there are four fields:



File Edit View Insert Cell Kernel Widgets Help Not Trusted ] Python3 O

B  + << @D 2 v N B C =

* nbformat & nbformat minor: The version of the format this notebook is
stored in. The current version is 4.1.

* metadata: Information about the notebook, like the language it's written in.

e cells: List of cells with the notebook content

Challenges

Open the notebooks in this directory in your text editor and look at the structure.

1. What distinguishes a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It describes the structure of
notebook files in detail.

Manipulating notebooks in Python code

The 1Python.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.




File Edit View Insert Cell Kernel Widgets Help Not Trusted ] Python3 O

B  + < @ 0B 2 v N B C =

Open the notebooks in this directory in your text editor and look at the structure.

1. What distinguishes a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It describes the structure of
notebook files in detail.

Manipulating notebooks in Python code

The IPython.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

import nbformat

nb = nbformat.read('Notebook file format.ipynb', as_version=4)
nb

print(nb.cells[2].source)

# Run this, then relood the page to see the change
nb.cells.insert(0@, nbformat.v4.new_markdown_cell('**Look at me!=*
nbformat.write(nb, 'Notebook file format.ipynb')




File Edit View Insert Cell Kernel Widgets Help Not Trusted 4 [P}.rlhnn 3 0O

B + < @B 24 v N B C =

Manipulating notebooks in Python code

The IPython.nbformat package has functions to load and save notebooks,
convert between different versions of the format, and validate notebooks against
the specification.

import nbformat
nb = nbformat.read('Notebook file format.ipynb', as_version=4)
nb

print(nb.cells[2].source)

# Run this, then reload the page to see the change
nb.cells.insert(0, nbformat.v4.new_markdown_cell('**xLook at me!=x
nbformat.write(nb, 'Notebook file format.ipynb')

!jupyter nbcuﬂvert --to html "Notebook file format.ipynb"

lopen "Notebook file format.html"

from nbconvert import get_export_names

- - -
- L ar=in




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python 3 O

+ x a2 B 2+ v N AR C
convert between aiTlerent versions or tne Tormar, ana vaiigate NoTeDookKs against
the specification.

import nbformat
nb = nbformat.read('Notebook file format.ipynb', as_version=4)
nb

print(nb.cells[2].source)

# Run this, then reload the page to see the change
nb.cells.insert(®, nbformat.v4.new_markdown_cell('*xLook at me!x*

nbformat.write(nb, 'Notebook file format.ipynb')

!jupyter nbconvert --to html "Notebook file format.ipynb"

[NbConvertApp] Converting notebook Notebook file format.ipynb t
o html

[NbConvertApp] Writing 259945 bytes to Notebook file format.htm
1

!open "Notebook file format.html"

from nbconvert import get_export_names
get_export_names()




Look at me!

Notebook file format

o
0 |

Notebooks are stored on disk as JSON files. JSON is a really
simple way of representing data: it looks exactly like Python
lists and dictionaries, so you already know how to read it.

{

1 "
Loading [Contrib)/a11y/accessibility-menu.js value”,




Notebooks are stored on disk as JSON files. JSON is a really
simple way of representing data: it looks exactly like Python
lists and dictionaries, so you already know how to read it.

{
"key": "value”,
"ultimate answer": 42,
"lists": ["like", "this"]

} :

At the top level of the notebook file there are four fields:

e nbformat & nbformat minor: The version of the
format this notebook is stored in. The current

version is 4.1.
e metadata: Information about the notebook, like

the language it's written in.
e cells: List of cells with the notebook content




Notebooks are stored on disk as JSON tiles. JSON is a really
simple way of representing data: it looks exactly like Python
lists and dictionaries, so you already know how to read it.

{
"key ' : "value’,
'ultimate answer': 42,
*ligts®": [“1ike",; "this"]
}

At the top level of the notebook file there ate four fields:

e nbformat & nbformat minor: The version of the
format this notebook is stored in. The current

version is 4.1.
* metadata: Information about the notebook, like

the language it's written in.
e cells: List of cells with the notebook content




At the top level of the notebook file there are four fields:

e nbformat & nbformat minor: The version of the
format this notebook is stored in. The current

version is 4.1.
e metadata: Information about the notebook, like

the language it's written in.
e cells: List of cells with the notebook content

Challenges

Open the notebooks in this directory in your text editor and

look at the structure.

1. What distinguishes a markdown cell from a code

cell?
2. How many different kinds of output can you see?




Challenges

Open the notebooks in this directory in your text editor and
look at the structure.

1. What distinguishes a markdown cell from a code

cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It
describes the structure of notebook files in detail.

Manipulating notebooks in Python
code

The IPython.nbformat package has functions to load and
save notebooks, convert between different versions of the




Challenges

Open the notebooks in this directory in your text editor and
look at the structure.

1. What distinguishes a markdown cell from a code
cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It

describes the structure of notebook files in detail.

Manipulating notebooks in Python
code

The IPython.nbformat package has functions to load and
save notebooks, convert between different versions of the

ormat. and validate notebooks agal he specification




In

In

In

In

In

In

et
LL]

1:8

nprormat.write(nb,  NOtTeboo 1le Iormat.l1pyn
D)

! jupyter nbconvert --to html "Notebook file £
ormat.ipynb”

lopen "Notebook file format.html"”

from nbconvert import get export names

get export names()
- bl k

! jupyter nbconvert --to script "nbval.ipynb"
$pycat nbval.py

! Jupyter nbconvert --to pdf "nbval.ipynb"

lopen nbval.pdf




In [ ]: # Run this, then reload the page to see the c
hange
nb.cells.insert (0, nbformat.v4.new markdown c
ell('**Look at me!l**"))
nbformat.write(nb, "'Notebook file format.ipyn

D)

In [ ]: !jJupyter nbconvert --to html "Notebook file £
ormat.ipynb”

In [ ]: !open "Notebook file format.html”

In [ ]: from nbconvert import get export names
get export names()

In [ ]: !jupyter nbconvert --to script "nbval.ipynb"
tpycat nbval.py

In : !jJupvter nbconvert --to pdf "nbval.ipynb"




8 Saltann FRie

@ L]

Profng el Ot &

In

In

In

In

In

[ ]:

Edt View Hslory Bookmarks Develop Window Help

* Ly e P+ JIFli+ K

[ ] s A T TS P gl e pr o w R w o Tacdwidem, T o T Spartariat kit P ST or kared I3

L]

nbformat.write(nb, 'Notebook file format.ipyn
b')

! jupyter nbconvert --to html "Notebook file f
ormat.ipynb”

lopen "Notebook file format.html”

from nbconvert import get export names
get export names()

|jupyter nbconvert --to script "nbval.ipynb”
spycat nbval.py

'nbval .ipynb”

!jupyter nbconvert --to pdf




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O

+ =< & D +«+ v M R C
F o pj?-tEEt ==TIDVal Hbﬁf&l.lp‘fﬁb -=SAaNi1tiZe-with ﬂcc_sanltlze.cr

9
g ~~-

# ### Examples of plugin behaviour
# The following examples demonstrate how the plugin behaves dur

ing testing. Test this notebook yourself to see the validation
in action!

# These two imports produce no output as standard, if any **war
nings** are printed out the cell will fail. Under normal operat
ing conditions they will pass.

# In[2]:

import numpy as np

# If python doesn't consistently print 7, then something has go
ne terribly wrong. **Deterministic cells** are expected to pass
everytime

# In[3]:

print(5+2)




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O

B |+ x & B 2+ 4+ N R C =

# coding: utf-8
# # IPython Notebook Validation for py.test - Documentation

# One of the powerful uses of the IPython notebook is for docu
mentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin
for py.test. The IPython notebook format ~.ipynb  stores outpu
ts as well as inputs. Validating the notebook means to rerun t
he notebook and make sure that it is generating the same outpu
t as has been stored.

¥

# Therefore, the #**user MUST make the following the distinctio
n*w;

#

# l. Running a notebook manuallv will likelv change the output

Mo o[ g !jupyter nbconvert --to pdf "nbval.ipynb"

In [ ]: !open nbval.pdf




File Edit View Insert Cell Kemnel Widgets Help Not Trusted [ Python3 O

B + < @& DB 2« ¥y N R C =

ESL_TANUI L_llamesy )

Out[1l0]: ['asciidoc',
‘custom’,
"html',
"latex’,
"markdown’,
"'notebook’,
‘pdf’,
‘python’,
‘rst’,
"script’,
'slides']

In [11]): !jupyter nbconvert --to script "nbval.ipynb"
%pycat nbval.py

—

* [NbConvertApp] Converting notebook nbval.ipynb to script
[NbConvertApp] Writing 7081 bytes to nbval.py

# coding: utf-8
# # IPython Notebook Validation for py.test - Documentation

# One of the powerful uses of the IPython notebook is for docu
mentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin

E] DY _TEE £ - pleiw miwilelelapy s T DYYILE e -




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 @

B 4+ < a0B 4+ v N A C &=
# coding: utf-8

# # IPython Notebook Validation for py.test - Documentation

# One of the powerful uses of the IPython notebook is for docu
mentation purposes, here we use a notebook to demonstrate the

behaviour and usage of the IPython Notebook Validation plugin

for py.test. The IPython notebook format ~.ipynb~ stores outpu
ts as well as inputs. Validating the notebook means to rerun t
he notebook and make sure that it is generating the same outpu
t as has been stored.

2

# Therefore, the **uyser MUST make the following the distinctio
n*¥*s

#
# 1. Runninag a notebook manuallv will likelv chanage the output

!jupyter nbconvert —--to pdf "nbval.ipynb"

[NbConvertApp] Converting notebook nbval.ipynb to pdf
[NbConvertApp] Support files will be in nbval files/
[NbConvertApp] Making directory nbval files
[NbConvertApp] Writing 30279 bytes to notebook.tex
[NbConvertApp] Building PDF

[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.t
ex']

: lopen nbval.pdf



File Edit View Insert

B4+ X A B+ ¥

#

nk*e

#

Cell Kernel Widgets Help Not Trusted

H B C =

for py.test. The IPython notebock format  .ipynb stores outpu
ts as well as inputs. Validating the notebook means to rerun t
he notebook and make sure that it is generating the same outpu
t as has been stored.

# Therefore, the **user MUST make the following the distinctio

# 1. Running a noteboock manually will likelv change the output

!jupyter nbconvert --to pdf "nbval.ipynb"

[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertapp]
ex']

[NbConvertApp]
[NbConvertApp]

Converting notebook nbval.ipynb to pdf

Support files will be in nbval files/

Making directory nbval files

Writing 30279 bytes to notebook.tex

Building PDF

Running xelatex 3 times: [ 'xelatex', 'notebook.t

Running bibtex 1 time: ['bibtex', 'notebook']
WARNING | bibtex had problems, most likely becau

se there were no citations

[NbConvertApp]
[NbConvertaApp]

PDF successfully created
Writing 43187 bytes to nbval.pdf

# |Python3 O

lopen Hbual.pdf




File Edit View Insert Cell Kernel Widgets Help Not Trusted 4 [Pythnn3 12}

B + << @2 B 2 4 N B C =
L # l1l. RBunninag a notebook manuallvy will likelvy change the output

In [12]: !jupyter nbconvert --to pdf "nbval.ipynb"

[NbConvertApp] Converting notebook nbval.ipynb to pdf
[NbConvertApp] Support files will be in nbval files/
[NbConvertApp] Making directory nbval files

[NbConvertApp] Writing 30279 bytes to notebook.tex
[NbConvertApp] Building PDF

[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.t
ex']

[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
[NbConvertApp] WARNING | bibtex had problems, most likely becau
se there were no citations

[NbConvertApp] PDF successfully created

[NbConvertApp] Writing 43187 bytes to nbval.pdf

In [*]: l!open nbval.pdf

I In [ ]: |




Not Trusted Python 3

B + xXx a B+ $v N B C| e

A Ok

- NOTEehOD il Rabhl=" | ww
i abnii L ULL L 42N an fala Jala o) 4 Rl A LR 1 LY

In [12]: !jupyter nbconvert —-to pdf "nbval.ipynb"

[NbConvertApp] Converting notebook nbval.ipynb to pdf
[NbConvertApp] Support files will be in nbval files/
[NbConvertApp] Making directory nbval files

[NbConvertApp)] Writing 30279 bytes to notebook.tex
[NbConvertApp] Building PDF

[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.t
ex’ ]

[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook’]
[NbConvertApp] WARNING | bibtex had problems, most likely becau
se there were no citations

[NbConvertApp] PDF successfully created

[NbConvertApp] Writing 43187 bytes to nbval.pdf

In [13]: !open nbval.pdf

mm | ]




@ Preview Fie Edt View Go Tools Window Heip

YN WwoxBl Thutd:sd O

In [10]: plt.imshow(np.array([[i + j for i in range(3)]
for j in range(3)1),
interpolation='None'

)

Out [10) : <matplotlib.image.AxesImage at Ox7f2cb3374198>

-U.3

0.0

05

10

15

20

« Tiowad Do (pace B of &)




@ Preview Fie Edit View Go Tools Window Help

3 L « Nl e (page 5 of &)

F o=

If the raised exception doesn't match the stored exception, we get a failure

RuntimeError Traceback (most recent call last)

<ipython-input-3-32dccic70ade> in <module>()
1 # NBVAL_RAISES_EXCEPTION
2 print("If the raised exception doesn't match the stored exception, we get a failure"
----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

In [2]: # NBVAL_IGNORE_OUTPUT

- . . SR N



File Edit

View Insert

B+ X QB+ ¢

L

In [121:

Cell Kernel Widgets Help Not Trusted ¢ [P},rthnnS O

" B C = \

# l1l. Runninag a notebook manually will likely chanage the output

!jupyter nbconvert --to pdf "nbval.ipynb"

[NbConvertApp]
[NbConvertiApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
ex']

[NbConvertApp]
[NbConvertApp]

Converting notebook nbval.ipynb to pdf

Support files will be in nbval files/

Making directory nbval files

Writing 30279 bytes to notebook.tex

Building PDF

Running xelatex 3 times: [ 'xelatex', 'notebook.t

Running bibtex 1 time: ['bibtex', 'notebook']
WARNING | bibtex had problems, most likely becau

se there were no citations

[NbConvertApp]

PDF successfully created

[NbConvertApp] Writing 43187 bytes to nbval.pdf

!open nbval.pdf




g o ol = e e

Syt Maotebaok

P A
B R gt
a ]

-
B &) Byl v il
[rree 53 &F 13te

e ROLESS0L Vieee

sk T

O

Farroriied




= Jupyter

nbviewer

A simple way to share Jupyter Notebooks

Programming Languages

IP[y] e a e
L] aa
julia

A pgthon

& IRuby: Notebook S
Books

ROBRB|LISTIC PROGRAMMING
RERYCSIAN METHDDS
tOR HACHERS

Jil

Mining the
8001al Web

Ol mum T
Telo(s £ = WA 'I'E'IEI"

Misc




lpytes e g, om0

Notebook file format

Notebooks are stored on disk as JSON files. JSON is a really simple way of representing data: it looks exactly like Python lists and dictionaries, s0 you already know
how to read it.

{
'key™: "value”,
ultimate answer : 42,
'lists™: ["like", "this")

}
At the top level of the notebook file there are four fields:

* nbformat & nbformat_minor: The yersion of the format this notebook is stored in. The current version is 4.1.
* metadata: Information about the notebook, like the language it's written in.
* cells: List of celis with the notebook content

Challenges
Open the notebooks in this directory in your text editor and look at the structure,

1. What distinguishes a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It descnbes the structure of notebook files in detail.,

Manipulating notebooks in Python code




* nbformat & nbformat minor: The version of the format this notebook is stored in. The current version is 4.1.
» metadata: Information about the notebook, like the language it's written in.
* cells: List of cells with the notebook content

Challenges
Open the notebooks in this directory in your text editor and look at the structure,

1. What distinguishes a markdown cell from a code cell?
2. How many different kinds of output can you see?

The notebook format documentation has the answers. It describes the structure of notebook files in detail.

Manipulating notebooks in Python code

The IPython.nbformat package has functions to load and save notebooks, convert between different versions of the format, and validate notebooks against the

specification.
k
In [ }J: import nbformat
nb = nbformat.read( Notebook file format.ipynb , as version=4)
nb
In [ ]J: print(nb.cells[2].source)
In [ J: # Run this, then reiocad the page to see the change

nb.cells.insert(0, nbformat.v4.new markdown cell( **Look at mel=+*"))
nbformat.write(nb, 'Notebook file format.ipynbh')

In [ }J: !jupyter nbconvert --to html “"Notebook file format.ipynb®

in | iopen "Notebook file format.html™

[
"

In [ ]: from nbconvert import get export names
get export names()




= Jupyter

IPython: beyond plain Python

When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more

fluid and efficient.

First things first: running code, getting help

in the noteboeX, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.

Alternately, you can use:
¢ Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middle of an existing notebook).

¢ Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep

permanently.

In [1j: praimt{ "Hi")

Hi
To get help use the question mark 7. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

.

IPython -- An enhanced Interactive Python

T T T T F F T F YT YTORYYT YT OFPTT R ORY PRORR YT T TT N Y TYTE LT T T RY TN

In [2]:

IPython offers a fully compatible replacement for the standard Python

-




.

= Jupyter o g o B0 &

When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more
fluid and efficient.

First things first: running code, getting help

In the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.

Alternately, you can use:

+ Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep

permanently.
,

In [1l]: print{"Hi")

Hi

To get help use the question mark ?. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

In [2): 7

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command line
options availilable. This document only describes interactive features.

MAIN FEATURES




.

= Jupyter o g o B0 &

When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more
fluid and efficient.

First things first: running code, getting help

in the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.

Alternately, you can use:

+ Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep

permanently.
,

In [1l]: print{"Hi")

Hi

To get help use the question mark ?. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

In [2): 7

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command line
options available. This document only describes interactive features.

MAIN FEATURES




:Jiqpyter YER RO s g2 B0 &

First things first: running code, getting help
In the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.
Alternately, you can use:

* Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep

permanently.
In [1): print("Hi")
Hi
To get help uéIE the question mark ?. This will bring out the pager, use esc or g 1o close it with the keybard, or click on the close icon ton the top right of the pager.
In [2): 7

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command

history mechanism and output results caching.

At your system command line, type "ipython -h' to see the command line
options available. This document only describes interactive features.

MAIN FEATURES

* Access to the standard Python help with object docstrings and the Python
manuals. Simply type 'help’ (no gquotes) to invoke it.
for information on the magic subsystem.

* Magic commands: type fmagic




= Jupyter s om0 s

In [2

1 s

- Jﬂ----i-- _-‘ - E— .-—---—-'-- - ' ------

When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more
fluid and efficient.

First things first: running code, getting help

In the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.
Alternately, you can use:

* Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
+ Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep
permanently.

print(“Hi")

Hi

To get heip use the question mark 7. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top rnight of the pager.

?

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h’' to see the command line
options available. This document only describes interactive features.




= Jupyter e g o8 om0 &

IPython: beyond plain Python

When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more

fluid and efficient.

First things first: running code, getting help

In the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.
Alternately, you can use:

* Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
» Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep

permanently.

In [1]: print("Hi")

: ]
Hi

To get help use the question mark 2. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

In [2]: 72

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command

history mechanism and output results caching.




= Jupyter T “ = o &

In [1]:

In [2]:

When executing code in IPython, all valid Python syntax works as-is, but IPython provides a number of features designed to make the interactive experience more
fluid and efficient.

First things first: running code, getting help

in the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.
Alternately, you can use:

* Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middle of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep
permanently.

print{“Hi")
Hi

To get help use the question mark ?. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.
X

.

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type "ipython -h' to see the command line
options available. This document only describes interactive features.

MAIN FEATURES




—= [ = .

VWhen executing code in IFython, all valid Python syntax works as-is, but IPython provides a number of teatures designed 1o make the interactive expenence more
fluid and efficient.

First things first: running code, getting help

in the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.
Allernately, you can use:

* Alt-Enter 10 force the creation of a new cell unconditionally (useful when inserting new content in the middle of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep
permanently.

v 1

In {1]): print( "Hi")

Hi
To get help use the question mark 2. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

In [2]: 7

IPython -- An enhanced Interactive Python

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command line
options available. This document only describes interactive features.

MAIN FEATURES




T RS T IFUTRAFIR, T TR S D W Wi, T SHLLLTDUHLEL .. 117 SADSULDD 1P WOl 2l i RPuia U RO 1 g TiEAL WS Ty, W TSRS0I I i oD ol e o nd.

Alternately, you can use:

* Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep
permanently.
In [1]: print("Hi")

Hi

To get help use the question mark ?. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

In [2): ?

IPython -- An enhanced Interactive Python

. ¢ & p 8 K F 8 B J ® 8 3 1 1 3 @& 3. 8.8 9. % E B & ¥ N N B B B B 1 3 K 1. Lt W § % |

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command line
uptiuni available. This document only describes interactive features.

MAIN FEATURES

- - -

* Access to the standard Python help with object docstrings and the Python
manuals. Simply type help’ (no guotes) to invoke it.

* Magic commands: type %magic for information on the magic subsystem.
* System command aliases, via the %alias command or the configuration file(s).

* Dynamic object information:

Typing ?word or word? prints detailed information about an object. Certain




in the notebook, to run a cell of code, hit Shift-Enter. This executes the cell and puts the cursor in the next cell below, or makes a new one if you are at the end.
Alternately, you can use:

* Alt-Enter to force the creation of a new cell unconditionally (useful when inserting new content in the middie of an existing notebook).
* Control-Enter executes the cell and keeps the cursor in the same cell, useful for quick experimentation of snippets that you don't need to keep
permanently.
In [1]: print("Hi")

Hi

To get help use the question mark ?. This will bring out the pager, use esc or g to close it with the keybard, or click on the close icon ton the top right of the pager.

In [2): ?

IPython -- An enhanced Interactive Python

L ¢ & p 8 K F 8 B J ¥ 8 3 3 1 3 & 3. 8. °%. 9. % & B & ¥ K N B B B B 1 I N 1. b W § & |

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type '"ipython -h' to see the command line
uptiuni available. This document only describes interactive features.

MAIN FEATURES

- - -

* Access to the standard Python help with object docstrings and the Python
manuals. Simply type help’ (no guotes) to invoke it.

* Magic commands: type %magic for information on the magic subsystem.
* System command aliases, via the %alias command or the configuration file(s).

* Dynamic object information:

Typing ?word or word? prints detailed information about an object. Certain




At your system command line, type ipython -h to See the command ne
options available. This document only describes interactive features.

MAIN FEATURES

e ot o e

* Access to the standard Python help with object docstrings and the Python
manuals. Simply type "help’ (no guotes) to invoke it.

* Magic commands: type imagic for information on the magic subsystem.
* System command aliases, via the %alias command or the configquration file(s).
* Dynamic object information:

Typing 7word or word? prints detailed information about an object. Certain
long strings (code, etc.) get snipped in the center for brevity.

Typing ?7word or word?? gives access to the full information without
snipping long strings. Strings that are longer than the screen are printed
through the less pager.

The ?/?7 system gives access to the full source code for any object (if
available), shows function prototypes and other useful information.

If you just want to see an object's docstring, type 'Ypdoc object' (without
guotes, and without % if you have automagic on).

* Tab gompleticn in the local namespace:
At any time, hitting tab will complete any available python commands or
variable names, and show you a list of the possible completions if there's
no unambiguous one. It will alsoc complete filenames in the current directory.

* Search previcus command history in multiple ways:

- Start typing, and then use arrow keys up/down or (Ctrl-p/Ctrl-n) to search
through the history items that match what you've typed so far.

- Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
your history for lines that match what you've typed so far, completing as
much as it can.




ALt your system command line, type lpython - to see the command line
options available. This document only describes interactive features.

MAIN FEATURES

* Access to the standard Python help with object docstrings and the Python
manuals. Simply type '"help’' (no quotes) to invoke it.

* Magic commands: type %magic for information on the magic subsystem.
* System command aliases, via the %alias command or the configquration file(s).
* Dynamic object information:

Typing ?word or word? prints detailed information about an object. Certain
long strings (code, etc.) get snipped in the center for brevity.

Typing ??word or word?? gives access to the full information without
snipping long strings. Strings that are longer than the screen are printed
through the less pager.

The ?/?7? system gives access to the full source code for any object (if
available), shows function prototypes and other useful information.

If you just want to see an object’ s docstring, type '%pdoc object” (without
guotes, and without % if you have automagic on).

* Tab gompletion in the local namespace:
At any time, hitting tab will complete any available python commands or
variable names, and show you a list of the possible completions if there's
no unambiguous one. It will also complete filenames in the current directory.

* Search previous command history in multiple ways:

- Start typing, and then use arrow keys up/down or (Ctrl-p/Ctrl-m) to search
through the history items that match what you've typed so far.

- Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
your history for lines that match what you've typed so far, completing as
much as 1t can.




* Access to the standard Python help with object docstrings and the Python
manuals. Simply type ‘help’ (no guotes) to invoke it.

* Magic commands: type W¥magic for information on the magic subsaystem.
* System command aliases, wvia the %alias command or the configuration file(s).
* Dynamic object information:

Typing ?word or word? prints detailed information abcocut an object. Certain
long strings (code, etc.) get snipped in the center for brevity.

Typing ?7?word or word?? gives access to the full information without
snipping long strings. Strings that are longer than the screen are printed

through the less pager.

The ?/2?? system gives access to the full source code for any object (if
available), shows function prototypes and other useful information.

If you just want to see an object's docstring, type '%pdoc object' (without
guotes, and without % if you have automagic on).

* Tab completion in the local namespace:
At any time, hitting tab will complete any available python commands or
variable names, and show you a list of the possible completions if there's
no unambiguous one. It will also complete filenames in the current directory.

* Sear®h previous command history in multiple ways:

- Start typing, and then use arrow keys up/down or (Ctrl-p/Ctrl-mn) to search
through the history items that match what you've typed so far.

- Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
your history for lines that match what you've typed so far, completing as
much as it can.

- %hist: search history by index.

* Pergistent command history across sessions.

* Logging of input with the ability to save and restore a working session.




= Jupyter e g g = O b

long strings (code, etc.) get snipped in the center for brevity.
Typing ?2word or word?? gives access to the full information without
snipping long strings. Strings that are longer than the screen are printed

through the less pager.

The 7/?? system gives access to the full source code for any object (if
available), shows function prototypes and other useful information.

If you just want to see an object’'s docstring, type '%tpdoc object’ (without
gquotes, and without % if you have automagic on).

* Tab completion in the local namespace:
At any time, hitting tab will complete any available python commands or
variable names, and show you a list of the possible completions if there's
no unambiguous one. It will also complete filenames in the current directory.

* Search previous command history in multiple ways:

- Start typing, and then use arrow keys up/down or (Ctrl-p/Ctrl-n) to search
through the history items that match what you've typed so far.

- Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
your history for lines that match what you've typed so far, completing as
much as it can.

- %hist: search history by index.

* Persistent command history across sessions.

* Logging of input with the ability to save and restore a working session.

* System shell with !. Typing !ls will run 'ls’' in the current directory.

* The reload command does a 'deep’ reload of a module: changes made to the
module since you imported will actually be available without having to exit.




= Jupyter e g g = O b

long strings (code, etc.) get snipped in the center for brevity.
Typing ?2word or word?? gives access to the full information without
snipping long strings. Strings that are longer than the screen are printed

through the less pager.

The 7/?? system gives access to the full source code for any object (if
available), shows function prototypes and other useful information.

If you just want to see an object’'s docstring, type '%tpdoc object’ (without
gquotes, and without % if you have automagic on).

* Tab completion in the local namespace:
At any time, hitting tab will complete any available python commands or
variable names, and show you a list of the possible completions if there's
no unambiguous one. It will also complete filenames in the current directory.

* Search previous command history in multiple ways:

- Start typing, and then use arrow keys up/down or (Ctrl-p/Ctrl-n) to search
through the history items that match what you've typed so far.

- Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
your history for lines that match what you've typed so far, completing as
much as it can.

- %hist: search history by index.

* Persistent command history across sessions.

* Logging of input with the ability to save and restore a working session.

* System shell with !. Typing !ls will run 'ls’' in the current directory.

* The reload command does a 'deep’ reload of a module: changes made to the
module since you imported will actually be available without having to exit.




* Jutput caching system:

For output that is returned from actions, a system similar to the input
cache exists but using instead of i. Only actions that produce a result
(ROT assignments, for example) are cached. If you are familiar with
Mathematica, IPython's _ wvariables behave exactly like Mathematica's %
variables.

The following GLOBAL variables always exist (50 don't overwrite them!):
_ (one underscore): previous output,

___ (two underscores): next previous.

___ |(three underscores): next-next previous.

Global variables named <n> are dynamically created (<n> being the prompt
counter), such that the result of output <n> is always available as _<n>.

Finally, a global dictionary named _oh exists with entries for all lines
which generated cutput.

* Directory history:

Your history of visited directories 1s kept in the global list _dh, and the
magic %cd command can be used to go to any entry in that list.

* Auto-parentheses and auto-guotes (adapted from Nathan Gray's LazyPython)
1. Auto-parentheses

callable objects (i.e. functions, methods, etc) can be invoked like
this (notice the commas between the arguments)::

In [1]): callable ob argl, arg2, arg3
and the input will be translated to this::

callable ob(argl, arg2, arg3)
This feature is off by default (in rare cases it can produce
undesirable side-effects), but you can activate it at the command-line

by starting IPython with "--autocall 1°, set it permanently in your
configuration file, or turn on at runtime with %fautocall 1.

You can force auto-parentheses by using '/' as the first character




of a line. For example::
In [1): /glcbals # becomes 'globals()’

Note that the /' MOST be the first character on the line! This
won't work::

In [2]: print /globals # syntax error
In most cases the automatic algorithm should work, so you should
rarely need to explicitly invoke /. One notable excepticn 1s if you
are trying to call a function with a list of tuples as arquments (the
parenthesis will confuse IPython)::

In [1]: zip (1,2,3),(4,5,6) # won't work

but this will work::

In [2]: /zip (1,2,3),(4,5,6)
------ > ;Ij.-P {llrl;j];l4f5r5l}
Qut[2])= [(1, 4), (2, 5), (3, 6)])

IPython tells you that it has altered your command line by
displaying the new command line preceded by -->. e.g.:i

In [18)r callable liat
------- > callable [(list)

2. Albto-Quoting

You can force auto-guoting of a function's argquments by using ',' as
the first character of a line. For example::

In [1]: ,my function /home/me # becomes my function(”/home/me” )

If you use ";"' instead, the whole argument is quoted as a single

string (while ","' splits on whitespace)::

In [2): ,my function a b c # becomes my function("a","b","c")
In [3): ;my function a b c # becomes my function("a b c”)

Note that the ',' MUST be the first character on the linel! This
won 't work::




In {2]: /zip (1,2,3).(4,5,6)
______ > zip ((1,2,3),(4,5,6))
out[2]= [(1, 4), (2, 5), (3, 6)]

IPython tells you that it has altered your command line by
displaying the new command line preceded by -->. e.g.::

In [18]): callable list
------ -> callable ([(list)

2. Auto-Quoting

You can force auto-guoting of a function's arguments by using ',' as
the first character of a line. For example::

In [1): ,my function /home/me # becomes my function(®/home/me")

If you use ';° instead, the whole argument is guoted as a single
string (while ',' splits on whitespace)::

In [2): ,my function a b c # becomes my_ function("a","b","c")
In [3]: ;my function a b ¢ # becomes my function("a b c”)

Note that the ',' MUST be the first character on the line! This
won' t work::

In [4): x = ,my function /home/me # syntax error

Typing cbject name? will print all sorts of detaiis about any object, including docstrings, function definition lines (for call arguments) and constructor details for
classes.

In [3): import pandas as pd
pd.DataFrame?

Init signature: pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Docstring:

Two-dimensional size-mutable, potentially heterogeneous tabular data

structure with labeled axes (rows and cclumns). Arithmetic ocperations

align on both row and column labels. Can be thought of as a dict-like

container for Searies objects. The primary pandas data structure




>>> df = DataFrame(data=d, index=index)
>>> df2 = DataFrame(np.random.randn(l10, 5))
>>> dfl = DataFrame(np.random.randn{(l0, 5},

2o Eﬂl\]lﬂ.n5=['ﬁ*, lhl’ |c:lJI ldl, IEI]}

DataFrame.from records : constructor from tuples, also record arrays
DataFrame.from dict : from dicts of Series, arrays, or dicts
DataFrame.from items : from sequence of (key, value) pairs
pandas.read csv, pandas.read table, pandas.read clipboard

File: -/conda/lib/python3.6/site-packages/pandas/core/frame.py

Type: type

Using two question marks will try to find the source code for the given object.

In [4): pd.DataFrame??

Init signature: pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Source:
class DataFrame(NDFrame):

""" Two-dimensional size-mutable, potentially heterogeneous tabular data

structure with labeled axes (rows and columns). Arithmetic operations

align on both row and column labels. Can be thought of as a dict-like

container for Series objects. The primary pandas data structure

Parameters
data : numpy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects
index : Index or array-like
Index to use for resulting frame. Will default to np.arange(n) if
no indexing information part of input data and no index provided
columns : Index or array-like
Column labels to use for resulting frame. Will default to
np.arange(n) if no column labels are provided
dtype : dtype, default None
Data type to force, otherwise infer
copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input




pandasiread_csg, pandas.read table, pandas.read clipboard
File: ~fconda/lib/pythond.b6/site-packages/pandas/core/frame.py

Type: type

Using two question marks will try to find the source code for the given object.

In [4]: pd.DataFrame??

Init signature: pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Source:
class DataFrame(NDFrame):

"*® Two-dimensional size-mutable, potentially heterogeneous tabular data

structure with labeled axes (rows and columns). Arithmetic operations

align on both row and column labels. Can be thought of as a dict-like

container for Series objects. The primary pandas data structure

k
Parameters

data : numpy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects
index : Index or array-like
Index to use for resulting frame. Will default to np.arange(n) if
no indexing information part of input data and no index provided
columns : Index or array-like
Column labels to use for resulting frame. Will default to
np.arange(n) if no column labels are provided
dtype : dtype, default None
Data type to force, otherwise infer
copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input

>>>d = {'coll': tsl, 'col2': ts2)

>>> df = DataFrame(data=d, index=index)

>>> df2 = DataFrame(np.random.randn(10, 5))

>>> df3 = DataFrame(np.random.randn(10, 5),

aaa columns=['a‘', 'b', '¢', 'd’', 'e'])

See also




= Jupyter e m om0 &

T r 1 s e e
E:r.'_-...'l'n_-"_'l'.'_' I LWl AR Y IS

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as well as inputs. Validating the notebook means to rerun the notebook
and make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs will be used as references for the tests (i.e.

the outputs from the last time you ran the notebook)
2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs generated will be compared
against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to undertying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.
.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the --nbwval flag at the command line, the IPython Notebook Validation plugin will
collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebook.ipynb

There is also an option --nbval-1lax, which collects notebooks and runs them, failing if there is an error. This mode does not check the output of celis unless they
are marked with a special #NBVAL CHECK OUTPUT commaent.

Loading [Contribj/al y/accessibility-menujs €8t --nbval-lax my noteboock.ipynb




~ Jjupyter 0 FO e e

in (i)t

Command line usage

The py.test program doesn’t usually collect notebooks for testing; by passing the —nbval fiag at the command line, the |Python Notebook Validation plugin will
collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebock.ipynb

There is also an option --nbval-1lax, which collects notebooks and runs them, failing if there is an error. This mode does nol check the output of celis unless they
are marked with a special #NBVAL _CHECK_OUTPUT comment.

$ py.test --nbval-lax my notebook.ipynb

REGEX Output sanitizing

&
Since all cutput is captured by the [Python notebook, some pesky messages and prompts (with time-stamped messages, for example) may fail tests always, which
might be expected. The plugin allows the user to specify a sanitizing file at the command prompt using the following flag:

$§ py.test --nbval my_ notebook.ipynb --sanitize-with my sanitize file

This sanitize file contains a number of REGEX replacements. It is recommended, when removing output for the tests, that you replace the removed output with
some sort of marker, this helps with debugging. The following file is written to the folder of this notebook and can be used to santize its outputs:

tiwritefile doc _sanitize.cfg
[regexl )

regex: \d{l1,2)}/\d{1,2}/\d{2,4}
replace: DATE-STAMP

[ regexl )
regex: \d{2}:\d{2):\d{2)
replace: TIME-STAMP




$ cd /path/tofthis/notebook
$ py.test --nbval nbval.ipynb --sanitize-with doc sanitize.cfg

Examples of plugin behaviour

The following examples demonstrate how the plugin behaves during testing. Test this notebook yourself to see the validation in action!

These two imports produce no output as standard, if any warnings are printed out the cell will fail. Under normal operating conditions they will pass.

In [2]: Aimport numpy as np
import time

If python doesn't consistently print 7, then something has gone terribly wrong. Deterministic cells are expected to pass everytime

In [3]): print(5+2)

7

Random outputs will always fail.

In [4]: print([np.random.rand() for i in range(4)])
print{[np.random.rand{) for 1 in range(4)])

[0.36133679016382714, 0.5043774697891126, 0.23281910875007927, 0.2713065513128683]
[0.5512421277985322, 0.02592706358897756, 0.050360367710840684, 0.7515926759190724]

inconsistent number of lines of output will cause an emor to be thrown,

In [5]: for 1 im range(np.random.randint{l, 8)):
print(l)




$ cd /path/tofthis/notebook
$ py.test --nbval nbval.ipynb --sanitize-with doc sanitize.cfg

Examples of plugin behaviour

The following examples demonstrate how the plugin behaves during testing. Test this notebook yourself to see the validation in action!

These two imports produce no output as standard, if any warnings are printed out the cell will fail. Under normal operating conditions they will pass.

In [2]: Aimport numpy as np
import time

If python doesn't consistently print 7, then something has gone terribly wrong. Deterministic cells are expected to pass everytime

In [3]): print(5+2)

7

Random outputs will always fail.

In [4]: print([np.random.rand() for i in range(4)])
print{[np.random.rand{) for 1 in range(4)])

[0.36133679016382714, 0.5043774697891126, 0.23281910875007927, 0.2713065513128683]
[0.5512421277985322, 0.02592706358897756, 0.050360367710840684, 0.7515926759190724]

inconsistent number of lines of output will cause an emor to be thrown,

In [5]: for 1 im range(np.random.randint{l, 8)):
print(l)




~Jjupyter JUPYTER  FAG

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as well as inputs. Validating the notebook means 1o rerun the notebook
and make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs generated will be compared
against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the --nbval flag at the command line, the IPython Notebook Validation plugin will
collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebook.ipynb

There is also an option --nbval-1lax, which collects notebooks and runs them, failing if there is an error. This mode does not check the output of celis unless they
are marked with a special #NBVAL CHECEK_OUTPUT comment.

$ py.test --nbval-lax my notebook.ipynb




O This repository  Search Pull requests Issues Gist

! minrk / ipython-cse17 @®Unwatch~ 1 % Star 2 Y For

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Branch: master v ipython-cse17 / nbval.ipynb Find file  Cop
"

I minrk add nbval, nbformat 1629859 39 minut

1 contributor

557 lines (556 sloc) 21.6 KB Raw Blame  History =3 F

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the |Python Notebook Validation plugin for py.test. The |Python notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been
stored.

TharafAara tha vcar RINICT malra tha fallrwwina tha dictinatian:



<» Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Branch: master v [python-cse17 / nbval.ipynb Findfile Cop
E minrk add nbval, nbformat 1629859 39 minut
1 contributor

557 lines (556 sloc) 21.6 KB Raw Blame  History L f‘

&

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been

stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs will be used as

references for the tests (i.e. the outputs from the last time you ran the notebook)
2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs

generated will be compared against those in the .ipynb file




Branch: master +  ipython-cse17 |/ nbval.ipynb Find file  Cop

E minrk add nbval, nbformat 16a9@59 39 minuti
1 contributor
557 lines (556 sloc) 21.6 KB Raw Blame History L;J Fa

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been

stored.
Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs will be used as

references for the tests (i.e. the outputs from the last time you ran the notebook)
2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs

generated will be compared against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying source
code, haven't affected the results of an IPython notebook. For example, for documentation purposes - such as this.




557 lines (556 sloc) 21.6 KB Raw Blame |History L[] &

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format .ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been

stored.
Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipyfib file. These outputs will be used as
references for the tests (i.e. the outputs from the last time you ran the notebook)
2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs

generated will be compared against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying source
code, haven't affected the results of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the --nbval flag at the command line, the IPython
Notebook Validation plugin will collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebook.ipynb




Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs will be used as
references for the tests (i.e. the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs
generated will be compared against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying source
code, haven't affected the results of an IPython notebook. For example, for documentation purposes - such as this.
Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the --nbval flag at the command line, the IPython
Notebook Validation plugin will collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebook.ipynb

There is also an option --nbval-1lax, which collects notebooks and runs them, failing if there is an error. This mode does not check
the output of cells unless they are marked with a special #8BVAL CHECK OUTPUT comment.

$ py.test --nbval-lax my notebook.ipynb

REGEX Output sanitizing

Since all output is captured by the IPython notebook, some pesky messages and prompts (with time-stamped messages, for
example) may fail tests always, which might be expected. The plugin allows the user to specify a sanitizing file at the command




o This repository  Search Pull requests Issues Gist

. minrk / ipython-cse17 ®Unwatch~ 1 + Star 2 ¥ For

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

Branch: master +  ipython-cse17 / nbval.ipynb Findfile Cop
E minrk add nbval, nbformat 162959 39 minuts
1 contributor

557 lines (556 sloc) 21.6 KB Raw Blame History L]

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been
stored.

Therefore, the user MUST make the following the distinction:




{
"calla™: |
{
“cell type": "markdown”,
"metadata”: {}.
"source” 1 |
“# IPython Notebook Validation for py.test - Documentation
]
} s
{
"call type®: "markdown”,
“metadata“: {}.
*source”: |

“One of the powearful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the behaviour and usage of the
IPython Notebook Validation plugin for py.test. The IPython notebook format ~.ipynb  stores outputs as well as inputs. Validating the notebook means to
rerun the notebook and make sure that it is generating the same output as has been stored.\n ,

AR

“Therefore, the **user MUST make the following the distinction*#*;\n",

"\n",

"l. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs will be used as referencea for the
teats (i.e. the outputs from the last time you ran the notebook)\n",

2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information, the outputs generated will be
comparad againgat those in the .ipynb file\n",

"\n",

“The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying source code, haven't affected
the results of an IPython notebook. For example, for deocumentation purposes - such as this.”

]
b
{

"cell type": "markdown”,
‘metadata”: {}.
“source”: |

“### Command line usage”
]
b \
{
"cell type": "markdown®,
“metadata®: {},

"source” 1 |

"The py.test program doesn t usually collect notebooks for testing; by passing the "--nbval” flag at the command line, the IPython NHotebook Validation
plugin will collect and test notebook cells, comparing their outputs with those saved in the file.\n",

"\n",

===\n",

"$ py.test --nbval my notebook.ipynb\n®,

piseh T, bt

“A\n",




| Esl il § L = i . = — Py — - = e r
S = = = T O e e == 20 @ T « WOXBE Twlass Q
e e ‘. E- il G B € e | D - & F - n
Q= DLv wa Bw JIFL~-
] Fref =g o LT FEwT L Sei i EWTT TP Fary o =mge [roiw et Tt Eerean gt Ay e Ay, kgt s 5 phi f—— i 3 -

"cell type": "markdown"”,
"metadata”: {},
"source": [
"# IPython Notebook Validation for py.test - Documentation”
]
}e
{
"cell type": "markdown"”,
"metadata”: {},
"source": [

"One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to
demonstrate the behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format
" .ipynb~ stores outputs as well as inputs. Validating the notebook means to rerun the notebook and make sure that it is
generating the same output as has been stored.\n",

II\nII -

"Therefore, the **user MUST make the following the distinction**:\n",

L1 ‘.\nll -

"l. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs
will be used as references for the tests (i.e. the outputs from the last time you ran the notebook)\n",

"2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information,
the outputs generated will be compared against those in the .ipynb file\n",

||1\nl| 3

"The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to

underlying source code, haven't affected the results of an IPython notebook. For example, for documentation purposes -
such as this.”

]
Yo
{

"cell type": "markdown”,
"metadata": {},

"source": [

"### Command line usage”




Yy T - e s = g e ———

minrk / ipython-cse17 ®Unwatch~ 1 % Star 2 ¥ For

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings
Branch: master +  ipython-cse17 [ nbval.ipynb Findfile Cop
EJ minrk add nbval, nbformat 1629859 40 minute

1 contributor

557 lines (556 sloc) 21.6 KB Raw Blame History J J

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been
stored.

Therefore, the user MUST make the following the distinction:

P e A e e

— | — e e s e, B

= Ul BTH oo . — s el - e




Yy T - e s = g e ———

minrk / ipython-cse17 ®Unwatch~ 1 % Star 2 ¥ For

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings
Branch: master +  ipython-cse17 [ nbval.ipynb Findfile Cop
EJ minrk add nbval, nbformat 1629859 40 minute

1 contributor

557 lines (556 sloc) 21.6 KB Raw Blame History J J

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been
stored.

Therefore, the user MUST make the following the distinction:

P e A e e

— | — e e s e, B

= Ul BTH oo . — s el - e




Yy T - e s = g e ———

minrk / ipython-cse17 ®Unwatch~ 1 % Star 2 ¥ For

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings
Branch: master +  ipython-cse17 [ nbval.ipynb Findfile Cop
EJ minrk add nbval, nbformat 1629859 40 minute

1 contributor

557 lines (556 sloc) 21.6 KB Raw Blame History J J

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been
stored.

Therefore, the user MUST make the following the distinction:

P e A e e

— | — e e s e, B

= Ul BTH oo . — s el - e




W= = L=¥ B LG L] LAl 5l adllda Bl > ikt Wi L

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying source
code, haven't affected the results of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the --nbval flag at the command line, the IPython
Notebook Validation plugin will collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebook.ipynb

There is also an option --nbval-1ax, which collects notebooks and runs them, failing if there is an error. This mode does not check

the output of cells unless they are marked with a special #NBVAL CHECK OUTPUT comment.
L

$ py.test --nbval-lax my notebook.ipynb

REGEX Output sanitizing

Since all output is captured by the IPython notebook, some pesky messages and prompts (with time-stamped messages, for
example) may fail tests always, which might be expected. The plugin allows the user to specify a sanitizing file at the command
prompt using the following flag:

$ py.test --nbval my notebook.ipynb --sanitize-with my sanitize file

This sanitize file contains a number of REGEX replacements. It is recommended, when removing output for the tests, that you replace
the removed output with some sort of marker, this helps with debugging. The following file is written to the folder of this notebook
and can be used to santize its outouts:




__iwmmmmmmmmmm

O ® T « WOXEF Thalsss G =

* ® al
=

! minrk / ipython-cse17

<> Code Issues 0 Pull requests 0

Branch: master +  ipython-cse17 / nbval.ipynb

ﬂ minrk add nbval, nbformat

1 contributor

557 lines (556 sloc) 21.6 KB

(el n el 2t i T B

G DL~ mme Pv IFiv bd

Projects 0

Wiki

Pulse

o

_orencaiiew. |

& Unwatch~ 1 % Star 2 ¥ For

Graphs Settings

Findfile Cop

1629859 40 minuts

Raw Blame | History [ #

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been

stored.

Tharafara tha car AMALICT malra Hha fallawrina tha Aictinatian:




& Salari File Eda  View

Hestory Bookmarks Devslop Window Help

& L= o
g Frgfasy ary Bopteagy L (et
' [ nbconvert_templates

(O paralle
[ widgets
& Beyond Plain Python.ipynb
& Cell Magics.ipynb
*-Ti_*u-__:l'-JlJE DY
B npu he Notebook.ipynb
& nbval.ipynb

i

g

0

iy

L)

MNotebook Basics.ipynb
Notebook file format.ipynb

Plotting in the Notebook.ipynb

o1 Q and DU miEzing v n
t —
[y s, .
1 Farty El-’."" LAUTDUL DY
Cldia.CsY

a.ﬂ'-..--._"u"; .':‘L-' \_I'H.]
T00.DY
. =7 ¥
iy 3 e | S A .

B AT D

on.ipynb

P s e o

Sipyte Ll Ripta I

Sy o, Ao

OB Thut1458 O
0

208 F -

L8 = R =

2 hours ago

[ Lt ghm R Te L

an hour ago
3 hours ago

4 hours ago
15 hours ago
4 hours ago
15 hours ago
2 hours ago

5 hours ago

/ minutes ago
1 4 hours ago
11 minutes ago
4 hours ago

4 hours ago

2 hours ago

6 hours ago

3 hours ago

15 hours ago




208 F -

] L] a o eogl BEEE c 0

@ Satari File Edt View History Bookmarks Develop Window Help WOX B Thul&ss O

vl 5 Prgfs gng Ll we=r L [ s ER TR = LT 2 S P e g [roew gyt Ly Rptur P Sy o, Ao s - Pt Yo ot s ol 1 iy

F_—l noconmvert emplates

2 hours ago

] paralle an hour ago
[0 widgets 3 hours ago

0

Lu]

4 hours ago

15 hours ago

& Custom Display Logic.ipy 4 hours ago
& |nput in the Notebook.ipynb 15 hours ago
& nbval.ipynb 2 hours ago

i

g

0

iy

L)

Notebook Basics.ipynb
Notebook file format.ipynb

Plotting in the Notebook.ipynb

5 hours ago
/ minutes ago

1 4 hours ago

ofiling and Optimizing with IPython.ipynb 11 minutes ago
&' Third Party Rich Output.ipy 4 hours ago
L] data.csv 4 hours ago
oy
L] doc_sanitize.ctq 2 hours ago
RE% 0.pY & hours ago
T
[ ipython-cse17.1 gz 3 hours ago

15 hours ago




@ Safari Fie Edt View History Bookmarks Develop Window Help ‘? O g = oa WONBEE Thul&Es Q
. ‘ [ - el - . T ey oy # n
DLy ww Bw I

X

b Frgha] ared aTur B T FER LR ek s Fag= Faor [vas Spipheaas e Thrrtupl Ayt L At P LT T U T - piad bttt Ty o [ g TR

nbformat.write(nb, 'Notebook file format.ipyn
b')

In [ ]: !jupyter nbconvert --to html "Notebook file f
ormat.ipynb”

In [ ]: !open "Notebook file format.html”

In [ ]: £from nbconvert import get export names
get export names()

In [ ]: !jupyter nbconvert --to script "nbval.ipynb”
spycat nbval.py

'nbval .ipynb"”

In [ ]: !jupyter nbconvert --to pdf




8 Safarl File Edt Yiew History Bookmarks Develop Window Help

SO T <« woxBEF ThalSss O

s ® 1 a%

=

L minrk / ipython-cse17

<> Code Issues 0 Pull requests 0

Branch: master»  ipython-cse17 / nbval.ipynb

E minrk add nbval, nbformat

1 contributor

557 lines (556 sloc) 21.6 KB

DrE e = Ty

g= DL~ wew F~ IFi~= M

Projects 0

Wiki

Pulse

)

& Unwatch~ 1 % Star 2 ¥ For

Graphs Settings

Findfile Cop

16290859 40 minuts

Raw Blame | History L[] #

IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demonstrate the
behaviour and usage of the |Python Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores outputs as
well as inputs. Validating the notebook means to rerun the notebook and make sure that it is generating the same output as has been

stored.

Tharafara tha tuecar AL ICT malra tha fallawrina tha Aictinatian:




— = — —_— — e——— e — T ke T e — — — -

~Jupyter e

nbviewer

A simple way to share Jupyter Notebooks

Programming Languages

) An Llulia Preview
IF’ C h':rl'l i S et el o g e g ity et
IP [y] F MRpUt ing v o - .=-:----.-1--.-r-.-=--E...,..d.‘.".
julia

n (L. SR BREEF . B = - R g S P e ST e
t ‘ I File comeni ) ey e | e e g e S mene S | Eymnlaga . pag ' ) el 1 TN Y el et ot e
- u . A Lo "

4 IRuby: Notebook i

Books




~ Jupyter

nbviewer

A simple way to share Jupyter Notebooks

Programming Languages

. An Wulia Preview
I P [}!’] EPython B Y ot S oo Ve g o A
MmpuUting ' ' e
julia

| ‘ IOﬂ P TR Rl e bl T S S TP Cel A P e FpEur
File comeml - P LT Sl Pl 4 Sy T D . "y e ey f e g e el P ol M Ty b e e
bairm W L e ] 3

4 IRuby: Notebook i

Books




&z jupyter e

Books

OREILLY PROBABLLISTIC PROGRAMMING
Python L BAYESIAN METHODS

Mining the

| FOR HACHERS

1 B

' for Signal
' Processing W

GOOGLE+, GITHUB, AND MORE




~Jupyter UPYTER  FAQ

Books

OREILLY | PROBABLISTIC PROGRAMMING
Python RSN DS

' : Mining the OR HACHERS
for Signal Social el

DATA MINING FACEBOOK., TWITTER. LINKEDIN,
GOOGLE=. GITHUB, AND MORE

-------

------



=~ jupyter

Books

OREILLY _ PROBABILISTIC PROGRAMMING

Mining the *

. for Signal

&BAYESIAN METHODS
R RACHERS

N

Social Web

DATA MINING FACEBDOK, TWITTER. LINKEDIN
GOOGLE*, GITHUB, AND MORE

rocessing




i
<
Je

: Jupyter JUPYTER FAC

Probabilistic Programming

and Bayesian Methods for Hackers

Version 0.1

Original content created by Cam Davidson-Pilon

Ported to Python 3 and PyMC2 by Max Margenot (E8clean utensils) and Thomas Wieckli (Etwiecki) at Quantopian (Equantopian)

Welcome to Bayesian Methods for Hackers. The full Github repository is available at github/Probabllistic-Programming-and-Bayesian-Methods-for-Hackers. The
other chapters can be found on the project's homepage. We hope you enjoy the book, and we encourage any contributions!

Chapter 1

The Philosophy of Bayesian Inference

You are a skilled programmer, but bugs still slip into your code. After a particularly difficult implementation of an algorithm, you decide to test your
code on a trivial exampile. It passes. You test the code on a harder problem. It passes once again. And it passes the next, even more difficult, test
too! You are starting to believe that there may be no bugs in this code...




= Jupyter

Probabilistic Programming

and Bayesian Methods for Hackers \
Version 0.1

Original content created by Cam Davidson-Pilon

Ported to Python 3 and PyMC3 by Max Margenot (fclean utensils) and
Thomas Wiecki (€twiecki) at Quantopian (€gquantopian)

Welcome to Bayesian Methods for Hackers. The full Github repository is available at
github/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers. 1he other chapters can
be found on the project's homepage. We hope you enjoy the book, and we encourage any
contributions!

Chapter 1




= Jupyter

Probabilistic Programming

and Bayesian Methods for Hackers \
Version 0.1

Original content created by Cam Davidson-Pilon

Ported to Python 3 and PyMC3 by Max Margenot (fclean utensils) and
Thomas Wiecki (€twiecki) at Quantopian (€gquantopian)

Welcome to Bayesian Methods for Hackers. The full Github repository is available at
github/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers. 1he other chapters can
be found on the project's homepage. We hope you enjoy the book, and we encourage any
contributions!

Chapter 1




If you think this way, then congratulations, you already are thinking Bayesian! Bayesian inference
is simply updating your beliefs after considering new evidence. A Bayesian can rarely be certain
about a result, but he or she can be very confident. Just like in the example above, we can never
be 100% sure that our code is bug-free unless we test it on every possible problem; something
rarely possible in practice. Instead, we can test it on a large number of problems, and if it
succeeds we can feel more confident about our code, but still not certain. Bayesian inference
works identically: we update our beliefs about an outcome; rarely can we be absolutely sure
unless we rule out all other alternatives.

The Bayesian state of mind

Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At
first, this sounds like a bad statistical technique. Isn't statistics all about deriving cerfainty from
randomness? To reconcile this, we need to start thinking like Bayesians.

The Bayesian world-view interprets probability as measure of believability in an event, that is, how
confident we are in an event occurring. In fact, we will see in a moment that this is the natural
interpretation of probability.

For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known
as the more classical version of statistics, assume that probability is the long-run frequency of
events (hence the bestowed title). For example, the probability of plane accidents under a
frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes
logical sense for many probabilities of events, but becomes more difficult to understand when
events have no long-term frequency of occurrences. Consider: we often assign probabilities to
outcomes of presidential elections, but the election itself only happens once! Frequentists get
around this by invoking alternative realities and saying across all these realities, the frequency of




If you think this way, then congratulations, you already are thinking Bayesian! Bayesian inference
is simply updating your beliefs after considering new evidence. A Bayesian can rarely be certain
about a result, but he or she can be very confident. Just like in the example above, we can never
be 100% sure that our code is bug-free unless we test it on every possible problem; something
rarely possible in practice. Instead, we can test it on a large number of problems, and if it
succeeds we can feel more confident about our code, but still not certain. Bayesian inference
works identically: we update our beliefs about an outcome; rarely can we be absolutely sure
unless we rule out all other alternatives.

The Bayesian state of mind

Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At
first, this sounds like a bad statistical technique. Isn't statistics all about deriving cerfainty from
randomness? To reconcile this, we need to start thinking like Bayesians.

The Bayesian world-view interprets probability as measure of believability in an event, that is, how
confident we are in an event occurring. In fact, we will see in a moment that this is the natural
interpretation of probability.

For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known
as the more classical version of statistics, assume that probability is the long-run frequency of
events (hence the bestowed title). For example, the probability of plane accidents under a
frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes
logical sense for many probabilities of events, but becomes more difficult to understand when
events have no long-term frequency of occurrences. Consider: we often assign probabilities to
outcomes of presidential elections, but the election itself only happens once! Frequentists get
around this by invoking alternative realities and saying across all these realities, the frequency of




If you think this way, then congratulations, you already are thinking Bayesian! Bayesian inference
is simply updating your beliefs after considering new evidence. A Bayesian can rarely be certain
about a result, but he or she can be very confident. Just like in the example above, we can never
be 100% sure that our code is bug-free unless we test it on every possible problem; something
rarely possible in practice. Instead, we can test it on a large number of problems, and if it
succeeds we can feel more confident about our code, but still not certain. Bayesian inference
works identically: we update our beliefs about an outcome; rarely can we be absolutely sure
unless we rule out all other alternatives.

The Bayesian state of mind

Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At
first, this sounds like a bad statistical technique. Isn't statistics all about deriving cerfainty from
randomness? To reconcile this, we need to start thinking like Bayesians.

The Bayesian world-view interprets probability as measure of believability in an event, that is, how
confident we are in an event occurring. In fact, we will see in a moment that this is the natural
interpretation of probability.

For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known
as the more classical version of statistics, assume that probability is the long-run frequency of
events (hence the bestowed title). For example, the probability of plane accidents under a
frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes
logical sense for many probabilities of events, but becomes more difficult to understand when
events have no long-term frequency of occurrences. Consider: we often assign probabilities to
outcomes of presidential elections, but the election itself only happens once! Frequentists get
around this by invoking alternative realities and saying across all these realities, the frequency of




be 100% sure that our code is bug-free unless we test it on every possible problem; something
rarely possible in practice. Instead, we can test it on a large number of problems, and if it
succeeds we can feel more confident about our code, but still not certain. Bayesian inference
works identically: we update our beliefs about an outcome; rarely can we be absolutely sure
unless we rule out all other alternatives.

The Bayesian state of mind

Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At
first, this sounds like a bad statistical technique. Isn't statistics all about deriving certainty frors
randomness? To reconcile this, we need to start thinking like Bayesians.

The Bayesian world-view interprets probability as measure of believability in an event, that is, how
confident we are in an event occurring. In fact, we will see in a moment that this is the natural
interpretation of probability.

For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known
as the more classical version of statistics, assume that probability is the long-run frequency of
events (hence the bestowed title). For example, the probability of plane accidents under a
frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes
logical sense for many probabilities of events, but becomes more difficult to understand when
events have no long-term frequency of occurrences. Consider: we often assign probabilities to
outcomes of presidential elections, but the election itself only happens once! Frequentists get
around this by invoking alternative realities and saying across all these realities, the frequency of
occurrences defines the probability.

Bayesians, on the other hand, have a more intuitive approach. Bayesians interpret a probability
as measure of belief, or confidence, of an event occurring. Simply, a probability is a summary of




The Bayesian state of mind

Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At
first, this sounds like a bad statistical technique. Isn't statistics all about deriving certainty from
randomness? To reconcile this, we need to start thinking like Bayesians.

The Bayesian world-view interprets probability as measure of believability in an event, that is, how
confident we are in an event occurring. In fact, we will see in a moment that this is the natural
interpretation of probability. .

For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known
as the more classical version of statistics, assume that probability is the long-run frequency of
events (hence the bestowed title). For example, the probability of plane accidents under a
frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes
logical sense for many probabilities of events, but becomes more difficult to understand when
events have no long-term frequency of occurrences. Consider: we often assign probabilities to
outcomes of presidential elections, but the election itself only happens once! Frequentists get
around this by invoking alternative realities and saying across all these realities, the frequency of
occurrences defines the probability.

Bayesians, on the other hand, have a more intuitive approach. Bayesians interpret a probability
as measure of belief, or confidence, of an event occurring. Simply, a probability is a summary of
an opinion. An individual who assigns a belief of 0 to an event has no confidence that the event
will occur; conversely, assigning a belief of 1 implies that the individual is absolutely certain of an
event occurring. Beliefs between 0 and 1 allow for weightings of other outcomes. This definition
agrees with the probability of a plane accident example, for having observed the frequency of




The Bayesian state of mind

Bayesian inference differs from more traditional statistical inference by preserving uncertainty. At
first, this sounds like a bad statistical technique. Isn't statistics all about deriving certainty from
randomness? To reconcile this, we need to start thinking like Bayesians.

The Bayesian world-view interprets probability as measure of believability in an event, that is, how
confident we are in an event occurring. In fact, we will see in a moment that this is the natural

interpretation of probability.
§

For this to be clearer, we consider an alternative interpretation of probability: Frequentist, known
as the more classical version of statistics, assume that probability is the long-run frequency of
events (hence the bestowed title). For example, the probability of plane accidents under a
frequentist philosophy is interpreted as the long-term frequency of plane accidents. This makes
logical sense for many probabilities of events, but becomes more difficult to understand when
events have no long-term frequency of occurrences. Consider: we often assign probabilities to
outcomes of presidential elections, but the election itself only happens once! Frequentists get
around this by invoking alternative realities and saying across all these realities, the frequency of
occurrences defines the probability.

Bayesians, on the other hand, have a more intuitive approach. Bayesians interpret a probability
as measure of belief, or confidence, of an event occurring. Simply, a probability is a summary of
an opinion. An individual who assigns a belief of O to an event has no confidence that the event
will occur; conversely, assigning a belief of 1 implies that the individual is absolutely certain of an
event occurring. Beliefs between 0 and 1 allow for weightings of other outcomes. This definition
agrees with the probability of a plane accident example, for having observed the frequency of
plane accidents, an individual's belief should be equal to that frequency, excluding any outside



an opinion. An individual who assigns a belief of 0 to an event has no confidence that the event
will occur; conversely, assigning a belief of 1 implies that the individual is absolutely certain of an
event occurring. Beliefs between 0 and 1 allow for weightings of other outcomes. This definition
agrees with the probability of a plane accident example, for having observed the frequency of
plane accidents, an individual's belief should be equal to that frequency, excluding any outside
information. Similarly, under this definition of probability being equal to beliefs, it is meaningful to
speak about probabilities (beliefs) of presidential election outcomes: how confident are you
candidate A will win?

Notice in the paragraph above, | assigned the belief (probability) measure to an individual, not to
Nature. This is very interesting, as this definition leaves room for conflicting beliefs between '
individuals. Again, this is appropriate for what naturally occurs: different individuals have different
beliefs of events occurring, because they possess different information about the world. The
existence of different beliefs does not imply that anyone is wrong. Consider the following
examples demonstrating the relationship between individual beliefs and probabilities:

« | flip a coin, and we both guess the result. We would both agree, assuming the coin is
fair, that the probability of Heads i1s 1/2. Assume, then, that | peek at the coin. Now |
know for certain what the result is: | assign probability 1.0 to either Heads or Tails
(whichever it is), Now what is your belief that the coin is Heads? My knowiedge of the
outcome has not changed the coin's results. Thus we assign different probabilities to
the result.

« Your code either has a bug in it or not, but we do not know for certain which is true,
though we have a belief about the presence or absence of a bug.

* A medical patient is exhibiting symptoms x, y and z. There are a number of diseases
that could be causing all of them, but only a single disease is present. A doctor has
beliefs about which disease, but a second doctor may have slightly different beliefs.




information. Similarly, under this definition of probability being equal to beliefs, it is meaningful to
speak about probabilities (beliefs) of presidential election outcomes: how confident are you
candidate A will win?

Notice in the paragraph above, | assigned the belief (probability) measure to an individual, not to
Nature. This is very interesting, as this definition leaves room for conflicting beliefs between
individuals. Again, this is appropriate for what naturally occurs: different individuals have different
beliefs of events occurring, because they possess different information about the world. The
existence of different beliefs does not imply that anyone is wrong. Consider the following
examples demonstrating the relationship between individual beliefs and probabilities:

« | flip a coin, and we both guess the result. We would both agree, assuming the coin is
fair, that the probability of Heads is 1/2. Assume, then, that | peek at the coin. Now |
know for certain what the result is: | assign probability 1.0 to either Heads or Tails
(whichever it is). Now what is your belief that the coin is Heads? My knowledge of the
outcome has not changed the coin’s results. Thus we assign different probabilities to
the result.

» Your code either has a bug in it or not, but we do not know for certain which is true,
though we have a belief about the presence or absence of a bug.

» A medical patient is exhibiting symptoms x, y and z. There are a number of diseases
that could be causing all of them, but only a single disease is present. A doctor has
beliefs about which disease, but a second doctor may have slightly different beliefs.

This philosophy of treating beliefs as probability is natural to humans. We employ it constantly as
we interact with the world and only see partial truths, but gather evidence to form beliefs.
Alternatively, you have to be trained to think like a frequentist.

1 alian ourselves with traditional orobability notation, we denote o neliet abo




individuals. Again, this is appropriate for what naturally occurs: different individuals have different
beliefs of events occurring, because they possess different information about the worid. The
existence of different beliefs does not imply that anyone is wrong. Consider the following
examples demonstrating the relationship between individual beliefs and probabilities:

» | flip a coin, and we both guess the result. We would both agree, assuming the coin is
fair, that the probability of Heads is 1/2. Assume, then, that | peek at the coin. Now |
know for certain what the result is: | assign probability 1.0 to either Heads or Tails
(whichever it is). Now what is your belief that the coin is Heads? My knowledge of the
outcome has not changed the coin's results. Thus we assign different probabilities to
the result.

* Your code either has a bug in it or not, but we do not know for certain which is true,
though we have a belief about the presence or absence of a bug.

« A medical patient is exhibiting symptoms x, y and z. There are a number of diseases
that could be causing all of them, but only a single disease is present. A doctor has
beliefs about which disease, but a second doctor may have slightly different beliefs.

This philosophy of treating beliefs as probability is natural to humans. We employ it constantly as
we interact with the world and only see partial truths, but gather evidence to form beliefs.
Alternatively, you have to be trained to think like a frequentist.

To align ourselves with traditional probability notation, we denote our belief about event A as
P(A). We call this quantity the prior probability.

John Maynard Keynes, a great economist and thinker, said "When the facts change, | change my
mind. What do you do, sir?" This quote reflects the way a Bayesian updates his or her beliefs
after seeing evidence. Even — especially — if the evidence is counter to what was initially
believed, the evidence cannot be ignored. We denote our updated belief as P(A | X), interpreted



It's clear that in each example we did not completely discard the prior belief after seeing new
evidence X, but we re-weighted the prior to incorporate the new evidence (i.e. we put more
weight, or confidence, on some beliefs versus others).

By introducing pnor unceriainty about events, we are already admitting that any guess we make
is potentially very wrong. After observing data, evidence, or other information, we update our
beliefs, and our guess becomes less wrong. This is the alternative side of the prediction coin,
where typically we try to be more nght.

Bayesian Inference in Practice

if frequentist and Bayesian inference were programming functions, with inputs being statistical
problems, then the two would be different in what they return to the user. The frequentist
inference function would return a number, representing an estimate (typically a summary statistic
like the sample average etc.), whereas the Bayesian function would return probabilities.

For example, in our debugging problem above, calling the frequentist function with the argument
"My code passed all X tests; is my code bug-free?" would return a YES. On the other hand,
asking our Bayesian function "Often my code has bugs. My code passed all X tests; is my code
bug-free?” would return something very different: probabilities of YES and NO. The function
might return;

YES, with probability 0.8; NO, with probability 0.2
This is very different from the answer the frequentist function returned. Notice that the Bayesian

function accepted an additional argument: "Often my code has bugs". This parameter is the prior.
By including the prior parameter, we are telling the Bayesian function to include our belief about




Denote N as the number of instances of evidence we possess. As we gather an infinite amount
of evidence, say as N — o0, our Bayesian results (often) align with frequentist results. Hence for
large NN, statistical inference is more or less objective. On the other hand, for small N, inference is
much more unstable: frequentist estimates have more variance and larger confidence intervals.
This is where Bayesian analysis excels. By introducing a prior, and returning probabilities (instead
of a scalar estimate), we preserve the uncertainty that reflects the instability of statistical
inference of a small N dataset.

One may think that for large N, one can be indifferent between the two techniques since they
offer similar inference, and might lean towards the computationally-simpler, frequentist methods.
An individual in this position should consider the following quote by Andrew Gelman (2005)[1],
before making such a decision:

Sample sizes are never large. If V is too small to get a sufficiently-precise
estimate, you need to get more data (or make more assumptions). But once N is
“large enough,” you can start subdividing the data to learn more (for example, in a
public opinion poll, once you have a good estimate for the entire country, you can
estimate among men and women, northerners and southerners, different age
groups, etc.). NV is never enough because if it were "enough® you'd already be on
to the next problem for which you need more data.

Are frequentist methods incorrect then?

No.

Freguentist methods are still useful or state-of-the-art in many areas. Tools such as least squares

- - T - L Lt L} 'f-"'-' mYa i ¥ i - T . L4 - & & - - L LY B - Ll -1



Denote N as the number of instances of evidence we possess. As we gather an infinite amount
of evidence, say as N — o0, our Bayesian results (often) align with frequentist results. Hence for
large NN, statistical inference is more or less objective. On the other hand, for small N, inference is
much more unstable: frequentist estimates have more variance and larger confidence intervals.
This is where Bayesian analysis excels. By introducing a prior, and returning probabilities (instead
of a scalar estimate), we preserve the uncertainty that reflects the instability of statistical
inference of a small N dataset.

One may think that for large N, one can be indifferent between the two techniques since they
offer similar inference, and might lean towards the computationally-simpler, frequentist methods.
An individual in this position should consider the following quote by Andrew Gelman (2005)[1],
before making such a decision:

Sample sizes are never large. If V is too small to get a sufficiently-precise
estimate, you need to get more data (or make more assumptions). But once N is
“large enough,” you can start subdividing the data to learn more (for example, in a
public opinion poll, once you have a good estimate for the entire country, you can
estimate among men and women, northerners and southerners, different age
groups, etc.). NV is never enough because if it were "enough® you'd already be on
to the next problem for which you need more data.

Are frequentist methods incorrect then?

No.

Freguentist methods are still useful or state-of-the-art in many areas. Tools such as least squares

- - T - L Lt L} 'f-"'-' mYa i ¥ i - T . L4 - & & - - L LY B - Ll -1



plt.Tight layoukty)
Bayesian updating of postenor probabilities

pbsorve 0 tosses. ¥ observe 1 tosces

- 0 heads i 1 heads
- =
] = -/ |
] i - ] i
Y X T, 10 00 ¥ o4 T 08 1

probabidty of heads

pbserve 2 tosses, - pbserve 3 tosses,
2 heads . ' -~ 2 heads
.--—"".-'-._F'_
e ——— L] i & 1 i *'"-
) 24 . T z 4 i & ] i
observe 4 tosses. ___ Observe > tosses.
Z heads i 2 heads

""_'5.'_'"'" - = L

¥ : P ~ 8
L W (R

observe B tosses, observe 15 tosses,

1 heads & heads
'\-.._\_\_h‘-_.-_
otsende 50 tossas, : r\ — absarve SO0 tosses
22 haads f 254 heads

] "
|
; i \\_
— = . . —_— =" - a i .
] 2 : 1§ 10 QG 1, & f

p. probabdty of heads

The posterior probabilities are represented by the curves, and our uncertainty is proportional to
the width of the curve. As the plot above shows, as we start to observe data our posterior
probabilities start to shift and move around. Eventually, as we observe more and more data (coin-
flips), our probabilities will tighten closer and closer around the true value of p = (.5 (marked by




obsenie § tosses, abgarig 5 tosses.

| |
L] |
i 2 heads i 2 heads
_’_'/-r_"-;__—\_\\ -F‘r-‘-‘_,.-'—-'__"--:_,_ e
i i
'_JJ/_,"J : ! . - __d_r,..-'" ! . A‘.-"‘ﬂ-._‘,_'_____ 3
", o <. -1 of ] il
obterve B tosse . : ob ¢ 15 toste
e £ - i gerve 15 totoes,
i T 3 heads _\""ﬂ_ T B heads
-h"""-h\. h :" i

! \"'\-\.\_“ ."l\“
I |
i 1-"""---.___ { i ,_’-/"/ i i i ‘-"‘"‘-___ i

= | =1 i B G &b 53 of ] b & [ f

X \

IJ/ 1'1 ___ observe 50 tosses. f __ oCsedve 5340 tosses,
X 22 heads i 1 354 heads
|}

|

. - B

. probabdity of heads

The posterior probabilities are represented by the curves, and our uncertainty is proportional to
the width of the curve. As the plot above shows, as we start to observe data our posterior
probabilities start to shift and move around. Eventually, as we observe more and more data (coin-
flips), our probabilities will tighten closer and closer around the true value of p = 0.5 (marked by
a dashed line),

Notice that the plots are not always peaked at 0.5. There is no reason it should be: recall we
assumed we did not have a prior opinion of what p is. In fact, if we observe quite extreme data,
say 8 flips and only 1 observed heads, our distribution would look very biased away from lumping
around 0.5 {with no prior opinion, how confident would you feel betting on a fair coin after
observing 8 tails and 1 head). As more data accumulates, we would see more and more
probability being assigned at p = 0.5, though never all of it.




The posterior probabilities are represented by the curves, and our uncertainty is proportional to
the width of the curve. As the plot above shows, as we start to observe data our posterior
probabilities start to shift and move around. Eventually, as we observe more and more data (coin-
flips), our probabilities will tighten closer and closer around the true value of p = 0.5 (marked by
a dashed line).

Notice that the plots are not always peaked at 0.5. There is no reason it should be: recall we
assumed we did not have a prior opinion of what p is. In fact, if we observe quite extreme data,
say 8 flips and only 1 observed heads, our distribution would look very biased away from lumping
around 0.5 (with no prior opinion, how confident would you feel betting on a fair coin after
observing 8 tails and 1 head). As more data accumulates, we would see more and more
probability being assigned at p = (.5, though never all of it. \

The next example is a simple demonstration of the mathematics of Bayesian inference.

Example: Bug, or just sweet, unintendeq feature?

Let A denote the event that our code has no bugs in it. Let X denote the event that the code
passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable,

.e. P(A) = p.

We are interested in P(A|X), i.e. the probability of no bugs, given our debugging tests X. To use
the formula above, we need to compute some gquantities.

What is P(X|A), i.e., the probability that the code passes X tests given there are no bugs? Well,
it is equal to 1, for a code with no bugs will pass all tests.




observing 8 tails and 1 head). As more data accumulates, we would see more and more
probability being assigned at p = 0.3, though never all of it.

The next example is a simple demonstration of the mathematics of Bayesian inference.

Example: Bug, or just sweet, unintended feature? 1

Let A denote the event that our code has no bugs in it. Let X denote the event that the code

passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable,

i.e. P(A) = p.

We are interested in P(A|X), i.e. the probability of no bugs, given our debugging tests X . To use

the formula above, we need to compute some quantities.

What is P(X|A), i.e., the probability that the code passes X tests given there are no bugs? Well,

it is equal to 1, for a code with no bugs will pass all tests.

FP(X) is a little bit trickier: The event X can be divided into two possibilities, event X occurring

even though our code indeed has bugs (denoted ~ A , spoken not A), or event X without bugs (

A). P(X) can be represented as:

P(X)=P(XandA)+ P(X and ~ A)

= P(X|A)P(A) + P(X| ~ A)P(~ A)

= P(X|A)p + P(X| ~ A)(] —

(4)
()

(6)
(7)




Let A denote the event that our code has no bugs in it. Let X denote the event that the code
passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable,

i.e. P(A) = p.

We are interested in P(A|X), i.e. the probability of no bugs, given our debugging tests X. To use
the formula above, we need to compute some quantities.

What is P(X|A), i.e., the probability that the code passes X tests given there are no bugs? Well,
it is equal to 1, for a code with no bugs will pass all tests.

P(X) is a little bit trickier: The event X can be divided into two possibilities, event X occurring
even though our code indeed has bugs (denoted ~ A |, spoken not A), or event X without bugs

A). P(X) can be represented as: .
PIX)=P(XandA)+ P(X and ~ A) (4)
(5)
= P(X|A)P(A) + P(X| ~ A)P(~ A) (6)
(7)
= P(X|A)p + P(X| ~ A)(1 — p) (8)

We have already computed P(X|A) above. On the other hand, P(X| ~ A) is subjective: our code
can pass tests but still have a bug in it, though the probability there is a bug present is reduced.
Note this is dependent on the number of tests performed, the degree of complication in the tests,
etc. Let's be conservative and assign P(X| ~ A) = 0.5. Then

1-p

P(A|X) = (9)




passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable,
i.e. P(A) = p.

We are interested in P(A|X), i.e. the probability of no bugs, given our debugging tests X. To use
the formula above, we need to compute some quantities.

What is P(X|A), i.e., the probability that the code passes X tests given there are no bugs? Well,
it is equal to 1, for a code with no bugs will pass all tests.

P(X) is a little bit trickier: The event X can be divided into two possibilities, event X occurring
even though our code indeed has bugs (denoted ~ A , spoken not A), or event X without bugs (
A). P(X) can be represented as:

P(X)=P(XandA) + P(X and ~ A) (4)
(5)

= P(X|A)P(A) + P(X| ~ A)P(~ A) (6)

(7)

= P(X|A)p + P(X| ~ A)(1 - p) (8)

We have already computed P(X|A) above. On the other hand, P(X| ~ A) is subjective: our code
can pass tests but still have a bug in it, though the probability there is a bug present is reduced.
Note this is dependent on the number of tests performed, the degree of complication in the tests,
etc. Let's be conservative and assign P(X| ~ A) = 0.5. Then

= l-p
P(A}X) = 1-p+05(1 =p) ©)

(10)




passes all debugging tests. For now, we will leave the prior probability of no bugs as a variable,
i.e. P(A) = p.

We are interested in P(A|X), i.e. the probability of no bugs, given our debugging tests X. To use
the formula above, we need to compute some quantities.

What is P(X|A), i.e., the probability that the code passes X tests given there are no bugs? Well,
it is equal to 1, for a code with no bugs will pass all tests.

P(X) is a little bit trickier: The event X can be divided into two possibilities, event X occurring
even though our code indeed has bugs (denoted ~ A , spoken not A), or event X without bugs (
A). P(X) can be represented as:

P(X)=P(XandA) + P(X and ~ A) (4)
(5)

= P(X|A)P(A) + P(X| ~ A)P(~ A) (6)

(7)

= P(X|A)p + P(X| ~ A)(1 - p) (8)

We have already computed P(X|A) above. On the other hand, P(X| ~ A) is subjective: our code
can pass tests but still have a bug in it, though the probability there is a bug present is reduced.
Note this is dependent on the number of tests performed, the degree of complication in the tests,
etc. Let's be conservative and assign P(X| ~ A) = 0.5. Then

= l-p
P(A}X) = 1-p+05(1 =p) ©)

(10)




plt.plot(p, "R/ (17P), COlOr= #3=8ABL , Lw=3

#plt.fill between(p, Z2*p/(1+p), alpha=.5, facecolor=["#A60628"])
pit.scatter(0.2, 2={0.2)/1.2, s8=140, c="#348HABD")

ple.xlim(0, 1)

plt.ylim(0, 1)

plt.xlabel (“"Prior, SP(A) = p$")

plt.ylabel | "Posterior, SP(A|X}$, with SP(A) = p$§")
plt.title( "Are there bugs in my coda?”);

Are there bugs in my coge?

Postanor, M ALY stk 1A

Prsor. 1A

We can see the biggest gains if we observe the X tests passed when the prior probability, p, is
low. Let's settle on a specific value for the prior. I'm a strong programmer (| think), so I'm going to
give myself a realistic prior of 0.20, that is, there is a 20% chance that | write code bug-free. To
be more realistic, this prior should be a function of how complicated and large the code is, but
let's pin it at 0.20. Then my updated belief that my code is bug-free is 0.33.

Recall that the prior is a probability: p is the prior probability that there are no bugs,so 1 — p is
the prior probability that there are bugs.

Similarly, our posterior is also a probability, with P(A |X) the probability there is no bug given we
saw all tests pass, hence 1 — P(A|X) is the probability there is a bug given all tests passed. What
does our posterior probability look like? Below is a chart of both the prior and the posterior




figeize(ll.5, %)

P = np.linspace(0, 1, 50)

plt.plot(p, 2*p/(1+p), color="#348ABD", lw=21)

#plt.f1ll between(p, <"'p/(l+p), alpha=.5, facecclor=[ ¥#AG0GZIE8"])
plt.scatter(0.2, 2{0.2)/1.2, 8=140, c="#348ABD")

pit.xiim(0, 1)

pit.ylam(0, 1)

plt.xlabel ("Pricr, SP(A) = p$")

plt.yvlabel{"Posterior, SP(A|X)$, with SP(A) = ps$")

plt.title( Are there bugs in my code? );

Are there bugs in my code?

|

Pastenor, MA|X), with i

We can see the biggest gains if we observe the X tests passed when the prior probability, p, is
low. Let's settle on a specific value for the prior. I'm a strong programmer (I think), so I'm going to
give myself a realistic prior of 0.20, that is, there is a 20% chance that | write code bug-free. To
be mere realistic, this prior should be a function of how complicated and large the code is, but
let's pin it at 0.20. Then my updated belief that my code is bug-free is 0.33.

Recall that the prior is a probability: p is the prior probability that there are no bugs,so 1 — p is
the prior probability that there are bugs.

Similarly, our posterior is also a probability, with P(A|X) the probability there is no bug given we




Saving every 120s = Trusted | Python3 @
File Edit View Insert Cell Kernel Widgets Help

B + << B 4 v N B C =

Notebooks are still at: https://github.com/minrk/ipython-cse17
Or follow along on JupyterHub at https://csel17 .jupyter.org

Profiling and Optimising

IPython provides some tools for making it a bit easier to profile and optimise your
code.

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

In [2]: try:
import seaborn as sns




@ Safari File Edt View History Bookmarks Develop Window Help @O @® FT « wWONBF TS0 O =
® & .0 a WO SIOR B EEE N OO RN IR I OO0t M N I I TRy IO, Dyme ot (5] ) {7

15 @ DL~ wew B> Fiv

T

E e —r——————————

Notebooks are still at: https://github.com/minrk/ipython-cse17
Or follow along on JupyterHub at https://cse17.jupyter.org

Profiling and Optimising

IPython provides some tools for making it a bit easier to profile and optimise your
code.

%Zmatplotlib inline
import numpy as np
import matplotlib.pyplot as plt

try:
import seaborn as sns
except ImportError:



@ Safari File Ect View History Bookmarks Develop Window Help 0@ FT « WOXBEE TS0 Q =

L i & KOCSMORE BBEE. nometa NONRDOOU NI TR I Dl s Ly o O .6 0

15 @ DL~ wew B> Fiv

ey 5 e s ey

# l. Runninag a notebook manually will likely change the output

In [12]: !jupyter nbconvert --to pdf "nbval.ipynb"

[NbConvertApp] Converting notebook nbval.ipynb to pdf
[NbConvertApp] Support files will be in nbval files/
[NbConvertApp] Making directory nbval files

[NbConvertApp] Writing 30279 bytes to notebook.tex
[NbConvertApp] Building PDF

[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.t
ex']

[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
[NbConvertApp] WARNING | bibtex had problems, most likely becau
se there were no citations

[NbConvertApp] PDF successfully created

[NbConvertApp] Writing 43187 bytes to nbval.pdf

!open nbval.pdf




@ Safari File Ect View History Bookmarks Develop Window Help 0@ FT « WOXBEE TS0 Q =

L i & KOCSMORE BBEE. nometa NONRDOOU NI TR I Dl s Ly o O .6 0

15 @ DL~ wew B> Fiv

ey 5 e s ey

# l. Runninag a notebook manually will likely change the output

In [12]: !jupyter nbconvert --to pdf "nbval.ipynb"

[NbConvertApp] Converting notebook nbval.ipynb to pdf
[NbConvertApp] Support files will be in nbval files/
[NbConvertApp] Making directory nbval files

[NbConvertApp] Writing 30279 bytes to notebook.tex
[NbConvertApp] Building PDF

[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.t
ex']

[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
[NbConvertApp] WARNING | bibtex had problems, most likely becau
se there were no citations

[NbConvertApp] PDF successfully created

[NbConvertApp] Writing 43187 bytes to nbval.pdf

!open nbval.pdf




|:|:}

8 Satari FRle Ed YView Hstory BSookmarks Develop Window (Helg e = ﬁ'

A e scamow 3584 - =

= ] L
rel = Pt Lrg, g = e ' =P ‘ Lo ), TLETLA L P gl eamut [ s = R ] Frighss g and L S oht =Y Erberoo, e e - T FaiarSacen 1l W) gyt hanSy e Ao Pl
; el
I_.. e = VA sl =
& Counting Werds.ipynk an hour ago

¥ DAG Dependencies.ipynb an hour ago
& MC Options.ipynt an hour ago
B memmap.iovnb an hour ago
B Monitoring MPLiownt an h:uragg
¥ MP| Broadcast.ipynt an hour ago
B Parallel face detection.ipynt an hour ago
B Parallal imaae processing iovn an hour agoe
that. txt an hour ago
an hour ago
an hour ago
lavinc .o an hour ago
davinci2.txt an hour ago

3T et an hour ago

Ll
el
)

]
'
|

4. bt an hour ago
| davinciS.txt an hour ago
] davincid bt an hour ago

) davinei7.tet an hour ago

FinciR oot an hour ago
9.0

1 nitanbara 7 r'1|"‘ ur gg

an hour ago




8 Safari File Edt View History Bookmarks Develop Window Help

e @ il [ a DERPerpl BEAE et U T S T

s g DL~ newm P~ IFi= &

n womk ' a g Secmetacs Tt

pip install ipyparallel
Or get everything for the tutorial with conda:

conda install anaconda mpidpy
For those who prefer pip or otherwise manual package installation, the following packages will be used:
ipython ipyparallel numpy matplotlib networkx scikit-image requests beautifulsoup mpidpy

Optional dependencies: | will use NetworkX for one demo, and scikit-image for another, but they are not
critical, Both packages are in in Anaconda.

For the image-related demos, all you need are some images on your computer. The notebooks will try to fetch
images from Wikimedia Commons, but since the networks can be untrustworty, we have bundled some images
here.

Outline

* Motivating Example
* Overview
e Tytorial

* Remote Execution
* Multiplexing
* Load-Balancing
= Both!
» Parallel Magics
¢ Examples
* Exercises




rlle Eait View Insert el Lerne elp Kernel @

i
+
o
.
-}
.(-
=
=
Q
()
g
|

3 CellToolbar




Saving every 120s  Not Trusted | Python3 O

File Edit View Insert Cell Kernel Widgets Help

B + < @B 4 v N ER C =

IPython Notebook Validation for py.test -
Documentation

One of the powerful uses of the IPython notebook is for documentation purposes,
here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores
outputs as well as inputs. Validating the notebook means to rerun the notebook and
make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the
associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

- " "
[ ol [Tl (R =L il a




File Edit View Insert Cell Kernel Widgets Help Not Trusted l Python3 O

B + < & B 2« ¥y N B C =

IPython Notebook Validation for py.test -
Documentation

One of the powerful uses of the IPython notebook is for documentation purposes,
here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The |IPython notebook format . ipynb stores
outputs as well as inputs. Validating the notebook means to rerun the notebook and
make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the
associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately
without storing the information, the outputs generated will be compared




File Edit View Insert Cell Kernel Widgets Help Not Trusted l Python3 O

B + < & B 2« ¥y N B C =

IPython Notebook Validation for py.test -
Documentation

One of the powerful uses of the IPython notebook is for documentation purposes,
here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The |IPython notebook format . ipynb stores
outputs as well as inputs. Validating the notebook means to rerun the notebook and
make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the
associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately
without storing the information, the outputs generated will be compared




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O

B+ << DB 424 v N B C =

One of the powerful uses of the IPython notebook is for documentation purposes,
here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores
outputs as well as inputs. Validating the notebook means to rerun the notebook and
make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the
associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately
without storing the information, the outputs generated will be compared
against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as
expected and that changes to underlying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the -
-nbval flag at the command line, the IPython Notebook Validation plugin will




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O

B+ << D 24 v N B C =

One of the powerful uses of the IPython notebook is for documentation purposes,
here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores
outputs as well as inputs. Validating the notebook means to rerun the notebook and
make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the
associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately
without storing the information, the outputs generated will be compared
against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as
expected and that changes to underlying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the -
-nbval flag at the command line, the IPython Notebook Validation plugin will




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O
+ X A B+ ¥ N EC

One of the powerful uses of the IPython notebook is for documentation purposes,
here we use a notebook to demonstrate the behaviour and usage of the IPython
Notebook Validation plugin for py.test. The IPython notebook format . ipynb stores
outputs as well as inputs. Validating the notebook means to rerun the notebook and
make sure that it is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the
associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

. Validating with py.test plugin - these tests run your notebook code seperately
without storing the information, the outputs generated will be compared
against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as
expected and that changes to underlying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the -
-nbval flag at the command line, the IPython Notebook Validation plugin will




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O

B 4+ < & D 4 v N B C =

associated .ipynb file. These outputs will be used as references for the tests (i.e.
the outputs from the last time you ran the notebook)

. Validating with py.test plugin - these tests run your notebook code seperately
without storing the information, the outputs generated will be compared
against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as
expected and that changes to underlying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the -
-nbval flag at the command line, the IPython Notebook Validation plugin will
collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebock.ipynb

There is also an option --nbval-1lax, which collects notebooks and runs them,
failing if there is an error. This mode does not check the output of cells unless they
are marked with a special #NBVAL CHECK OUTPUT comment.

$ py.test --nbval-lax my notebook.ipynb




File Edit View Insert Cell Kernel Widgets Help Not Trusted [ Python3 O

B + x &2 B 24 v N B C =

The purpose of the testing module is to ensure that the notebook is behaving as
expected and that changes to underlying source code, haven't affected the results
of an IPython notebook. For example, for documentation purposes - such as this.

Command line usage

The py.test program doesn't usually collect notebooks for testing; by passing the -
-nbval flag at the command line, the IPython Notebook Validation plugin will
collect and test notebook cells, comparing their outputs with those saved in the file.

$ py.test --nbval my notebook.ipynb

There is also an option —-nbval-1lax, which collects notebooks and runs them,
failing if there is an error. This mode does not check the output of cells unless they
are marked with a special #NBVAL_CHECK_OUTPUT comment.

$ py.test --nbval-lax my notebook.ipynb

REGEX Output sanitizing

Since all output is captured by the IPython notebook, some pesky messages and

mldalanlaid - [ o B ] T =T FEY N il = aElETr= i



Saving every 30s  Not Trusted ] Python3 O

File Edit View Insert Cell Kernel Widgets Help

B + x @ B 44 v N EC =

WYL WL L LIIY LU DOLL Ll O e b LY

The first replacement finds dates in the given format replaces them with the label
'‘DATE-STAMP', likewise for strings that look like time. These will prevent the tests
from failing due to time differences.

Validate this notebook

You can validate this notebook yourself, as shown below; the outputs that you see
here are stored in the ipynb file. If your system produces different outputs, the

testing process will fail. Just use the following commands:

",
$ cd /path/to/this/notebook

$ py.test --nbval nbval.ipynb --sanitize-with doc saniti
ze.cfqg

Examples of plugin behaviour

The following examples demonstrate how the plugin behaves during testing. Test

' NOTEeDD0K DIUSE (] e ThEe ,t-[ill-ﬂil




File Edit View Insert Cell Kernel Widgets Help Not Trusted 4 [P}fthnn 3 0O

B 4+ < & DB 24 v N B C =

print("Entering infinite loop...")
while True:
pass

Checking exceptions

Sometimes, we might want to allow a notebook cell to raise an exception, and
check that the traceback is as we expect. By annotating the cell with the comment #
NBVAL_RAISES_EXCEPTION you can indicate that the cell is expected to raise an
exception. The full traceback is not compared, but rather just that the raised
exception is the same as the stored exception.

# NBVAL_RAISES_EXCEPTION
print("This exception will be tested")
raise RuntimeError("Foo")

This exception will be tested

RuntimeError Traceback (most recen
t call last)

<ipython-input-1-b97c0d4d501d6a> in <module>()




File Edit View Insert Cell Kernel Widgets Help Not Trusted &' [P',rthnnB O

+ x 22D 4 ¥ N B C
pGSEIDiE 1o I’T‘I{'JCIIT}' the plugln 10 allow ccrnpa rnson of the IIT'IEQE whole Stl"ll'lgi

In [10]): plt.imshow(np.array([[i + j for i in range(3)]
for j in range(3)]),
interpolation='None'

)

Out[10]: <matplotlib.image.AxesImage at 0x7£f2cb3374198>

05 -

00

05

10




File Edit View Insert Cell Kernel Widgets Help Not Trusted &' [P',rlhnniﬂ O

B + x &2 B 24 vy N BB C =

In [9]: -Hdmport matplotlib.pyplot as plt
Zmatplotlib inline

Currently, only the matplotlib text output of the Figure is compared, but it is
possible to modify the plugin to allow comparison of the image whole string.

plt.imshow(np.array([[i + j for i in range(3)]
for j in range(3)]),
interpolation='None'

)

Out[10]: <matplotlib.image.AxesImage at 0x7£f2cb3374198>

k
-0.5 T

00

05

10

15

20

45 b




File Edit View Insert Cell Kernel Widgets Help Not Trusted ¢ jPﬂ,rthnn 3 0O

B + x &2 Dh 4 vy N AR C =
raise SyntaxError("Foo")

Traceback: mismatch 'ename'’

<<<<<<<<<<<< Reference output from ipynb file:
RuntimeError

======—====== disagrees with newly computed (test) output:
SyntaxError

P

cell 12

Notebook cell execution failed
Cell 12: Cell outputs differ

Input: 1
plt.imshow(np.array([[i + j for i in range(3)]
for j in range(3)]).
interpolation='None'
)

Traceback: mismatch 'text/plain’

<<<<<<<<<<<< Reference output from ipynb file:
<matplotlib.image.AxesImage at 0x7f2cb3374198><matplotlib.figur
e.Figure at 0x7f2cb564a550>

============ disagrees with newly computed (test) output:
<matplotlib.image.AxesImage at 0xll16e547f0><matplotlib.figure.F
igure at 0x116d4cfd0>

SB35

=========—=—==—=—=== 4 failed, 10 passed in 3.08B seconds ====—=




File Edit View Insert Cell Kernel Widgets Help Not Trusted ] Python3 O

B + X @B 42 v N BB C =

Notebook cell execution failed
Cell 3: Cell outputs differ

Input:
print([np.random.rand() for i in range(4)])
print([np.random.rand() for i in range(4)])

Traceback: mismatch 'text’

<<<<<<<<<<<< Reference output from ipynb file:
[0.36133679016382714, 0.5043774697891126, 0.23281910875007927,
0.2713065513128683]

[0.5512421277985322, 0.02592706358897756, 0.05036036771084684,
0.7515926759190724]

disagrees with newly computed (test) output:
[0.12348198835905, 0.8191013186977266, 0.6102236226498696, 0.60
99335157815623)
[0.7834888338674239, 0.4372787069426135, 0.06627007941476448, 0
.7160976155240207 ]

PO

Notebook cell execution failed
Cell 4: Cell outputs differ

Input:



O B8
(=] - o

& [C]
CIC
=CiC

g

SICHE (O]




Docs » nbdime - diffing and merging of Jupyter Notebooks

nbdime - diffing and merging of Jupyter Notebooks

Version: 0.3.0.dev

nbdime provides tools for diffing and merging Jupyter

Loading Matplotlib demos with % load

Changes in nbdime

Ul sl IFythoa’s Alosd megic cas be oeed to losd soy Matplotllh Seso by Llis THL:

iy = o jin iy = fusssim}

varis = [fo. S§) * Lisuj iim. dyhp = : varis = [[m. Bj) & s {udpidn: dyid & (b, &)
poly = Polypom{werts, fececolors 0.8°, 1 poly = Polygos(veris, fscecolors 3.8 . sdgscol
AN . Sl _patoh [poly | AN Bl _patohjpoly)

Figure: nbdime example

Why is nbdime needed?

Jupyter notebooks are useful, rich media documents stored in a plain text JSON format. This format is
relatively easy to parse. However, primitive line-based diff and merge tools do not handle well the
logical structure of notebook documents. These tools yield diffs |the this:

8 Read the Docs




Docs = nbdime - difhing and merging of Jupyter Notebooks

nbdime - diffing and merging of Jupyter Notebooks

Version: 0.3.0.dev
nbdime provides tools for diffing and merging Jupyter notebooks,

Loading Matplotlibh demos with % load

el , .
el addnd IPythons "Wload” magic can be wsed to load any Matplotlib deso by ite UL

iy = fane|ix)
weItd = | (@, 5] # stieiplin, Ey)) & ik, @)

facecQloo= 0.8 , ool

iy = fums(ix)

varts = (&, 0))] = lins{eipdix, iw)) "
Pely = Felyges|vests, facesolos= 0.8 , == Foly = Folygoavests,
Ax.add pateh|paly ) ax.sdd satehjpaly]

Figure: nbdime example

Why is nbdime needed?

Jupyter notebooks are useful, rich media documents stored in a plain text JSON formal. This format
is relatively easy to parse. However, primitive line-based diff and merge tools do not handle well the

B Read the Docs logical structure of notebook documents. These tools yield diffs like this:




# nbdime

atest

Installation

Console commands
Version control integration
Glossary

Changes in nbdime

Testing
diff format
Merge details

REST API

& Read the Docs

Docs » nbdime - diffing and merging of Jupyter Notebooks () Edit on GitHub

nbdime - diffing and merging of Jupyter
Notebooks

Version: 0.3.0.dev
nbdime provides tools for diffing and merging Jupyter notebooks.

Loading Matplotlib demos with %load

Cell added IPython's "%load™ magic can be used to load any HMatplotlib demo by its URL:
*

in (4]t In [4]:

iy = func(ix) 1y = func(ix)

verts = [(a, 0)) + list(zip(ix, iy)) + [(b, 0) i werts = [(a, 0)] + list(zip(ix, 1¥)) + [(b, 0O)
poly = Polygon(verts, facecolor="0.%", edgecol poly = Polygon(verts, facecolor="0.6", edgecol
ax.add patch({poly) f ax.add patchipoly)




[ seachoos
nbdime - diffing and merging of Jupyter Notebooks

Version: 0.3.0.dev

Installation

Console commands : : . , . :
nbdime provides tools for diffing and merging Jupyter notebooks.
Version control integration

Glossary Loading Matplotlib demos with % load

Changes in nbdime Cell added IPythoa's “tload” magic can be used to load any Matplotlib demo by its URL:
{4]:

iy = Fuamefix) iy = fanc|ix)

varta = [(&, 8)) # listimipiix, LI¥)) +* [(b, &) varts = [jm, 0)] + lisc{zipiix, iy}) + [i(b., &)
poly = Polygoa(varts, facecolor="0.%"; sdgecol poly = Palygon|verts, facecolor="0.6" , sdgecol
ax.add _patch(poly) ax.add patchipaly)

Outputs changed

Use cases

0S

BALY §-01 FOEY » BAFETIN, TX

Figure: nbdime example
Learn More

Why is nbdime needed?

& Read the Docs




B Merm2 Shell Edt View Profies

S ] s x : AL 3 . w1 1l [l 5 Py Unsrneniena XS
LRORES . I8 e COECT | [y
mrinrk] 14 15 |- dev jpyprev/ipython-cael? (moater) § git ™ poralicl lecoges. rip

error: the following Fle kel chonge: stoged ia the index:

poral lel iaoges. rip
&

(use coached o beap the Tile, or -f to force resl)

minrk] 14 15 )=Sdow jpyprens ipython-cael 7 (moster) § oit re porollelsimopes. zip
mincil 1 D)=/ dew jpypres/ipython-cael? (mcster) § glogit

winck] 18 16] - dev/ jpy/pres/ipython-cselT (paster) § git push

Courting abjects: B, done
elts compression wiing wp to 4 Threodd
{ompressing objects: 1008 (EL7EE), dors
Eeiting objects: LS (BSUBS), BO.SE MEE | 39].00 Kilss, done
Total B9 (delta B), reused @ Cdelta B)
remcte: Resolving deltcs: D (B78), completed with I Loos]l objects
o glthud com sinricfippthon-ciel? glt
lobabed, 1550850 soiter -» AoSLer

ek 14 1) devf S fprei/ L python-£4217 (mostesr) § 14

Eryond Flaln Python. ioynh hRoteboss Beulcy, gyl Profiling ond Optielrieg sith IPyteon. pynh doc_samitize.cfg el £y paratlel
Lol Megos. Ly Hotebook File foreet . miel EEADME . mad foo. gy nBbcoreAnTL teepLotes profl beme. py
{ustom Drispley Loglic. ipymd Wotebook file fMorsot. gyt Third Porty ELoh Output. ipymb e = - el L pyTE L= o
Input Ln the Moteboo . Liy©h Wotebook file formst.py _ryCone__ Iyt T . ter . gr vl o ol gy
LICENSE Flotting in the MNotebook. igynb St Oy lig. oy e L

wi i 15 &7 =Ydev/ jppreniprthon-Conl 7 (moster) § du -hs Plotting's s the’y Motebook ., ipynb

el Plotting in the Motebook.ipymb

miar] 15 0 -Sdee i pred  python- L3817 [soater) § l

RuntimeError Traceback (most recent call last)

<ipython-input-3-32dccic70ade> in <module>()
1 # NBVAL_RAISES_EXCEPTION

2 print("If the raised exception doesn't match the stored exception, we get a failure"
----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

In [2]: # NBVAL_IGNORE_OUTPUT




varts = [{a, Y}] # List{zip(ix, 1¥)) * [(D., L) vezts = [{a, O)) = Lisc{zip(ix, i¥)) = [(b, ©})
poly = Polygon|verts, facecolor=°"0.%", odgecol poly = Polygon(verts, facecolor="0.6", odgecol
ax.add patch(poly) ax.sdd patchipoly)

instaliation

Console commands®
Version control integration
Glossary

Changes in nbdime

Testing

diff format

Merse detafls Figure: nbdime’s content-aware diff
REST API

Quickstart

To get started with nbdime, install with pip:

pip install nbdime

0S

RLAY B-10 2007 - AUSTIN, TX

And you can be off to the races by diffing notebooks in your terminal with nbdiff:

nbdiff notebook_1.ipynb notebook_2.ipynb

8 Read the Docs or viewing a rich web-based rendering of the diff with nbdiff-web:




Docs » Console commands

Console commands

Installation nbdime provides the following CLI commands:

= Console commands

noshow
nbdiff
nbdiff-web
nbmerge
nbmerge-web
mergetool

Version control integration
config-git

lossary

Changes in nbdime

Pass --help toeach command to see help text for the command's usage.
Testing Additional commands are available for Git integration.

diff format

Merge details nbshow

REST API
nbshow gives you a nice, terminal-optimized summary view of a notebook. You can use it to quickly

peek at notebooks without launching the full notebook web application.

& Read the Docs




Installation
= Console commands
Noshow
Diffing
Merging
Version control integration
Glossary

Changes in nbdime

Merge detalls

oS

REST API

0S

BALY B-T0L 2007« AUSTIM, TX

B8 Read the Docs

nbmerge merges two notebooks with a common parent. If there are conflicts, they are stored in
metadata of the destination file. nbmerge will exit with nonzero status if there are any unresolved

conflicts.

nbmerge writes the output to s:#eut by default, so you can use pipes to send the result to a file, or

the -, --eutput argument to specify a file in which to save the merged notebook.

Because there are several categories of data in a notebook (such as input, output, and metadata),
nbmerge has several ways to deal with conflicts, and can take different actions based on the type of
data with the conflict.

Conflict-resolution in nbmerge is under active development and is subject to change.

The -», --merge-strategy Option lets you select a global strategy to use. The following options are

currently implemented:

inline
This is the default. Conflicts in input and output are recorded with conflict markers, while

conflicts on metadata are stored in the appropriate metadata (actual values are kept as their base
values).

This gives you a valid notebook that you can open in your usual notebook editor and resolve
conflicts by hand, just like you might for a regular source file in your text editor.

use-base
When a conflict is encountered, use the value from the base notebook.

use-local
When a conflict is encountered, use the value from the local notebook.



L Safari Fle Edt View |History Bodomarks Develop
- | -]
e ] Py g s [ i ]

Version control integration
Glossary

Changes in nbdime

Testing

diff format

BALY BT 2007 - AUSTIN, TE

Learn More

B Read the Docs

W IO

D TR

Por aliw =g

[ e

Moy 1 BT D00

0= DL ey Pw  FFY L

afarg w g Sy | P T T f i

ix = np.linapacefa, b)

iy = func(ix)

varts = [[a, 0j] #+ list(zipiix, iy}) * [(b; ) ]

poly = Polygon{verts, facecolor="0.6°, adgecolor="0.5"}
ax.add patchipoly)

£

plt.figtext(0.9,
plt.figtext(0.1,

ax.spines|[ ‘right” ].set_wvisible(False)

ax.spines| ]-sat visible(Falese)

plt.show( )

timdrd |

At S

Outputs changed

Q@ Previous

Sphinx theme v Read the Docs

o ol




Satarl FRle Eoa r-'.-ir History [Bookmarks Develog Window
LR N | Frpifiary el T = =

Files Hunning Clusters

Select items to perform actions on them.

E N .ﬁﬂ--ﬂ-,‘:"r_\--d‘l D ey o s e
el 1% L 3 .l T I Il.l -

¥ Call Magics.iovnb
& Input in the Notebook.ipynb
= MNotebook Hasics.ipynb

& Third Party Rich Output.ipynk

S
1 Gy
) LICENSE

Lo ]

L]

B gupter

S

e

Upicad

For

New

T
§ |
oty S



8 Safari File Edt View History Bookmarks Develop Window Help S2E® T« WwxBEF TSl Q4
— k S : -
e 9 . a locaegt BEBA o when L Froiereg N FanE N TN 1 g T T Pyt Oy el o 0 "

.

ims g DL~ nem P~ JIFi= bd
e .

e e e S e S S

i I
I 1
I I
I I
1 I
I 1
I ]
1 I
i 1
I 1
I )
I 1
I 1
[ I
I J

-

bl
‘------whﬂ

-
-

numba

numba is a library that attempts to automatically do type-based optimizations like
we did with Cython. To use numba, you decorate functions with @autojit.

In [38]: {dmport numba




@ Safari File Edt View History Bookmarks Develop Window Help

L
s

X |

] lornihes: BEES oo s Sl i e sy s
8 DL iow P~ JIFl~ M

pip install ipyparallel

Or get everything for the tutorial with conda:

conda install anaconda mpidpy
For those who prefer pip or otherwise manual package installation, the following packages will be used:
ipython ipyparallel numpy matplotlib networkx scikit-image reguests beautifulsoup mpidpy

Optional dependencies: | will use NetworkX for one demo, and scikit-image for another, but they are not
critical, Both packages are in in Anaconda.

For the image-related demos, all you need are some images on your computer. The notebooks will try to fetch
images from Wikimedia Commons, but since the networks can be untrustworty, we have bundled some images
here.

Outline
. Mmagﬂamnla




: Jupyter Logout

Files Running Python Clusters
Select items to perform actions on them. Upload New~w

~ B / parallel Name 4 Last Modified 4
for |5 seconds ago
[0 examples an hour ago
(3 exercises an hour ago
[ figs an hour ago
(D soln an hour ago
D tutorial an hour ago
& downloa a-images.ipynb an hour ago
& |ndex.ipynb Running an hour ago
& Overview.ipynb an hour ago
& Performance.ipynb an hour ago
& Summary.ipynb an hour ago
] 5000-8.txt an hour ago




Saving every 120s = Trusted | Python3 @

File Edit View Insert Cell Kernel Widgets Help

B + x @B 44 v N B C =

Interactive (parallel) Python

Installation and dependencies

You will need ipyparallel >= 5.x, and pyzmgqg = 13. To use the demo notebooks, you
will also need tornado 2 4. | will also make use of numpy and matplotlib. If you have
Canopy or Anaconda, you already have all of these.

Quick one-line install for IPython and its dependencies:
pip install ipyparallel

Or get everything for the tutorial with conda:

Loading [MathJax}/ extensions/Safe.js

conda install anaconda mpidp




File Edit View Insert Cell Kemnel Widgets Help Trusted [ Python3 O

B + x &2 B 4 v N B C =

i = o ! o L}

notebooks will try to fetch images from Wikimedia Commons, but since the
networks can be untrustworty, we have bundled some images here.

Outline

e Motivating Example
e Overview
. Tu;ﬂrial

= Remote Execution
= Multiplexing

" Lc:ag-E-aia ncing

= Both!

» Parallel Magics
e Examples

e Exercises




File Edit View Insert Cel Kerne Help Saving every 120s  Python3 @

B + xx @ DB * ¥ M B C Markdown

=3 CellToolbar

L

Motivating example: Parallel image
processing with scikit-image

To get a sense of what IPython.parallel might be used tor, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of |IPython.

You can download images with this notebook, or get a zip here, or find any images
on your computer.

In [ ]J: 1import sys
import requests
from zipfile 1mport ZipFile, BadZipFile
from ipywidgets import IntProgress
from IPython.display 1import display

Loading [MathJax}Vextensions/Safe.js




File Edit

Saving every 120s = Trusted

View Insert Cell Kernel Widgets Help

B + xx & DB 4 ¥ N R C =

| Python 3 @

Loading [MathJax)/extensions/Safe.js

Motivating example: Parallel image
processing with scikit-image

To get a sense of what IPython.parallel might be used for, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of IPython.

You can download images with this notebook, or get a zip here, or find any images

on your computer.

import sys

import requests

from zipfile import ZipFile, BadZipFile
from ipywidgets import IntProgress




File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 @

B + <X 22 DB 2« vy N B C =

Motivating example: Parallel image
processing with scikit-image

To get a sense of what IPython.parallel might be used for, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of IPython.

You can download imades with this notebook, or get a zip here, or find any images
on your computer.

import sys

import requests

from zipfile import ZipFile, BadZipFile
from ipywidgets import IntProgress

from IPython.display import display

images = os.path.join('..', 'images')
images_url = "https://s3.amazonaws.com/ipython-parallel-data/ima




File Edit View Insert Cell Kernel Widgets Help Trusted 4 [Pythun.’:i @

B + x &2 B 2 v N BB C =

Motivating example: Parallel image
processing with scikit-image

To get a sense of what IPython.parallel might be used for, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of IPython.

You can download images with this notebook, or get a zip here, or find any images
on your computer.

import sys

import request5|

from zipfile import ZipFile, BadZipFile
from ipywidgets "import IntProgress

from IPython.display import display

images = os.path.join('..', 'images')
images_url = "https://s3.amazonaws.com/ipython-parallel-data/ima

O Al im"'_



File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 @
+ X B+ ¥y M0 C

FRFE IR 15§« TS _ LWL L TN/ _ S T ETTOLIE ) .
p.value += len(chunk)
f.write(chunk)

if not os.path.exists(images):
images_zip = images + '.zip'
if os.path.exists(images_zip):
try:
zf = ZipFile(images_zip)
except BadZipFile:

os.remove(images_zip)
else:

zf.close()

if not os.path.exists(images_zip):
download_images()
I
ZipFile(images_zip).extractall('.."')

%matplotlib inline
import matplotlib.pyplot as plt

import sys,os,re,time
import urllib

import numpy as np



ik

In [*]:

In |

Qp

]

Insert Ce Kerne Widgets Help Trusted

a2 B 4+ vy H B C =
1w LI R LT R " B 1 o« P LWL L SRS 1 ET—0LIE )
p.value += len(chunk)
f.write(chunk)

if not os.path.exists(images):
images_zip = images + '.z1p'
1f os.path.exists(images_zip):
try:
zt = ZipFile(images_zip)
except BadZipFile:

os.remove(images_zip)
else:

zf.close()
1if not os.path.exists(images_zip):
download_1images()

k
ZipFile(images_zip).extractall('..")

#matplotlib inline
import matplotlib.pyplot as plt

import sys,os,re,time
import urllib

import numpy as np




@ [Term2 Shell Edt Vi files  Toolwlt Window Hel o & = £-3

inoges . rip LR romeon . Y
winck1d: 15]~/dev fgry/precSipython-coel? (easter) § glt m porallellnages rip
error; the follosing file hes chenges stoped in the index:
porallel images . Tip
(use --Coched %0 koop the file, or - to forde Fomowsl)
minrk] 14 15])=-dee’ ipeprenipython- o l7 (maater) § glt m porollielsinoges . xip
winrk{ 18 18] dev/ jpnpreniprthon-cael 7 (moster) § gltglt
minrk] 14 16]-Sdev/ jpypresfipython-coel 7 (soster) § gl push
Counting cbjects: B3, done.
elta compresdion wiing up to 4 thieads.
Compressing objects: 100K (EL7RE), done,
Eriting cbjects: 188N (B/E9), LB.94 MiE | 39108 i, dome.
Total 5 (delts §), rewad @ (deloa 8)
romcbe: Besolving deltcs: LB (B/5), completed with 1 Locs]l objects.
To glthub, comminrc/ ipython-csel?. gl
lghabll. 1600850 =mter -> moiter
w14 17~/ dew/ fpy/pred/ipython-<3elT (master) 3 13

By Floln Python. iyt tebook Basics. gyl Profilirg ond Optislrisg with IPythen. ipynd doc saeitize.ofg o, By parallel
el Megles. iyl Motebook Flle formet. Resl EEADE ,ml foo. py rbcomert_teeplotes profilese. oy
{uston lspley Logic.ipymb motebook flle formot. ipmb Third Porty Rich Outpur.ipymd imapes nbsal . iy test . txt
Irpurt in the Notebook. L=l hotebook file formst.py —ryachE,_ ipython-csell. tar . gx rirea] . e widgets
LICENSE Flotting in the Notebook. igynb dets. o log. gy nirewl . gy

winrk[ 1587~ dev/ jpy/pres/ipython-csel? (moster) § du -ha Plotting’ in\ the', Notebook. ipynb
i Plotting in the Notsbook ., ipynb
winrk[15: 0] dev/ Sy press python-ciel? (mester) 3 i

(s | e ASCaETwa % iy s L1 des 1 il ™ 54%0ES FaE T e

™ -

i multipgin miwbodin cor o [eon of the commend L9 im 3 coopile 27 =
i di Flowrewt asys: -

1" -

e > Jusyter nggreerl cotsbooks . ipyni-

iy * laEpTer NAOSEET § roTEbSail. tpyel motebockl Yoyl

I_" -

A1} or you can ipecify tiw netobooia Tizt 4n & comfigp T, CRN TR TINES S
e -

11 49 £ . MDA . e alyieta 4 i, e P 1 e h
‘- -

¥ L R S — SR BEETE . e

iy " format (get_export_names()) )~

# wWriter spodific vor{obles~
writer = Instance{ raconyert eritors SomLeitgrdas,~
ﬁtlpl'“:r.ﬁ'.:t':f af the writer cloid oSl To et The =
resulits of the coeweriios. " ™, ol low ronesTree)~
writer_cless » DottedOblecthame| | less (2ar "
hlﬂﬂl"'- iter Clons e T writE The &
resslis &f the comwersies™ ) taglconPigeTres)~
writer_slisses = { #loseriter s phoomvert, writmes. files Filemriger =
"B T LErT s bComes st  wrl bty Sebost . Deleagilr i ter * -
Stsooter-iter': 'mhoesegrt eritery gtsoot St tiir] ter §a

writer_factory = Type(ollow_nosesTrus)=-

$SESERERREETS




File  Edit View Inset Cell Kermel  Widgets Help Trusted | Python 3 @

+ X 2B 2+ v N B C
iviouvatung exampie: raraiel image
processing with scikit-image

To get a sense of what IPython.parallel might be used for, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of IPython.

You can download images with this notebook, or get a zip here, or find any images
on your computer.

import sys
import requests
from zipfile import ZipFile, BadZipFile
from ipywidgets import IntProgress
from IPython.display import display
I
images = os.path.join('..', 'images')
images_url = "https://s3.amazonaws.com/ipython-parallel-data/imaj

def download_images():
r = requests.get(images_url, stream=True)
content_length = r.headers.get('content-length')
print("Downloading images")
sys.stdout. flush()




File  Edit View Inset Cell Kermel  Widgets Help Trusted & |Python3 @

B 4+ < & B 24 vy N B C =

To get a sense of what IPython.parallel might be used for, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of IPython.

You can download images with this notebook, or get a zip here, or find any images
on your computer.

import sys

import requests

from zipfile import ZipFile, BadZipFile
from ipywidgets import IntProgress

from IPython.display import display

images = os.path.join('..', 'images')
images_url = "httpsiff53.amazanaws.cumfipythnn-parallel-datajima

def download_images():
r = requests.get(images_url, stream=True)
content_length = r.headers.get('content-length')
print("Downloading images")
sys.stdout. flush()
p = IntProgress(max=content_length)
display(p)
with open(images_zip, 'wb') as f:




File  Edit View Inset Cell Kermel  Widgets Help Trusted & |Python3 @

B 4+ < & B 24 vy N B C =

To get a sense of what IPython.parallel might be used for, we start with an example
of some batch processing of image files with scikit-image. We will revisit pieces of
this example as we learn about the different components of IPython.

You can download images with this notebook, or get a zip here, or find any images
on your computer.

import sys

import requests

from zipfile import ZipFile, BadZipFile
from ipywidgets import IntProgress

from IPython.display import display

images = os.path.join('..', 'images')
images_url = "httpsiff53.amazanaws.cumfipythnn-parallel-datajima

def download_images():
r = requests.get(images_url, stream=True)
content_length = r.headers.get('content-length')
print("Downloading images")
sys.stdout. flush()
p = IntProgress(max=content_length)
display(p)
with open(images_zip, 'wb') as f:




Tl o

TFTWTT %

©0r L format (get_export_names

# writer specific vori{ables-
writer = Instance( nig grg it y - ER .
cleis amed To mf
“p ol low_pone=Tres )=

wriTE T =

). taglconfigeTros)~
writer_slisses = {' 711 ' T i1 o

P




Interrupting kernel  Trusted | Python3 @
File Edit View Insert Cell Kernel Widgets Help

B + = DB 4 v N B C =

In [3]: -1import sys,os,re,time
import urllib

import numpy as np

import ipyparallel as parallel

!conda install scikit-image

%
Fetching package metadata ........"°C

from skimage.io import 1imread
from skimage.feature import corner_harris, corner_peaks

ModuleNotFoundError Traceback (most recen
t call last)
<ipython-input-4-12197010217e> in <module>()
-=-=> 1 from skimage.io import imread
2 from skimage.feature import corner harris, corner_ peaks

ModuleNotFoundError: No module named 'skimage’




Interrupting kernel  Trusted | Python3 @
File Edit View Insert Cell Kernel Widgets Help

B + = DB 4 v N B C =

In [3]: -1import sys,os,re,time
import urllib

import numpy as np

import ipyparallel as parallel

!conda install scikit-image

B
Fetching package metadata ........"°C

from skimage.io import 1imread
from skimage.feature import corner_harris, corner_peaks

ModuleNotFoundError Traceback (most recen
t call last)
<ipython-input-4-12197010217e> in <module>()
-=-=> 1 from skimage.io import imread
2 from skimage.feature import corner harris, corner_ peaks

ModuleNotFoundError: No module named 'skimage’




minri] 14 I8~/ dev jprepres/ipython-csel? (mosterd § git push
Counting abjecta: B, done.
Deltes compression wiing up to 4 threads.
Comprefsing objects: 10K (ELAEN), dore.
Beiting objecis: Loo (BOU/B0), 10,54 WEE | M1 .80 KiLrs, doms,
Total §3 (delta §), resed @ (drlta &)
reacte: Resolving drltos: 198 (AE), completed with 1 looel cbjects.
To github_ ocomeinrefipython-coelT git
1obabld 156509858 moater - EOSher
minrk[14: 1 7] dev/ jpy/pres/ ipython-c22l? (mostes) § la

Bryord Flain Python. ipymb otebook Bowics. igymb Frofiling ond Optimiring with IPytFon.ipynd doc_somitize.cfy
Cell Mogics.ipymb lotebook file forsot. ksl EEADE . mi foo. py

Ciaton Disploy Logic.ipwb Hotebook, file forso:. ipynb Third Porty Bich Output. ipymd imoges

gt In the Notebook. Lmeb hotebook file Fforset.py e ipython=-c3elT, tar. g=
LICENGE Plotting in the Motebook. ipynb dets . oiw log. oy

o Ark [ 1587 =dew/ iy presdipython-cael? (acster) § du -hs Plottingh iah the' Motebook. ipymb
e Plotting 1A the Motebook, ipy=b
miark[ L% 8~ dev ippeni I pythen-C3el? (sogter) § 13

Bryond Flain Python, immd Motebook Basics. (g Profiling ond Optislring with IPython.ipymd doc_sonitize.cfg
el Megics. ipysb hotebook file formot. sl EEADE . me foo_ gy

Custom Clsplay Loglic.ipmb fotebook file formst. imnb Taird Porty Kich Outpet. gy L,

Input in the Motebook.ipymh ptebook file forest.py —pyoache__ ipython-Ccael? . wor. gz
LICENSE PMotting in the Notebook, ipynb dato. o Tog. 7y

winrk{1%: 1WW$M§J (moster) § conds (nstoll -y scikit-imoge
Fartohing pu:upl setods1d .

e ] jupyTer ahcawet oy L1des. 1 peali = aitdes Dost wEvar.

™ -

i Myl tigie eeteleiba o B flvim o e command Lirer im o oesgple of -

I*n g1 ffereat wwymc~

B ] ]

H JeyEN BRCPEEET] NOtEGoads. T R

IRy jusy Tl ABCITGETE NOTebeDEl . tpyEl SeUebhoosid . My hiEm

LS = |

& oF you can TpecitTy The noteboelm (it Y 8 conl\p M e, oEwtEVA¥nRE: o=

(] -

ik £. Ehlsnwartips Aotebookn = [wy_porpbook . 1pymE™1=

L =

LEF F lusyTer RSCEeeeTt ORI BYETE.

. L formet (get_export_nases()) )~

i -

I F writer specific woriables-

% writer = Instance! " rhoereirt. e itere. bann drisgrdsan’ ,~

iny halps=="Irstance of the sriter clms ossd to write she ~

L results of the comwersion. =", of low nonesTroe)-

Iw% writer_class = DotbedOb]ecthsme( /! less iter "~

1% I'.lp-""'l. foer Clsae uvasd To wricE The =
remalts &f the oaveriies™ ) . tagloenfigeTree)~

T H nit.r_*.l!““ 5 {"1'.::-:ur'1r-': niicererrt writery ©1les F*'g_-;'.:ﬁ'l_l;ﬂ'_'.q

[E1] RSEwT TTRT " ¢ ECEwEL T UEE T SRR R T

I Eiepuperiter’: ‘mhcomepr: wrifery, pisoet Stooniwricer'}-

writer_factory = Type(ollow_nomesTrus)-

nbcomeert_templotes
k] Ayl

by,

ool py

mod Y

ot teeplotes
rbval . ipyrb

nkrogl , e

rkrwal .y

parallel
profilese. gy
ftEst. et

gty

parailel
profilese. oy
LEST bt

widgrts




@ Safarl File Ecit View History Bookmarks Develop Window Heip B @ FT « WONER Thuis® Q

* 9 il i iocHiroR 8888 i esota L 207 s i EET DS SeTk e LI ek e eang o A O % v

s O% e ww B> M- &

import sys,os,re,time
import urllib

import numpy as np

import ipyparallel as parallel

lconda install scikit-image

Fetching package metadata ........"C

from skimage.io import imread
from skimage.feature import corner_harris, corner_peaks

ModuleNotFoundError Traceback (most recen
t call last)

<ipython-input-4-12197010217e> in <module>()
----> 1 from skimage.io import imread
2 from skimage.feature import corner harris, corner peaks

ModuleNotFoundError: No module named 'skimage'’




@ Safardl Fie Edt View History Bookmarks Develop Window Help O ® T« woxBEE TuiSE 4 =

[ I | ] i a il B T e £ ST Tenk T o (4] f

£
e Lo

ins g DL wa P+ [Fi= M

= - - P F - S = g - ;- -

nutebunks will try to fetch images from Wikimedia Com mons, but since the
networks can be untrustworty, we have bundled some images here.

Outline

e Motivating Example
e Overview
e Tutorial

= Remote Execution
= Multiplexing
= Load-Balancing
= Both!
= Parallel Magics
e Examples

o Exercises




@ Safarl Fle EcR View History Bookmarks Develop Window  Heip @ F « WoAEE TS Q -
e » in a Ioeaept BBEE ~oreToh 1 furm ) i 1DyrE o O u .

ims 8 DL~ iem P~ Fi- &

Interactive (parallel) Python

Installation and dependencies

You will need ipyparallel >= 5.x, and pyzmqg = 13. To use the demo notebooks, you
will also need tornado = 4. | will also make use of numpy and matplotlib. If you have
Canopy or Anaconda, you already have all of these.

Quick one-line install for IPython and its dependencies:
pip install ipyparallel

Or get everything for the tutorial with conda:
conda install anaconda mpidpy

For those who prefer pip or otherwise manual package installation, the following
packages will be used:

ipython ipyparallel numpy matplotlib networkx scikit-image requests beautifulsoup
mpidpy




B 4+ < & B 4 v M B C Markdown & = CellToolbar

Interactive monitoring of a parallel MPI
simulation with the IPython Notebook

In [3]): %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

from IPython.display import display
from ipyparallel import Client, error

cluster = Client(profile="mpi")
view = cluster[:]

view.block = True

e® = cluster[@]
ed@.activate('6')

In [4]): cluster.ids




Saving every 120s  Trusted ¢ |Python3 O

File Edit View Insert Cell Kernel Widgets Help

B + x B 44 v N ERC =

Interactive monitoring of a parallel MPI
simulation with the IPython Notebook

s“matplotlib inline
import numpy as np
import mathlotlib.pyplot as plt

from IPython.display import display
from ipyparallel import Client, error

cluster = Client(profile="mpi")
view = cluster[:]

view.block = True

e® = cluster[0]
ebD.activate('0"')




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B |+ X @B 4+ v NB C| =

Interactive monitoring of a parallel MPI
simulation with the IPython Notebook

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

from IPython.display import display
from ipyparallel import Client, error

cluster = Client(profile="mpi")
view = cluster[:]

view.block = True

e® = cluster[0]
ed.activate('0")

cluster.ids

(o, 1, 2, 3]

Now, we load the MPI libraries into the engine namespaces, and do a simple

g e e



File Edit

View Insert Cell Kernel Widgets Help Trusted

B + X &2 B 2 v N BB C =

Out[23]:

(o, 1, 2, 3]

Now, we load the MPI libraries into the engine namespaces, and do a simple
printing of their MPI rank information to verify that all nodes are operational and
they match our cluster's real capacity.

Here, we are making use of IPython's special $%px cell magic, which marks the
entire cell for parallel execution. This means that the code below will not run in this
notebook's kernel, but instead will be sent to all engines for execution there. In this

way, IPython makes it very natural to control your entire cluster from within the
notebook environment:

# |Python3 O

%%px

# MPI initialization, library imports and sanity checks on all e
from mpid4py import MPI

importi numpy as np

import time

mpi = MPI.COMM_WORLD

bcast = mpi.bcast

barrier = mpi.barrier

rank = mpi.rank

print("MPI rank: %1/%1" % (mpi.rank,mpi.size))

[stdout:0] MPI rank: 0/4




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + <X & B 2« ¥y M B C| =

[stdout:0] MPI rank: 2/4
[stdout:1] MPI rank: 0/4
[stdout:2] MPI rank: 1/4
[stdout:3] MPI rank: 3/4

We write a utility that reorders a list according to the mpi ranks of the engines, since
all gather operations will return data in engine id order, not in MPI rank order. We'll
need this later on when we want to reassemble in IPython data structures coming
from all the engines: IPython will collect the data ordered by engine ID, but our
code creates data structures based on MPI rank, so we need to map from one
indexing scheme to the other. This simple function does the job:

ranks = view['rank']
rank_indices = np.argsort(ranks)

def mpi_order(seq): i
""Return elements of a sequence ordered by MPI rank.

The input sequence 1is assumed to be ordered by engine ID."""
return [seq[x] for x 1in rank_indices]

MPI simulation example




File Edit View Insert Cell Kernel Widgets Help Trusted ] Python3 O

B + ¥ & B 424 vy N B C =

= - = N

# remotely for interactive introspection
global j, Z, nx, nyt
freqgs = np.linspace(0.6, 1, nsteps)
for j in range(nsteps):
nx, ny = 2+j//4, 2+j//2//mpi.size
nyt = mpi.size*ny
Xaxi= np.linspace(xmin, xmax, nx)
Yax = np.linspace(ymin+rank*dy, ymin+(rank+l)*dy, ny, en
X, Y = np.meshgrid(Xax, Yax)
f = freqgs[j]
Z = np.cos(fx(X*x%2 + Y*x2))
# We add a small delay to simulate that o real-world com
# would take much longer, and we ensure all nodes are sy
time.sleep(delay)
# The stop flag can be set remotely via IPython, allowin
# cleanly stopped from the outside
if stop:
break

IPython tools to interactively monitor and plot the
MPI results

We now define a local (to this notebook) plotting function that fetches data from the
engines' global namespace. Once it has retrieved the current state of the relevant




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + < @B 2 v N B C =
e e e
if stop:
break

IPython tools to interactively monitor and plot the
MPI results

We now define a local (to this notebook) plotting function that fetches data from the
engines' global namespace. Once it has retrieved the current state of the relevant
variables, it produces and returns a figure:

from IPython.display 1import clear_output

def plut_cur¥ent_resu1ts(in_place=True):

"""Makes a blocking call to retrieve remote data and display
as a contour plot.

Parameters

in_place : bool
By default it calls clear_output so that new plots repla

to False to allow keeping of all previous outputs.
LI IR




File Edit

View Insert Cell Kernel Widgets Help Trusted

B  + X & B 24 vy NE C| =

msg = 'Simuiation completed!’

tmon = dt.datetime.now() - t©

if plots_in_place and fig is not None:
clear_output(wait=True)
plt.close('all')
display(fig)

print(msg)

print('Monitored for: %s.' % tmon)

Making a simulation object that can be monitored
interactively

| Python3 O

In [18]:

%%px

from threading import Thread
stop = False
nsteps = 100
delay=0.5

# Create a thread wrapper for the simulation. The target must be
# function so we wrap the call to 'simulation' in a simple lambd
simulation_thread = Thread(target = lambda : simulation())

# Now we actually start the simulation

simulation_thread.start()

I

monitor_simulation(refresh=1);




File Edit View Insert Cell Kernel Widgets Help Trusted 4 [P)rthnniﬂ O

B+ X @AB| 42 ¥ (N B|[C | E=
Il pPLuULS_lli_pLace aliu 11 1S3 nuL nune.
clear_output(wait=True)
plt.close('all')
display(fig)
print(msg)
print('Monitored for: %s.' % tmon)

Making a simulation object that can be monitored
interactively

%H%px

from threading import Thread

stop = False

nsteps = 100

delay=0.5

# Create o thread wrapper for the simulation. The target must be
# function so we wrap the call to 'simulation' in a simple lambd
simulation_thread = Thread(target = lambda : simulation())

# Now we actually start the simulation

simulation_thread.start()

In [18]: monitor_simulation(refresh=1);

Mesh: 17 x 36, step 61/100




File Edit View Insert Cell Kernel Widgets Help Trusted 4 lethnn 30

B + x & DB 44 v N B C =
iT True, every new TIgure repLaces tTne Last one, proaucin
animation effect in the notebook. If false, all frames a
in sequence and appended in the output area.

LR IRL

import datetime as dt, time

if not simulation_alive():
plot_current_results(in_place=plots_in_place)
plt.close('all')
print('Simulation has already finished, no monitoring to
return

t® = dt.datetime.now()
fig = None
try:
while simulation_alive():
fig = plot_current_results(in_place=plots_in_place)
plt.close('all') # prevent re-plot of old figures
time.sleep(refresh) # so we don't hammer the server
except (KeyboardInterrupt, error.TimeoutError):
msg = 'Monitoring interrupted, simulation‘is ongoing!'
else:
msg = 'Simulation completed!'
tmon = dt.datetime.now() - t@
if plots_in_place and fig is not None:
clear_output(wait=True)
plt.close('all')
display(fig)




File Edit View Insert Cell Kernel Widgets Help Trusted 4 lethnn 30

+ || X @ B ¥  HB C
41 Liue, EVETY oW 1 1BUNE TEpLALES LIIE LasL ulie, pruuudcin
animation effect in the notebook. If false, all frames a
in sequence and appended in the output area.

LRIl

import datetime as dt, time

if not simulation_alive():
plot_current_results(in_place=plots_in_place)
plt.close('all')
print('Simulation has already finished, no monitoring to
return

t0@ = dt.datetime.now()
fig = None
try:
while simulation_alive():
fig = plot_current_results(in_place=plots_-in_place)
plt.close('all') # prevent re-plot of old figures
time.sleep(refresh) # so we don't hammer the server
except (KeyboardInterrupt, error.TimeoutError):
msg = 'Monitoring interrupted, simulation!is ongoing!'
else:
msg = 'Simulation completed!'
tmon = dt.datetime.now() - t@
if plots_in_place and fig is not None:
clear_output(wait=True)
plt.close('all')
display(fig)




File Edit View Insert Cell Kernel Widgets Help Trusted 4 [Pythnn 30

B+ X B4+ ¥ N NEC|Ee=
R i e e Bl i A S s e A R e Bl A
except (KeyboardInterrupt, error.TimeoutError):
msg = 'Monitoring interrupted, simulation is ongoing!'
else:
msg = 'Simulation completed!'
tmon = dt.datetime.now() - tO
if plots_in_place and fig is not None:
clear_output(wait=True)
plt.close('all')
display(fig)
print(msg)
print('Monitored for: %s.' % tmon)

Making a simulation object that can be monitored
interactively

In [17]: X
m threading import Thread
p = False
eps = 100
ay=0.5
reate a thread wrapper for the simulation. The target must be an
unction so we wrap the call to 'simulation' in o simple lambda:
ulation_thread = Thread(target = lambda : simulation())
ow we actually start the simulation




File Edit View Insert Cell Kernel Widgets Help Trusted 4 [Pythnn 30

B+ X B4+ ¥ N NEC|Ee=
R i e e Bl i A S s e A R e Bl A
except (KeyboardInterrupt, error.TimeoutError):
msg = 'Monitoring interrupted, simulation is ongoing!'
else:
msg = 'Simulation completed!'
tmon = dt.datetime.now() - tO
if plots_in_place and fig is not None:
clear_output(wait=True)
plt.close('all')
display(fig)
print(msg)
print('Monitored for: %s.' % tmon)

Making a simulation object that can be monitored
interactively

In [17]: X
m threading import Thread
p = False
eps = 100
ay=0.5
reate a thread wrapper for the simulation. The target must be an
unction so we wrap the call to 'simulation' in o simple lambda:
ulation_thread = Thread(target = lambda : simulation())
ow we actually start the simulation




File Edit View Insert Cell Kernel Widgets Help Trusted 4 |Py1hnn 30

B + < & DB 4 vy N R C =

Making a simulation object that can be monitored
interactively

B%pXx

from threading import Thread

stop = False

nsteps = 100,

delay=0.5

# Create a thread wrapper for the simulation. The target must be
# function so we wrap the call to 'simulation' in a simple lambd
simulation_thread = Thread(target = lambda : simulation())

# Now we actually start the simulation

simulation_thread.start()

In [18]: monitor_simulation(refresh=1);

Mesh: 17 x 36, step 61/100




File Edit View Insert Cel Kernel Widgets Help Trusted | Python 3 O

B+ X & B 4 v MR C e

simulation_thread.start()

In [18]: monitor_simulation(refresh=1);

Mesh: 17 x 36, step 61/100

e —

Monitoring interrupted, simulation is ongoing!
Monitored for: 0:00:29.828907.




File Edit View Insert Cel Kernel Widgets Help Trusted | Python 3 O

B+ X & B 4 v MR C e

simulation_thread.start()

In [18]: monitor_simulation(refresh=1);

Mesh: 17 x 36, step 61/100

e —

Monitoring interrupted, simulation is ongoing!
Monitored for: 0:00:29.828907.




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 @

B + &2 B 4 v N BB C &=

In [*]: monitor_simulation(refresh=1);

If you execute the following cell before the MPI code is finished running, it will stop
the simulation at that point, which you can verify by calling the monitoring again:




File Edit View Insert Cel Kernel Widgets Help Trusted | Python 3 @

B + X & B 4 v M B C =

In [*]: monitor_simulation(refresh=1);

Mesh: 12 x 28, step 44/100

If you execute the following cell before the MPI code is finished running, it will stop
the simulation at that point, which you can verify by calling the monitoring again:




Interrupting kernel  Trusted Python3 @
File Edit View Insert Ce Kernel Widgets Help

R+ X A B+ ¥+ MR C| =

In [*]: monitor_simulation(refresh=1);

Mesh: 12 x 28, step 44/100

If you execute the following cell before the MPI code is finished running, it will stop

[ 1= ik ALILIT] = elajln wall ] - = » = ile Bl—mAgie]giiee 1) S0




Interrupting kernel  Trusted | Python3 O

File Edit View Insert Cell Kernel Widgets Help

B+ x @B 4+ ¢ HEC =

—_——— e ———— —

TypeError Traceback (most recen
t call last)

<ipython-input-31-b619ab205d86> in <module>()

----> 1 monitor simulation(refresh=1);

ﬁlpythnn*input-zﬂ-ae2365&144ld} in monitor simulation(refresh,
plots in place]

29 try:

30 while simulation_alive():
-==> 31 fig = plot_current_results(in_place=plots_i
n place)

32 plt.close('all’') # prevent re-plot of old £
igures

33 time.sleep(refresh) # so we don't hammer th
e server too fast

<ipython-input-27-b77£££73a570> in plot current results(in plac
e)

24 return ax.figure

25
-——=> 26 nx, nyt, j, nsteps = view.pull(['nx', ‘nyt’', 'j', °




File Edit View Insert Cell Kernel Widgets Help Trusted 4 [P;.rlhnn.?: O

B + = & B 4 v N B C =

TypeError: AsyncResults with a single result are not iterable.

If you execute the following cell before the MPI code is finished running, it will stop
the simulation at that point, which you can verify by calling the monitoring again:

In [32]: view['stop'] = True

K
In [20]: %px® from IPython.parallel import bind_kernel; bind_kernel()

Out[20]: <AsyncResult: execute>

In [21]: %px@ %gtconsole

Out[21]: <AsyncResult: execute>

In [ ]:




File Edit

View Insert Cell Kernel Widgets Help Trusted

B + <X & B 22« 4% N B C =

In [32]:

In [33]:

Out[33]):

In [34]:

Out[34]:

result are not iterable.”)
383 try:
384 rlist = self.get(()

TypeError: AsyncResults with a single result are not iterable.

If you execute the following cell before the MPI code is finished running, it will stop
the simulation at that point, which you can verify by calling the monitoring again:

view['stop'] = True

%px@ from ipyparallel +import bind_kernel; bind_kernel()

<AsyncResult: execute>

%px0@ %gtconsole

<AsyncResult: execute>

| Python3 O

In [ )z




@ python Fie Edt View Kernel Window Help O T « woxBE Tuis2d Q

If the raised exception doesn't match the stored exception, we get a failure

[ ] =] lmﬂ!wi

ipdb> bt
> <ipython-
input-16-05¢c9758a9c21> (1) <module>(

)
--==> 1 1/6

ipdb> exit

In [18]: |
RuntimeError Traceback (most recent call last)

<ipython-input-3-32dccic70ade> in <module>()
1 # NBVAL_RAISES_EXCEPTION
2 print("If the raised exception doesn't match the stored exception, we get a failure"
----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

In [2]: # NBVAL_IGNORE_OUTPUT

- wm - . S 8



@ python Fie Edt View Kernel Window Help O T « woxBE Tuis2d Q

If the raised exception doesn't match the stored exception, we get a failure

[ ] =] lmﬂcwi

ipdb> bt
> <ipython-
input-16-05¢c9758a9c21>(1) <module>(

)
--==> 1 1/6

ipdb> exit

In [18]: |
RuntimeError Traceback (most recent call last)

<ipython-input-3-32dccic70ade> in <module>()
1 # NBVAL_RAISES_EXCEPTION
2 print("If the raised exception doesn't match the stored exception, we get a failure"
----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

In [2]: # NBVAL_IGNORE_OUTPUT

- wm - . S 8



8 Safarl Fle Edt View History Bookmarks Develop Window Help HO® T « WOxEF Thais2d Q
® @ < i a i aherst BEHE o rSoca s, AT el San s Mo 0nrg R IEMEL gy o 9. 6

i g~ - wa ORF Irs= W

result are not iterable.")
383 try:
384 rlist = self.get(()

TypeError: AsyncResults with a single result are not iterable.

If you execute the following cell before the MPI code is finished running, it will stop
the simulation at that point, which you can verify by calling the monitoring again:

In [32]: view['stop'] = True

In [33]: %px@ from ipyparallel +import bind_kernel; bind_kernel()

Out[33]: <AsyncResult: execute>

In [34]: %px@ %qtconsole

Out[34]: <AsyncResult: execute>

In[ ]):




File Edit View Insert Cell Kernel Widgets Help Trusted ’ Python3 O

B + X a B 4+ % HNA C e

In [3]: 1import sys,os,re,time
import urllib

import numpy as np

import -ipyparallel as parallel

lconda install scikit-image

Fetching package metadat@a ........"C

from skimage.io import imread
from skimage.feature import corner_harris, corner_peaks

ModuleNotFoundError Traceback (most recen
t call last)
<ipython-input-4-12197010217e> in <module>()
~-=-> 1 from skimage.io import imread
2 from skimage.feature import corner harris, corner peaks

ModuleNotFoundError: No module named 'skimage'’




8 ITerm2 &

conda . exceptlons. (ondofuntisetrror: untise error: Buntisefrror: ntiee error: (ould ot open *Jfisersfwinriv/condoplge/sol ki t-inoge-@. 17, 3-nplifpySe_1.tor. bl .port® for eriting (MTTFSlonnectionPool{nost=" binstor-clo-pochopes-prod. 53 . onoronoss . com' , port=41): Read
timed out. ).
minrk] 15 2 = dew/ oy pret /i python-Ciel 7 (acster) § oondd {stoll -y scikit-imoge
Fetching pockogs setodots ......
Solving pochogs spetiflcations: .....
Pockage plon for installotion in essiromsest Users/sincic/conda:
The following pockages will be downlooded:

| burild

sciinit-1moge-9.12.3 np iy _1

following NEN pocicoges will be INETRLLED:

ipbg! - o - gt

Libtife; £4.0.6-7 conde-Forge

olefile: B.-py36 R conde- Forge

pilliom: & 0. 0-py3_1 eoris- Forge
sciiit-imoge: 9.1 . 3-rplidpydE_ 1 conds-forge

Fetching pockoges ...
Briclt-lnoge-8 X |sewwes | ETA: @oil:al 16855 kA




8 Safari File Edt View History Bookmarks Develop Window Heip O 8 T« wosEE ThisZd 4

] #F . ¥ AL 3 - - i S I s, WE

cong. esceprions. Conaolicre Lestrror: Banties srvor; Sanissd rror: e error; Doole wot open '-Mﬂwm'mnt-w.u.ﬂ-mw.w szl port ior Ly EWMTWTEMIELHE'ET{WWW.H.M.E'H-'1 porT=tiil: g
bl k. ).

w15 S e ety then-cSElT (EEster) ¥ oondo Imatgll -y eciidt-imope
whving pocEspe wpecifioctioen

Pochage plon for treesllosipn in swirpee SO fieieckcondo

e follomlsg poceages wll] Do dowslonied:

pOCEooe | Bnlo

peliis - Lempe 9. 12 ) i a1 iy 1 108 M corae-Torgs

foitoming W% pocespes will De DRETRILED;

g - o - Porpe
TERLH; 4 86T conia-Forge
asef e L= ] - farge
pillome &0 oy I £~ forgs
sciicit-(mmge: @10 3-mpllleyde | Conds-forgs

Feteming pockoges ...

C T RER T N W I e Ss OO L




@ Safari File Edt View History Bookmarks Develop Window  Help DO 0 T « WwoxBE ™Tuis2s Q

® 9 il i i BB o L S e e PR T R S TR ] Sl " D h I

15 G L~ we P> 3w
R ———— .

import sys,os,re,time
import urllib

import numpy as np

import ipyparallel as parallel

lconda install scikit-image

Fetching package metadata ........"C

from skimage.io import imread
from skimage.feature import corner_harris, corner_peaks

ModuleNotFoundError Traceback (most recen
t call last)

<ipython-input-4-12197010217e> in <module>()
----> 1 from skimage.io import imread
2 from skimage.feature import corner harris, corner peaks

ModuleNotFoundError: No module named '‘skimage'’




8 Safari Fie Edt View History Bookmarks Develop Window Help

o
ey
m
m———

S0 @ FT « WXEE Tais2d Q
ICaeRt BRED T rooat parEd H P AT R DM

0 &
G OLv we O~ DSw

result are not iterable.”)
383 try:

384 rlist = self.get(()

TypeError: AsyncResults with a single result are not iterable.

If you execute the following cell before the MPI code is finished running, it will stop
the simulation at that point, which you can verify by calling the monitoring again:

In [32]: wview['stop'] = True

In [33]: %px@ from ipyparallel import bind_kernel; bind_kernel()

Out[33]: <AsyncResult: execute>

In [34]: %px0 %qtconsole

Out[34]: <AsyncResult: execute>

In [ ):




File Edit View Insert Cell Kernel Widgets Help Trusted ’ Python3 O

B 4+ < & 0B 2 4 N B C =

plots in place)

29 try:

30 while simulation_alive():
-—=> 31 fig = plot current results(in place=plots i
n place)

32 plt.close( 'all’') # prevent re-plot of old £
igures

33 time.sleep(refresh) # so we don't hammer th
e server too fast

<ipython-input-27-b77ff£73a570> in plot current results(in plac
e)

24 return ax.figqure

25 "
===> 26 nx, nyt, j, nsteps = view.pull(['nx', 'nyt', 'j',
nsteps'], targets=0)

27 fig, ax = plt.subplots()

28 ax.contourf(2)

/Users/minrk/conda/lib/python3.6/site-packages/ipyparallel/clie
nt/asyncresult.py in iter (self)

380 def iter (self):

381 if self. single result:
--> 382 raise TypeError("AsyncResults with a single
result are not iterable.")

383 try:

384 rlist = self.get(0)




File Edit View Insert Cell Kernel Widgets Help Trusted ’ Python3 O

B+ << & B 42« vy N B C| =

TypeError Traceback (most recen
t call last)

<ipython-input-31-b619ab205d86> in <module>()

----> 1 monitor_ simulation(refresh=1);

<ipython-input-29-ae2365el441d> in monitor simulation(refresh,
plots in place)
29 try:

30 while simulation alive():
-—=> 31 fig = plot_current_results(in_place=plots_i
n_place)

32 plt.close( 'all’' ) # prevent re-plot of old £
igures

33 time.sleep(refresh) # so we don't hammer th
e server too fast

<ipython-input-27-b77£££73a570> in plot current results(in plac
e)

24 return ax.figure

25
-==> 26 nx, nyt, j, nsteps = view.pull(['nx’', 'nyt', "3°', '
nsteps ], targets=0)




File Edit View Insert Cell Kernel Widgets Help Trusted ] Python3 O

+ X 4B »+ ¥ N B C
Hi_pLave .« wuuL
By default it calls clear_output so that new plots replas

to False to allow keeping of all previous outputs.
mnn

# We moke a blocking call to load the remote data from the s
# variables we can read from the engine nomespaces
#view.apply_sync(load_simulation_globals)
# And now we can use the view to read these variables from a
# concatenate all of them into single arrays for local plott:
try:

Z = np.concatenate(mpi_order(view['Z']))
except ValueError:

print("dimension mismatch in Z, not plotting")

ax = plt.gca()

return ax.figure

nx, nyt, j, nsteps = view.pull(['nx', 'nyt', 'j', 'nsteps'],
fig, ax = plt.subplots()
ax.contourf(Z)
ax.set_title('Mesh: %i x %i, step %i/%1' % (nx, nyt, j+l1, ns
plt.axis('off')
# We clear the notebook output before plotting this if in-pl
if in_place:

clear_output(wait=True)
display(fig)
return fig




@ Safarl Fie Edt View History Bookmarks Develop Window  Help 2O @ FT « WNEF Thuis2d 4

e @9 il [ a lecaert BEBE o esoe 1 e ) prrenes WA T e W DS L e o [ 4] u W

Interactive monitoring of a parallel MPI
simulation with the IPython Notebook

%Zmatplotlib inline
import numpy as np
import matplotlib.pyplot as plt

from IPython.display import display
from ipyparallel import Client, error

cluster = Client(profile="mpi")
view = cluster[:]

view.block = True

e® = cluster[@]
e@.activate('0")

cluster.ids



File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 O

B + < @& B 424 vy N B C =

In [3]: 1import sys,os,re,time
import urllib

import numpy as np

import 1ipyparallel as parallel

lconda install scikit-image

Fetching package metadata ........"C

from skimage.io import imread
from skimage.feature import corner_harris, corner_peaks

ModuleNotFoundError Traceback (most recen
t call last)
<ipython-input-4-12197010217e> in <module>()
~-==> 1 from skimage.io import imread
2 from skimage.feature import corner harris, corner peaks

ModuleNotFoundError: No module named '‘skimage'’




& iTerm2 = ! v Profles Toc o0 ® T
[ ] P LA T =5
Condd  Exieptlon  (ondaRumtiesbrror: Eowriee ool ntiessfrror: RatTLee Ermror: {l';'-::'ﬂ [ <) W - o] '.-'1,1trsﬁ1w"{{f-ﬂw'p¢g:.-'s-c.h'l.'r.- Luﬂ'a.u.}‘rﬂ:l.l!ﬂl'r!'.ﬁ-_l.'[-ﬂ-'.ﬂu.m- o LT {ml:‘m_!lﬁmﬂ!-{m:i'Difﬁ-lﬂf'iﬁﬁ‘?xw}‘?‘ﬁ.lﬁ.mﬁ.ﬂﬂ.'. port=843): Raod
timed oty

minrk] 15 2= dew/ oy pret/ipython-Ciel 7 (editer) § onde inatoll -y scikit-imoge
Fetching pocioge metodots ......
lving pocikoge specifications: .....

Fockoge plon for imstallotion (n evviroment Asersdeinricsconda:
The following pockages will be downlooded:

poCage I build

scikit-image-9.12.3 el LEEy e 1
following SNEN pocioge: will be INSTRLLED:

- H - coruhl - Forge
LibtiFr; £.0.6=7 conda-Forge
olefile; #od-pyin R conde- Forge
et L L &0 B-p ¥ 0 ol - g
scikit-image: §.1Z.3-mpliZpy36_1 conds-forgs

Fetching pocikoges ...
Brialt-tmape-d L | SIS EI LI E IR L AR EES | ETA: @:Rl:48 B48_36 kLS




8 Safari File Eda View History Bookmarks Develop Window Help DO 8 T« WOXEEF Tais2s G =
& @ il i e RO o R 1 ST T T o [ 4 ] H [y

ims g DL~ ww P+ IFi~ M

Interactive (parallel) Python

Installation and dependencies

You will need ipyparallel >= 5.x, and pyzmqg = 13. To use the demo notebooks, you
will also need tornado = 4. | will also make use of numpy and matplotlib. If you have
Canopy or Anaconda, you already have all of these.

Quick one-line install for IPython and its dependencies:

pip install ipyparallel
Or get everything for the tutorial with conda:
conda install anaconda mpidpy

For those who prefer pip or otherwise manual package installation, the following
packages will be used:

ipython ipyparallel numpy matplotlib networkx scikit-image requests beautifulsoup
mpidpy



DO @ F 4

wWOKBE ThulS2s Q =

e T upyieong

g= L~ wew P~ IFi~= M

Motivating example: Parallel image processing with
scikit-image

To get a sense of what IPython.parallel might be used for, we start with an example of some batch processing

of image files with scikit-image. We will revisit pieces of this example as we learn about the different
components of IPython.

You can download images with this notebook, or get a zip here, or find any images on your computer.

import sys

import requests

from zipfile import ZipFile, BadZipFile
from ipywidgets import IntProgress

from IPython.display import display

images = os.path.join('..', 'images')
images_url = "https://s3.amazonaws.com/ipython-parallel-data/images.zip"

def download_images():
r = requests.get(images_url, stream=True)
content_length = r.headers.get('content-length')
print("Downloading images")
sys.stdout. flush()
p = IntProgress(max=content_length)
display(p)
with open(images_zip, 'wb') as f:




— Jupyter

) e

Files Running Clusters

Select items to perform actions on them.

ﬂ' Bavend Plain Bwvihon iovnb
el et Rl et - ¥ s 1] (= -I e

& Custom Display Logic.ipynb

PRGNS B RIRRY W} P St T, S R
-n MOLIE | 2 NNOUEDOOR.IDYT

. L

Contml Pans

Upiocad

Logout

Mew =

~u
s




create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create

i, L

mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode

100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644

e wrp e
DAl a o, LI L 2 5

parﬁllElfexamplEBfgutenbergfhurgeaanhusterhrnwn txt
parallel/examples/gutenberg/carroll-alice.txt
parallel/examples/gqutenberg/chesterton-ball.txt
parallel /examples/gutenberg/chesterton-brown. txt
parallel/examples/gutenberg/chesterton-thursday.txt
parallel/examples/qutenberqg/edgeworth-parents.txt
parallel/examples/gutenberg/melville-moby dick.txt
parallel/examples/gutenberg/milton-paradise.txt
parallel/examples/gutenberg/shakespeare-caesar.txt
parallel/examples/gqutenberg/shakespeare-hamlet.txt
parallel/examples/gutenberg/shakespeare-macbeth.txt
parallel/examples/gutenberg/whitman-leaves.txt
parallel/examples/memmap.ipynb
parallel/examples/wikipedia/Wikipedia.ipynb
parallel /examples/wikipedia/eventful dict.py
parallel/examples/wikipedia/eventful graph.py

g T L 'rl =

L] ST e = - -

parallel/examples/wikipedia/widget forcedirectedgraph.ijs
parallel/examples/wikipedia/widget_forcedirectedgraph.py

"parallel/exercises/Monte Carlo \317\200.ipynb"
parallel/exercises/Remote Iteration.ipynb
parallel/figs/allconnections.png
parallel/figs/darts.png
parallel/figs/latency.png
parallel/figs/latency2.png
parallel/figs/map.png
parallel/figs/throughputl.png
parallel/figs/throughput2.png
parallel/figs/wideView.png
parallel/hints.py

parallel/images common.py
parallel/soln/matmul.py
parallel/soln/mcpi.py
parallel/soln/nestedloop.py
parnllalflﬂlnfngrnms.py
parallel/soln/remote_iter.py
parallel/soln/remote iter hint.py
parallel/tutorial/All Together.ipynb
parallel/tutorial /Load-Balancing.ipynb
parallel/tutorial /Multiplexing.ipynb
parallel/tutorial /Parallel Magics.ipynb
parallel/tutorial /Remote Execution.ipynb
parallel/tutorial /myscript.py

jovyan@7c2£72£3£fd18:~/work/ipython-csel7$




& Satan
[ =1

ol W

Fle Edd YVew Hstory Bookmarks Develop

Figita

Files

[ N [ e ] Frpe
Hunning Clusters

b | Ll

Select items to perform actions on them.

D @ b b

-~ N

mages

|
1]
=
i k]
(an]

P [
WHoOets

= -
T | rd ] e s
Bey 1 Plain Python.ipynb

asics.ipynb

B L ol Fla frrrmal e
WwolEDoDK e Tormmat. IovnoD

Ty b

F

et

L o

Y

-
.‘..IJI.‘I_ —_—

b d

s f




cl - oo Bl gah
== 3 ‘el MVTT LIl

create mode 100644 parallel/hints.py

create mode 100644 parallel/images common.py

create mode 100644 parallel/soln/matmul.py

create mode 100644 parallel/soln/mcpi.py

create mode 100644 parallel/soln/nestedloop.py

create mode 100644 parallel/soln/ngrams.py

create mode 100644 parallel/soln/remote iter.py

create mode 100644 parallel/soln/remote_iter_hint.py

create mode 100644 parallel/tutorial/All Together.ipynb
create mode 100644 parallel/tutorial/Load-Balancing.ipynb
create mode 100644 parallel/tutorial/Multiplexing.ipynb
create mode 100644 parallel/tutorial/Parallel Magics.ipynb
create mode 100644 parallel/tutorial/Remote Execution.ipynb
create mode 100644 parallel/tutorial/myscript.py
jovyan@7c2£72£3£fd18:~/work/ipython-csel7$§ ipcluster start
bash: ipcluster: command not found
jovyan@lc2£72£3£d418:~/work/ipython-csel?$ pip install ipyparallel
Collecting ipyparallel

Downloading i allel-6.0.2-py2.py3-none-any.whl (190kB)
100% I“I 194kB 2.1MB/s

Regquirement already satisfied (use --upgrade to upgrade): decorator in /fopt/conda/lib/python3.5/site-packages (from ipyparallel)
Requirement already satisfied (use --upgrade to upgrade): ipykernel in fopt/conda/lib/python3.5/site-packages (from ipyparallel)
Requirement already satisfied (use --upgrade to upgrade): ipython>=4 in /opt/conda/lib/python3.5/site-packages (from ipyparallel)
Requirement already satisfied (use --upgrade to upgrade): python-dateutil>=2.1 in /opt/conda/lib/python3.5/site-packages (from ipyp
arallel)

Requirement already satisfied (use --upgrade to upgrade): tornado>=4 in /opt/conda/lib/python3.5/site-packages (from ipyparallel)
Requirement already satisfied (use --upgrade to upgrade): ipython-genutils in /opt/conda/lib/python3.5/site-packages (from ipyparal
lel)

Requirement already satisfied (use --upgrade to upgrade): pyzmg>=13 in /opt/conda/lib/python3.5/site-packages (from ipyparallel)
Requirement already satisfied (use --upgrade to upgrade): jupyter-client in /opt/conda/lib/python3.5/site-packages (from ipyparalle
1)

Requirement already satisfied (use --upgrade to upgrade): six>=1.5 in /opt/conda/lib/python3.5/site-packages (from python-dateutil>
=2.l->ipyparallel)

Installing collected packages: ipyparallel

Successfully installed ipyparallel-6.0.2

You are using pip version B8.1.1, however version 9.0.1 is available.

You should consider upgrading via the "pip install --upgrade pip command.

jovyan€7c2£72£3£fd18:~/work/ipython-csel7$ ipcluster start -n 4

2017-03-02 20:24:47.006 [IPClusterStart] Starting ipcluster with [daemon=False]

2017-03-02 20:24:47.007 [IPClusterStart) Creating pid file: /home/jovyan/.ipython/profile default/pid/ipcluster.pid

2017-03-02 20:24:47.007 [IPClusterStart] Starting Controller with LocalControllerLauncher

2017-03-02 20:24:48.011 [IPClusterStart] Starting 4 Engines with LocalEngineSetLauncher

Loy Ld = =17 L3




. Jupyter Parallel image processing (unsaved changes)

-

- 1L )
md F LA g "L =1 .rI:"hF'—ﬁ —I AR o
W W EY o Tl L £ 2 4|

= o+ A B 4+ ¢ M B C Markdown + E CellToolbar
pictures = [ ]
for directory, subdirs, files in os.walk(pictures dir):
for fname in files:
if fname.lower().endswith(( .Jpg’', "-png’})):
pictures.append(os.path.join(directory, fname))

oo

pictures[:5]

1t[{9]: ['.-./images/portrait/Portrait_d%27homme.png’,
'«./images/portrait/Portrait AB.jpg’,
‘«+/images/portrait/Ledoux portrait.jpg’,
'..fimages/portrait/PolPlancon Portrait.jpg’,
".«/images/portrait/Richard Portrait.jpg’]

Let's test our function locally, to see what it does.

=

n [10): for p im pictures[:3]:
img, corners = find corners(p)
plot corners(img, corners)

-ﬂ Controd Pamel

-
=L ey
¥

Logout

T )
3 AN




. Jupyter Parallel image processing (unsaved changes)

File —dit rsert Ce Herne Healp
B O+ = A6 » 4+ N B C Madkdown + E CellToolbar

Let's test our function locally, to see what it does.

In [10): for p imn pictures([:3]:
img, corners = find corners(p)
plot corners(img, corners)

=

Contnol Pans

[ ¥]

Logout

wthean 4

Now in parallel

First, we connect our parallel Client

In | rc = parallel.Client()

.IF.




. Jupyter Parallel image processing (unsaved changes) .  ConrolPanel  Logout

¥ ]

- — - -
- = 44 .y i ok ™a S W .
File o & i H e e

e

B O+ = & B 4 ¢ N B C Markdown + E CellToolbar

Now in parallel

First, we connect our parallel Client

In[ J: rCc = pgrallel.cli&nt{}
all engines = rcf[:]
view = rc.load balanced view()

Then we initialize the namespace on all of the engines with imports

In [ ]J: %px import os; os.chdir("{os.getcwd()}")

in [ ]J: %ipx

im"""".'li 'in'.l'in




. Jupyter Parallel image processing (unsaved changes) #  ConwoiPanel  Logout

| '_—_i- i T =l e d;.__"_ﬁ T .
; LAY ¥ Y il | 3 - ; 1

| i

[¥]

ke A

B + x @ D 4+ 4 N B C Code s & CellToolbar
for directory, subdirs, files in os.walk(pictures dir):
for fname in files:
if fname.lower().endswith(('.jpg’', '.png')):
pictures.append(os.path.join(directory, fname))

pictures|:5])

Jout[%]): [ ../images/portrait/Portrait d%27homme.pnqg’,
'../images/portrait/Portrait AB.jpg’,
".«/1mages/portrait/Ledoux portrait.jpg .
‘../images/portrait/PolPlancon_Portrait.jpg’,
"../images/portrait/Richard Portrait.jpg’']

Let's test our function locally, to see what it does.

In [10): for p in pictures|:d]:
img, corners = find corners(p)
plot corners(img, corners)

-




. Jupyter Parallel image processing (unsaved changes)

= =
=il =1t

= |||

In [9]):

In [10]:

)

r

View nsert Ce Kerne Help

B 4 4 M B C Code + E Cellfoolbar
HLUH_PvLHﬂ4¢‘+mﬂ; ek laC e & p DW= s oo
fig = plt.gcf()
pngdata = print figqure(fig)
plt.close(fig)
return pngdata

import os
pictures dir = os.path.join('..', 'images’', 'portrait’)
plctures = [

for directory, subdirs, files in os.walk(pictures dir):
for fname in files:
1f fname.lower().endswith(( -jpg , -png )):
pictures.append(os.path.join(directory, fname))

pictures|:5]

['../images/portrait/Portrait d%27homme.png’,
'../images/portrait/Portrait AB.jpg’,
‘../fimages/portrait/Ledoux portrait.jpg’,
"../images/portrait/PolPlancon Fortrait.ijpg’,
‘««/1mages/portrait/Richard Portrait.jpg’]

Let's test our function locally, to see what it does.

for p in pictures[:3]:
img, corners = find corners(p)
plot _corners(img, corners)

-

IFI Control Panel




. Jupyter Parallel image processing (unsaved changes)

= — 1 -5 -
- i | =1 LA T [ i Tt ] b
| L Wiy -~ L - e : ¥

= + 3 A 0 ~> ¥ M B C Code _ = CellToolbar

Let's test our function locally, to see what it does.

In [10]: for p in pictures[:d]:
img, corners = find corners(p)
plot corners(img, corners)

F Control Panal

L

 d

-
]
W

Logout

e oy

Now in parallel

First, we connect our parallel Client

In [ ]: rc = parallel.Client()

-
b




. Jupyter Parallel image processing (unsaved changes) ®  ConvoiPanel  Logout

: — = N i T N 2
Kerna lelp ¢ | Python 3

il
+
a9
Ly
r
>
€

M B C Code N B  CellToolbar

Now in parallel

First, we connect our parallel Client

In [l1]): rc = parallel.Client()
all engines = rcf:)
view = rc.load balanced view()

Then we initialize the namespace on all of the engines with imports
In [12]: %pik import os; os.chdir("{os.getcwd()}")

In |

(1]

tipx
imatplotlib inline
import matplotlib.pyplot as plt

from skimage.io import imread
from skimage.feature import corner_harris, corner_ peaks




| jupyter Parallel Image processing (unsaved changes) @ Control Panel Logout

— = CellToolbar

Now In parallel

First, we connect our parallel Client

In [11]: rc = parallel.Client()
all engines = rc[:]
view = rc.load_balanced view()

Then we initialize the namespace on all of the engines with imports
In [12]: %px import os; os.chdir("{os.getcwdy )}")

In [ ]J: %%px




_ jupyter Parallel image processing (unsaved changes)

Hile Edit View nsert e rerne| Help

B + = @ B 4+ ¥ H B C Code
. IS EEEESSL

= CellToolbar

Now in parallel

First, we connect our parallel Client

In [11]: rc = parallel.Client()
all engines = rc[:]
view = rc.load balanced view()

Then we initialize the namespace on all of the engines with imports
In [*]: %px import os; os.chdir("{cos.getcwd()}")

In [ ): %R%ipx
imatplotlib inline
import matplotlib.pyplot as plt

from skimage.io import imread
from skimage.feature import corner harris, corner_ peaks

A

Control Panel Logout

r_'p.:llt:.m_L‘-h.m

3 O




j Ju ID}!'[E‘F Parallel image DFE}EESSiﬂg (unsaved changes) ? Control Panel  Logout
File Edit View Insert Ce Kernel Help # Python3 O

B 4+ = & 0B 4 v N B C Code s B CellToolbar

In [14]: %%px
imatplotlib inline
import matplotlib.pyplot as plt

from skimage.io import imread
from skimage.feature import corner harris, corner_ peaks

and make sure some functions are defined everywhere (this is only necessary for the contours_in_url case)

In [15]: all engines.push(dict(
plot corners=plot corners,
find corners=find corners,

) )

Out[15]: <AsyncResult: _push>
Now we can iterate through all of our pictures, and detect and display any corners we find

In [ ]: from IPython.display import display, Image

amr = view.map async(get_corners_image, pictures[:20], ordered=False)
for pngdata in amr:
display(Image(data=pngdata))




'_: jupyter Parallel image processing (unsaved changes) @ ControlPanel  Logout
File Edit View Insert Ce Kernel Help # Python3 @

B 4+ = & 0B 4 v N B C Code s B CellToolbar

from skimage.feature import corner harris, corner peaks

and make sure some functions are defined everywhere (this is only necessary for the contours_in_url case)

In [15]: all engines.push(dict(
plot corners=plot_corners,
find _corners=find corners,
))

L7

I

F

Ln
[a—

<AsyncResult: push>

Now we can iterate through all of our pictures, and detect and display any corners we find

In [*]: from IPython.display import display, Image

amr = view.map async(get_corners_image, pictures|:20], ordered=False)
for pngdata in amr:
display(Image(data=pngdata))

In [ ]:




__Jupyter Parallel image processing (unsaved changes) . ControlPanel  Logout
File Edit View nsert Ce Kernel Help # Python3 @

B + = @ B 4+ v W B C Code s B CellToolbar




_ Jupyter Parallel image processing (unsaved changes) @ ControlPanel  Logout

I.h
Tl
L
‘.-'
L1

nsert Ce Kernel Help # | Python3 O

B 4+ = & 0B 4 v N B C Code s B CellToolbar




: Ju p}"ter Parallel image DFGCESSiﬁg (unsaved changes) ﬂ Control Panel  Logout
File Edit View Insert Cel Kernel Help # Python3 O

B 4+ = & 0B 4+ v N B C Code s B CellToolbar

In [17]: rc.become dask( )|,

ImportError Traceback (most recent call last)
<ipython-input-17-518al3c8cdB84> in <module>()
--==> 1 rc.become dask

/opt/conda/lib/python3.5/site-packages/ipyparallel/client/client.py in become dask(self, ta
rgets, port, nanny, scheduler args, **worker args)

1302 A dask.distributedad.Executor connected to the dask cluster.
1303 i
-> 1304 import
1305
1306

ImportError:




: Ju p}"ter Parallel image DFGCESSiﬁg (unsaved changes) ﬂ Control Panel  Logout
File Edit View Insert Cel Kernel Help # Python3 O

B 4+ = & 0B 4+ v N B C Code s B CellToolbar

In [17]: rc.become dask( )|,

ImportError Traceback (most recent call last)
<ipython-input-17-518al3c8cdB84> in <module>()
--==> 1 rc.become dask

/opt/conda/lib/python3.5/site-packages/ipyparallel/client/client.py in become dask(self, ta
rgets, port, nanny, scheduler args, **worker args)

1302 A dask.distributedad.Executor connected to the dask cluster.
1303 i
-> 1304 import
1305
1306

ImportError:




:i@_.!? < WOXEE Thu1530 Q -

@ (Term2 Shel Edit View Profies Toobeh Window Help
T o - B oW o w1

Sotving poceope Epeciiicemioms: ...oiwii=n
Pocwage pian for iattallotion L e romeat et federioonds
The fplloeelad powrweaids ol L] B S| grsied !

= 5= i bwilo
-t

pclidit-immge—# 11 3 } il L2y 56,1

Thee ol losr=g M pocicspes will be TRSTALLED:

Pt =4

B =K 4. 0. T

il e g B E S B it @

pi 1 Lo i l-pyd 0
scimit-{mage- #. L8 3-mgilimel |

Felomng pockages

‘l-:'l."t.:'l#—.l“l . . - g = - - - s — 1= — = E .- — - . — .- . .- - .- - - - e - T - I T Ifﬂ‘l u_ﬁ TRy
Irtracting polheges

E T TN

Limcing poCioge ..

|.' ‘lt! ]|_ s R pr=r s - .. 3

iare] 140 e oy pre ) \pythoee- cagl” (maateed 4[]




:i@_.!? < WOXEE Thu1530 Q -

@ (Term2 Shel Edit View Profies Toobeh Window Help
T o - B oW o w1

Sotving poceope Epeciiicemioms: ...oiwii=n
Pocwage pian for iattallotion L e romeat et federioonds
The fplloeelad powrweaids ol L] B S| grsied !

= 5= i bwilo
-t

pclidit-immge—# 11 3 } il L2y 56,1

Thee ol losr=g M pocicspes will be TRSTALLED:

Pt =4

B =K 4. 0. T

il e g B E S B it @

pi 1 Lo i l-pyd 0
scimit-{mage- #. L8 3-mgilimel |

Felomng pockages

‘l-:'l."t.:'l#—.l“l . . - g = - - - s — 1= — = E .- — - . — .- . .- - .- - - - e - T - I T Ifﬂ‘l u_ﬁ TRy
Irtracting polheges

E T TN

Limcing poCioge ..

|.' ‘lt! ]|_ s R pr=r s - .. 3

iare] 140 e oy pre ) \pythoee- cagl” (maateed 4[]




B Satarl File Ect Vew History Bookmarks Develop Window Help a0 B = KOxBE Thuis3dd G

3 @ a® ceal T eyl org it proce 2 4 ]
L
2= DLv e B IFY =
W o 1] Y L o T arrywa it Paraiel ag Eaparsion Pl Lalos=y ] ew Lo ] Pl ey L g ey, AT Lo Prrgaa o fd ulFl }
B + xx @ B 4 v N B C Code :t B CellToolbar

In [17]:

ImportError Traceback (most recent call last)
<ipython-input-17-518al3c8cdB84> in <module>()
--==> 1 rc.become dask

/opt/conda/lib/python3.5/site-packages/ipyparallel/client/client.py in become dask(self, ta
rgets, port, nanny, scheduler args, **worker args)

1302 A dask.distributed.Executor connected to the dask cluster.
1303 Py
-> 1304 import
1305
1306

ImpOortError:




8 Safarl File Edt View History Bookmarks Develoo Window Help

@O ® T+ WwxBE TS0 Q =

e @9 ] a
a M

eatnopt: BREA o et Mok el K e L Dfor s

g= DL~ wew F~ [Fi= M

# 1. Runninag hizatehuuk.manuallv will likelv change the output

In [12]: !jupyter nbconvert --to pdf "nbval.ipynb"

[NbConvertApp]
[NbConvertiApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
[NbConvertApp]
ex']

[NbConvertApp]
[NbConvertApp]

Converting notebook nbval.ipynb to pdf

Support files will be in nbval files/

Making directory nbval files

Writing 30279 bytes to notebook.tex

Building PDF

Running xelatex 3 times: ['xelatex', 'notebook.t

Running bibtex 1 time: ['bibtex', 'notebook']
WARNING | bibtex had problems, most likely becau

se there were no citations

[NbConvertApp]
[NbConvertApp]

PDF successfully created
Writing 43187 bytes to nbval.pdf

In [13]: !open nbval.pdf

I In [ ]: |




Proceed ([y]/n)? ¥

Fetching packages ...
conda-env-2.6. 100% spafgoiodsafigdogs 22 £, - £ 0:00:00 377.54
libffi-3.2.1-1 100% 1 0:00:00 8.55
sglite-3.13.0- 100% 0:00:00 24.37
xz-5.2.2-0.tar 100% 5 5 . ; #EF HEE 0:00:00 11.76&
libtiff-4.0.6~ 100% FFEE Ty . s F¥ : ; ' . i 0:00:00 28.87
python=3.5.3=-0 100% : FHH 3 : 1 0:00:00 35.46
click-6.7-py35 100% i ' 0:00:00 7.63
cloudpickle-0. 100% FEE ' S ' - FE RS = 0:00:00 3.32
heapdict-1.0.0 100% e = ; FEFEIEE =2 =2 fo i 0:00:00 5.84
idna-2.2-py35_ 100% = ' ; E : : 1 0:00:00 2.19
locket-0.2.0-p 100% |#¥% : . : 0:00:00 6.17
msgpack-python 100% |## . 0:00:00 1.73
psutil=5.1.3=-p 100% 0:00:00 11.29
pyasnl=0.1.9=-p 100% 0:00:00 7.26
Frcplraerqz .17 100% E RS N e o g o 3 3 . 2 g ] - W gy Dlﬂnl Du. 13' 08
requests-2.12. 100% FEadad E ] 0:00:00 24.22
ruamel yaml-0. 100% |#4 E : # : : 4 ' 0:00:00 17.20
sortedcontaine 100% E £ o : ; : ; 0:00:00 1.27
tblib-1.3.0-py 100% ; 22 ; : ; ' ; ; ' 1 0:00:00 10.01
toolz-0.8.2-py 100% = ; ' : : ' 1 0:00:00 8.38
cffi-1.9.1-py3 100% == TR . == ' ' 0:00:00 10.28
chest-0.2.3-py 100% |&FF% £ : - T 0:00:00 g.98
partd-0.3.7-py 100% |#H EH# ; 0:00:00 7.51
sortedcollecti 100% e 2 = ; SSF 0:00:00 3.99
zict-0.1.1-py3 100% : ' 0:00:00 5.39
cryptography-1 100% ; - Lk ' & ' 0:00:00 24.62
pandas-0.18.0- 100% 0:00:00 20.75
dask-0.13.0-py 100% 0:00:00 17.65
pyopenssl-16.2 100% . : i i ' ' 0:00:00 7.94
conda-4.3.13-p 100% = E : S ' ] 0:00:00 18.79
distributed-1. 100% : S FEEEEEES - i 0:00:00 2.59
Extracting packages ...
Unlinking packages ...
[  COMPLETE ) | £ : : |
Linking packages ...

COMPLETE I e e e AL e
jovyan@7c2£72£3£d18:~ /work/ipython-csel7$ [




__Jupyter Index (unsaved changes) @ ContolPanel  Logout
File Edt View insert e rernel Help Saving every 120s Python3 @

B + = @ B 4+ v+ M B C Markdown 4 B CellToolbar

L

Interactive (parallel) Python

Installation and dependencies

You will need ipyparallel >= 5.x, and pyzmq = 13. To use the demo notebooks, you will also need tornado = 4. | will also
make use of numpy and matplotlib. If you have Canopy or Anaconda, you already have all of these.

Quick one-line install for IPython and its dependencies:
b
pip install ipyparallel

Or get everything for the tutorial with conda:

conda install anaconda mpi4py
For those who prefer pip or otherwise manual package installation, the following packages will be used.
ipython ipyparallel numpy matplotlib networkx scikit-image requests beautifulsoup mpidpy

Optional dependencies: | will use NetworkX for one demo, and scikit-image for another, but they are not critical. Both
packages are in in Anaconda.

For the image-related demos, all you need are some images on your computer. The notebooks will try to fetch images from

;
h aal=Ta alsalanals - - # al-Mal=3alifals - . Nalan M) = =Ta amlaal - el & here

Loading [MathJax)/extensions/Sate js




" Jupyter Parallel Magics (unsaved changes) ¢ ContolPanel  Logout

nsert e Kernel Help Python3 O

4
i
L
e
o
i

B + = & D 4+ v W B C Markdown s B CellToolbar

Using Parallel Magics

IPython has a few magics for working with your engines.

This assumes you have started an IPython cluster, either with the notebook interface, or the
ipcluster/controller/engine commands.

In [1]: import ipyparallel as parallel
rc = parallel.Client()
rc.block = True
dv = rc[:]
rc.ids

out{1]: [0, 1, 2, 3]

In [2]: dv.apply(lambda x: x * 2, 5

utf2}: [10, 10, 10, 10]

Creating a Client registers the parallel magics $px, $%px, $pxresult, pxconfiqg, and $autopx.
These magics are initially associated with a DirectView always associated with all currently registered engines.

Now we can execute code remotely with $px:

TDX




_ Ju ther Parallel Magics (autosaved)

. L - S
File -] view nsert e nernel

" g
Il-\'_.l_

B + = & D 4 ¥ MW B C Markdown * = CellToolbar
/1 A | i
I | | ll 1 1
|/ j H{
0.0 I
/
. \‘1 IIH
| | '-,ll Jr-'
| | .
05 , | , it
\/ ff-
. |
o | - \_f/ A
00 05 10 15 20 25 30 35
[output:3]
Plot 3
10 AVaR' _ Y N/
F LY F | ".J':
_:'; l\\ II /{/ l'_l
& iy W . 1%
L) = S I Lr s :'_ j-l:l:'.l'. u_ '.III I III.' Illll
/ 1 : | \
| /! . \
\ | | |
) [ \. ﬁ' |
\ I ]
I'.I llll:lf
- \
= | \ f I
\ f
\ \ /
\\V/
_. [} i u; i
T 00 05 10 15 2 0 2 3 35

A

C-ontrol Panel Logout

3 O




j Ju P}’ter Parallel Magics (unsaved changes) ﬂ Contral Panel Logout
File Edit View Insert Ce Kernel Help # Python3 O

B 4+ = & 0B 4 v N B C Code s B CellToolbar

[stdout:2] Couldn't find program: 'ruby’
[stdout:3] Couldn't find program: 'ruby’

In [20]: dv.scatter( ' rank', dv.targets, flatten=True)

In [21]: %%px
titimeit
from numpy.random import random
from numpy.linalg import norm
N = 100 * (rank + 1)
A = random((N,N))
norm(A, 2)

[stdout:0] 100 loops, best of 3: 4.1 ms per loop

[stdout:1] 100 loops, best of 3: 7.87 ms per loop

[stdout:2]

The slowest run took 4.35 times longer than the fastest. This could mean that an intermedia

te result is being cached.
10 loops, best of 3: 38 ms per loop
[stdout:3] 1 loop, best of 3: 199 ms per loop

Debugging Engines

Since the IPython engine is precisely the same object used for the notebook and gtconsole, we can connect other fronteds
directly to the engine.

The first step is to bind the engine's sockets, so its connection pattern looks like a regular kernel




JUIDY’[EF Parallel Magics (unsaved changes) a Control Panel  Logout

File Edit View nsert Ce Kernel elp # Python3 O
B + = A B » v M B C Code + E  CellToolbar
——==> H bar|l
<ipython-input-20-64d85adf5a05> in bar(b)
4
5 def bar(b
———— return 2
7
8 1
<ipython-input-20-64d85adf5a05> foo(a, b)
1
2 def foo(a, b
e return
4
b del

ZeroDivisionError

Now we can connect a gtconsole to the engine(s)

In [24]: %px fgtconsole




JUIDY’[EF Parallel Magics (unsaved changes) a Control Panel  Logout

File Edit View nsert Ce Kernel elp # Python3 O
B + = A B » v M B C Code + E  CellToolbar
——==> H bar|l
<ipython-input-20-64d85adf5a05> in bar(b)
4
5 def bar(b
———— return 2
7
8 1
<ipython-input-20-64d85adf5a05> foo(a, b)
1
2 def foo(a, b
e return
4
b del

ZeroDivisionError

Now we can connect a gtconsole to the engine(s)

In [24]: %px fgtconsole




& Preview Fie Edt View Go Tools Window Help
[ L ] = Fowval paf (paoe 5 of )

& F -

If the raised exception doesn't match the stored exception, we get a failure

RuntimeError Traceback (most recent call last)

<ipython-input-3-32dcclc70ade> in <module>()
1 # NBVAL_RAISES_EXCEPTION
2 print("If the raised exception doesn't match the stored exception, we get a failure"
----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

In [2]: # NBVAL_IGNORE_OUTPUT

- . S 8



@ python Fle Edt View Kernel Window Help DO T« WwOXB Thuisdas Qq =

& @ N BB seoyier CrCorane
FpPruaus ool

x** NameError: name 'btr' is not
defined

ipdb> bt
> <ipython-
input-16-05c9758a9¢21> (1) <module> (

)
———=> 1 1/0

ipdb> |

If the raised exception doesn't match the stored exception, we get a failure




@ python Fle Edt View Kernel Window Help DO T« WwOXB Thuisdas Qq =

& @ N BB seoyier CrCorane
FpPruaus ool

x** NameError: name 'btr' is not
defined

ipdb> bt
> <ipython-
input-16-05c9758a9¢21> (1) <module> (

)
———=> 1 1/0

ipdb> |

If the raised exception doesn't match the stored exception, we get a failure




Ju FJY'[EY Parallel Magics (unsaved changes) a Control Panel  Logout

File Edit View nsert Ce Kernel Help Python3 O
B + ¥ & B 4 ¥ WM B C Code + E CellToolbar
--—-=> B bar(l
<ipython-input-20-64d85adf5al05> in bar(b)
4
> def bar|(b
——> return 2
7
8 1
<ipython-input-20-64d85adf5a05> foo(a, b)
1
2 def foo(a, b
- 3 return
4
b def

ZeroDivisionError

MNow we can connect a gtconsole to the enginel(s)

In [25]: %px tgtconsole

In [ 1




Ju FJY'[EY Parallel Magics (unsaved changes) a Control Panel  Logout

File Edit View nsert Ce Kernel Help Python3 O
B + ¥ & B 4 ¥ WM B C Code + E CellToolbar
--—-=> B bar(l
<ipython-input-20-64d85adf5al05> in bar(b)
4
> def bar|(b
——> return 2
7
8 1
<ipython-input-20-64d85adf5a05> foo(a, b)
1
2 def foo(a, b
- 3 return
4
b def

ZeroDivisionError

MNow we can connect a gtconsole to the enginel(s)

In [25]: %px tgtconsole

In [ 1




8 Safari File Edit View History Bookmarks Develop Window Help

& a B o GiCorsow
IpPuo s  wol

xx* NameError: name 'btr' 1is not
defined

ipdb> bt
> <ipython-
input-16-05c9758a9c21> (1) <module> (

)
==—m>0] 270

[ipdb>
B ——— =

If the raised exception doesn't match the stored exception, we get a failure




B Merm2 Shell Edt View Profiles Toobelt

* X

Pockage plon for imtsllation Ln ewviroment Alkeri/enrc oonds
e following pocosyss will be dowslosded
et S - bt 1d
scilit-imoge9.123 | spliZpyd6) 18,9 48 condo-forge

The Following MEN pocioopes will e INSTALLED:

1P -0 o - farps
LR 4. 0.6-T7 Eirwic - Forpe
clefile B -y 36 Ciacic - Fiorpe
L Lo i B - conda- Forge:

8. By Sl
1

sciiit-imoge: §.12 S-splidoyil 1 conds-Fforge

ELEmng P Twoge
CINLE

% s N e e e s e T e e T T e e e e e e g e T T e e e e T e e e e e e e e E T e e e P e E T e e E P EE T e E P r e T2 1 I U U SN R T B LAY
Entracting pockages ...

[ COMPLETE 1 R S R R T R D S P A S P B T P e T N P P A R PN S R R S T S A S R T S T S P R R R R P RN I A A S RSN ORI P PR RE NP S IFA PO S LTI PEPRLETRR | L]
Linking pockoges

[ CINFLETE R T e e e L L R IEFREEEEES FEEES FREFFEEFIEsSEEE LW
winre] 15 26 )=/t prel L prthon- O3l T (scater) 3 I

ipdbb

If the raised exception doesn't match the stored exception, we get a failure




: Jjupyter Parallel Magics (autosaved)

File Edit View Insert Cell Kernel Help

B 4+ = @ 0B 4 ¥+ M B C Code

-———=> H bari(l
B sy iCoosos <ipython-input-20-64d85adf5a05>
4
5 def bar(b):
==L return
i)
8 bar(l
<ipython-input-20-64d85adf5a05>
1
975829¢21> (1) <module>( 2 def foota, b
———=> 3 return
4
5 def bar
ZeroDivisionError:

r: name 'btr' 1is not

Now we can connect a gtconsole to the eng

ipx %gtconsole




_ jupyter Parallel Magics (autosaved) @ ControlPanel  Logout

File Edit View insert Ce Kernel Help Notebook saved Python 3 O
B + = 0 » vy N B C Code s+ [ CellToolbar
-——=2 Y Dar/il
<ipython-input-20-64d85adf5al05> in bar(b)
4
5 def bar(b
e return 2 .
1
g 1
<ipython-input-20-64d85adf5a05> foo(a, b)
1
2 def foo(a, b
S R return 1
4
5 detf

ZeroDivisionError

Now we can connect a gtconsole to the engine(s)

In [25]: %px %gtconsole

In [ ]




@ (Term2 Shell Edit View Profiles Toobelt Window Help 20 B =T wox Bl TholSudd Q

PR & X b & i =l : o Pt nern e M5

Fockape plan for imtslletion in ewiroment Akers/einrc oonds

e following pocioageds will be dowslooded:

et S - T
scikie-{mege-@. 12 3 mp LD 1 18.8 M conwdo-forge
The following MEW poceoges will be INSTALLED:

ipeg: - corda - forge i
g 4.0 6T e~ Forpe

glefFile: [ ] i - Farpe

A L o & 0. 8-py¥E 2 condo- Forgs

sciiit-image: 8. 1F J-mpilley®h | Conda-forges

Feicing morioges

L S LA | PR R R R AT R e i A T T E S R e R R A e R AR B PR A PN F R R a S s A T A A ST F AT T AP A A B Fa A S A e b a B A F A B e T F R s T P P A A PR P I S e T PR NP P AR P S d A P e S AR T A A F AT A F S P T FFF E A F I F e R F PRI S P PR S e T e TR AR R S SR S F P AR N AT A A PR A v ra e F IS TTFETEFETa . 1.0 0182 04 L% Tr afis
Entracting pocisges

: CiELITE ': | R T N R I T T T R A T R T R R I R N T T I T N F N N N T R I A T N N R N N I N I F F R T I P R A R R R N N RN T N A T N N A A P R T N T T T T T S T N IR L, s |
Linkding pockoges

i COMPLETE ]| R R R R IR IR R IR R R R R R R R R R R R R R R R R R R I R R FEEEERE IR FELEPREEEEEE FTEE TS SR A S BT S S Y EIIEEEEEREEE FEEEd FEEIEEIITIREEEES) 1
winrk] 15 5=l fpry/preas L python- C3lT  (mostes) 4 I

ipdb}

If the raised exception doesn't match the stored exception, we get a failure




B Safan FRle ER Vew Hstory Bookmarks Devslop Window  Hedp a0 @ = WO X BE  Tho 1540
] & a ¥ CH T T Ry ST O
| '
Tl @ TR ] el @ = TLE [ b e H o | L v B aw | s I-q-('q. twreETE " rrpiteg ol o o TRl e [eowa L g g EE ] W P
k
B + = @ B 44 ¥+ W B C Code + B CellToolbar

-——=> H bar|l
<ipython-input-20-64d85adf5al05> in bar(b)
4
5 det bar(b
——2 return 2
7
8 1
<ipython-input-20-64d85adf5a05> foo(a, b)
1
2 def foo(a, b
- 3 return 1
4
5 def
ZeroDivisionError

Now we can connect a qtconsole to the engine(s)

In [25]: %px fgtconsole




8 Safarl File Edt View History Bookmarks Develop Window Help

L
5

a IoCneal BESE/ A0t AT e Dy e
Ov Di~ ww B+ US= M
pip install ipyparallel
Or get everything for the tutorial with conda:
conda install anaconda mpidpy
For those who prefer pip or otherwise manual package installation, the following packages will be used:
ipython ipyparallel numpy matplotlib networkx scikit-image requests beautifulsoup mpidpy

Optional dependencies: | will use NetworkX for one demo, and scikit-image for ancther, but they are not
critical, Both packages are in in Anaconda.

For the image-related demos, all you need are some images on your computer. The notebooks will try to fetch
images from Wikimedia Commons, but since the networks can be untrustworty, we have bundled some images
here.

Outline
. Mm&ihﬂsmm




_ Jupyter Logout

Files Running IPython Clusters
Select items to perform actions on them. Upload Neww

~ B/ parallel Name 4 Last Modified 4
T seconds ago
[0 examples 18 minutes ago
(D exercises 2 hours ago
[ figs 2 hours ago
D soln 2 hours ago
(O tutoria an hour ago
& download-images.ipynb 2 hours ago
& |ndex.ipynb {0 g 2 hours ago
& Overview.ipynb 2 hours ago
& Performance.ipynb 2 hours ago
& Summary.ipynb 2 hours ago
[ 5000-8.txt 2 hours ago




Saving every 120s  Trusted ] Python3 O
File Edit View Insert Cell Kernel Widgets Help

B + x 3 B 44 v N B C =

Interactive (parallel) Python

Installation and dependencies

You will need ipyparallel >= 5.x, and pyzmgqg = 13. To use the demo notebooks, you
will also need tornado = 4. | will also make use of numpy and matplotlib. If you have
Canopy or Anaconda, you already have all of these.

Quick one-line install for IPython and its dependencies:
pip install ipyparallel

Or get everything for the tutorial with conda:

Loading [MathJax}extensions/Safe.js

conda install anaconda mpidp




B+ x @B 4+ NEC =

wd B - T - - = & " B [r

notebooks will try to fetch images from Wikimedia Commons, but since the
networks can be untrustworty, we have bundled some images here.

Outline

e Motivating Example
e Overview
e Tutorial

s Remote Execution
= Multiplexing

» |oad-Balancing
= Both!
= Parallel Magics
e Examples
e Bxercises




File Edit

CINERCER T Saving every 120s

View Insert Cell Kernel Widgets Help

B +| x B |4+ % N B C =

Trusted

| Python3 O

Using Parallel Magics 1|

Oout[23]:

Loading [MathJax)/extensions/Safe.js

IPython has a few magics for working with your engines.

This assumes you have started an |Python cluster, either with the notebook
interface, or the ipcluster/controller/engine commands.

import ipyparallel as parallel
rc = parallel.Client()
rc.block = True

dv = rc[:]

rc.ids

(0, 1, 2, 3]




File Edit View Insert Cell Kernel Widgets Help Trusted 4 |Py1hnn 30

B + x & B 24 v N B C =

Now we can raise an exception on the engines

% px

def foo(a, b):
return a/(1-b)

def bar(b):
return foo(2, b)
|

bar(1l)

[D:execute]:

ZeroDivisionError Traceback

(most recent call last)<ipython-input-31-64dB85adf5a05> in <modu
le>()

6 return foo(2, b)

7
-——=> 8 bar(l)
<ipython-input-31-64d85adf5a05> in bar(b)

4

5 def bar(b):
—===> 6 return foo(2, b)

7

8 bar(l)
<ipython-input-31-64d85adf5a05> in foo(a, b)




File Edit View Insert Cell Kernel Widgets Help Trusted [ Python3 @

B + < & 0B 424 4 N B C =

from ipyparallel import bind_kernel
bind_kernel()

Now we can raise an exception on the engines

%%BpX

def foo(a, b):
return a/(1-b)
1

def bar(b):
return foo(2, b)

bar(1)

Now we can connect a gtconsole to the engine(s)

| In [44]: %px %qtconsole




8 Safarl File Edz View History Bookmarks Develop Window Help

2 8

Iy

o loeadrogt BEER roc el T wl, Tu ol D i I A Oy T

= DL wew P~ IFi~ M

Waiting for connection file: ~/.ipython/profile default/securit
y/ipcontroller-client. json

%%px

def foo(a, b):
return a/(1-b)

def bar(b):
return foo(2, b)

EeyboardInterrupt
t call last)
<ipython-input-45-8aB87cd0fcdb9> in <module>()

---=> 1 get_ipython().run_cell magic('px', '', '\ndef foo(a, b)
:\n return a/(l1-b)\n\ndef bar(b):\n return foo(2, b)\n\nb
ar(1)")

Traceback (most recen

/Users/minrk/conda/lib/python3.6/site-packages/IPython/core/int
eractiveshell.py in run cell magic(self, magic name, line, cell
)

2113 magic arg s = self.var expand(line,
stack _depth)




8 Safari Fie Eda View HMistory Bookmarks Develop Window Help

® 9 L0 o - o T R e R N S E

ims ‘@ DL~ wew P> IFl= b

3 "h ‘-‘ i L 3 . -‘-.__ ~] . ST L S ...-_.-. O 8 | &3 , '-. ZEh LT ¥

3
networks can be untrustworty, we have bundled some images here.

Outline

e Motivating Example
e Overview

e Tutorial

= Remote Execution
» Multiplexing

= |oad-Balancing

= Both!

= Parallel Magics
e Examples

e Exercises




Proceed ([(y]l/n)? ¥

Fetching packages ...

conda-env-2.6. 100% tarrrgasdedoydohafdataagy =2 0:00:00 377.54
libffi-3.2.1-1 100% FESEERF 0:00:00 8.55
sglite-3.13.0- 100% 0:00:00 24.37
xz=-5.2.2-0.tar 100% 0:00:00 11.76
libtiff-4.0.6- 100% 0:00:00 28.87
python=3.5.3=0 100% 0:00:00 35.46
click-6.7-py35 100% 0:00:00 7.63
cloudpickle-0. 100% 0:00:00 5.32
heapdict-1.0.0 100% 0:00:00 5.84
idna-2.2-py35_ 100% 0:00:00 9.19
locket-0.2.0-p 100% |4 ; ; : . E 0:00:00 6.17
msgpack-python 100% |# ; . 0:00:00 1.73
psutil-5.1.3-p 100% |#& s : . : : 2 0:00:00 11.29
pyasnl=0.1.9-p 100% 2o da s . daa . . . PRSI RERE L FE 0:00:00 7.26
F]I'EFEIHEI'E-IT 100% oo o o o o i o o i ol o oy o oy g o o o O o 1 u:ﬂn:uu 13.“3
regquests-2.12. 100% ] 0:00:00 24.22
ruamel yaml-0. 100% |#¥% FEEAEE L : ; ; ; ; i 0:00:00 17.20
sortedcontaine 100% |# ; EF 144 ; : 0:00:00 1.27
tblib-1.3.0-py 100% ; ; ' ; ; ; ; ; ; ; 1 0:00:00 10.01
toolz-0.8.2-py 100% ' : ' ' : 1 0:00:00 8.38
cffi-1.9.1-py3 100% S . . ; : ' ' 0:00:00 10.28
chest-0.2.3-py 100% |&FFF . . . ; 0:00:00 g.98
partd-0.3.7-py 100% . ; ' 0:00:00 7.51
sortedcollecti 100% |# =2 : : ; 2 ' t00:00 3.99
zict-0.1.1-py3 100% e s . | 0:00:00 5.39
cryptography-1 100% EFEF YA AA SR F R FEA HE 0:00:00 24.62
pandas-0.18.0- 100% 0:00:00 20.75
dask-0.13.0-py 100% 0:00:00 17.65
pyopenssl-16.2 100% 2 g ] 0:00:00 7.94
conda-4.3.13-p 100% ' L 1 0:00:00 18.79
distributed-1. 100% - FEEE - ' 0:00:00 2.59
Extracting packages

[ COMPLETE 1

Unlinking packages ...

[ COMPLETE 1E

Linking packages ...

[ COMPLETE | FEEpFsasrspFARhes

jovyan@7c2£72£3fd18:~/work/ipython-csel7$ l

1

il




o & = 1% B3 g 154

B Safan Fle Edt Yiew Estory Boc 3

Wl ] @ i - S| S ] a "y ] Egruor ey
o L= — . —
-'.. 1
- ._l."'!.
i




Annpunclﬂg JupyterCon _

August 22 - 25, 2017 SS===-
y NewYmk, NY =

4



	slide001-0.00
	slide002-0.84
	slide003-0.88
	slide004-0.86
	slide005-0.85
	slide006-0.80
	slide007-0.73
	slide008-0.80
	slide009-0.87
	slide010-0.88
	slide011-0.74
	slide012-0.85
	slide013-0.81
	slide014-0.87
	slide015-0.86
	slide016-0.85
	slide017-0.88
	slide018-0.82
	slide019-0.81
	slide020-0.85
	slide021-0.87
	slide022-0.82
	slide023-0.78
	slide024-0.74
	slide025-0.87
	slide026-0.74
	slide027-0.82
	slide028-0.85
	slide029-0.85
	slide030-0.84
	slide031-0.85
	slide032-0.87
	slide033-0.85
	slide034-0.87
	slide035-0.84
	slide036-0.81
	slide037-0.83
	slide038-0.81
	slide039-0.87
	slide040-0.87
	slide041-0.87
	slide042-0.87
	slide043-0.87
	slide044-0.87
	slide045-0.86
	slide046-0.86
	slide047-0.86
	slide048-0.87
	slide049-0.86
	slide050-0.82
	slide051-0.86
	slide052-0.87
	slide053-0.88
	slide054-0.80
	slide055-0.87
	slide056-0.69
	slide057-0.86
	slide058-0.87
	slide059-0.88
	slide060-0.87
	slide061-0.84
	slide062-0.85
	slide063-0.85
	slide064-0.87
	slide065-0.85
	slide066-0.82
	slide067-0.87
	slide068-0.86
	slide069-0.86
	slide070-0.88
	slide071-0.86
	slide072-0.85
	slide073-0.81
	slide074-0.88
	slide075-0.81
	slide076-0.81
	slide077-0.86
	slide078-0.84
	slide079-0.84
	slide080-0.83
	slide081-0.88
	slide082-0.87
	slide083-0.88
	slide084-0.82
	slide085-0.83
	slide086-0.85
	slide087-0.88
	slide088-0.88
	slide089-0.87
	slide090-0.83
	slide091-0.86
	slide092-0.86
	slide093-0.84
	slide094-0.85
	slide095-0.77
	slide096-0.82
	slide097-0.86
	slide098-0.85
	slide099-0.77
	slide100-0.85
	slide101-0.88
	slide102-0.85
	slide103-0.87
	slide104-0.77
	slide105-0.88
	slide106--0.04
	slide107-0.87
	slide108-0.79
	slide109-0.74
	slide110-0.85
	slide111-0.83
	slide112-0.86
	slide113-0.87
	slide114-0.87
	slide115-0.86
	slide116-0.85
	slide117-0.88
	slide118-0.84
	slide119-0.83
	slide120-0.87
	slide121-0.87
	slide122-0.85
	slide123-0.84
	slide124-0.87
	slide125-0.87
	slide126-0.87
	slide127-0.86
	slide128-0.87
	slide129-0.86
	slide130-0.86
	slide131-0.87
	slide132-0.88
	slide133-0.87
	slide134-0.82
	slide135-0.87
	slide136-0.85
	slide137-0.87
	slide138-0.58
	slide139-0.73
	slide140-0.72
	slide141-0.71
	slide142-0.82
	slide143-0.72
	slide144-0.63
	slide145-0.84
	slide146-0.86
	slide147-0.64
	slide148-0.66
	slide149-0.69
	slide150-0.86
	slide151-0.85
	slide152-0.82
	slide153-0.84
	slide154-0.83
	slide155-0.88
	slide156-0.84
	slide157-0.86
	slide158-0.72
	slide159-0.68
	slide160-0.68
	slide161-0.82
	slide162-0.85
	slide163-0.77
	slide164-0.86
	slide165-0.85
	slide166-0.77
	slide167-0.88
	slide168-0.84
	slide169-0.88
	slide170-0.72
	slide171-0.79
	slide172-0.72
	slide173-0.73
	slide174-0.83
	slide175-0.80
	slide176-0.88
	slide177-0.79
	slide178-0.81
	slide179-0.82
	slide180-0.87
	slide181-0.84
	slide182-0.87
	slide183-0.83
	slide184-0.84
	slide185-0.84
	slide186-0.76
	slide187-0.75
	slide188-0.81
	slide189-0.82
	slide190-0.81
	slide191-0.87
	slide192-0.78
	slide193-0.83
	slide194-0.83
	slide195-0.83
	slide196-0.86
	slide197-0.87
	slide198-0.85
	slide199-0.86
	slide200-0.84
	slide201-0.85
	slide202-0.85
	slide203-0.85
	slide204-0.87
	slide205-0.81
	slide206-0.56
	slide207-0.85
	slide208-0.86
	slide209-0.86
	slide210-0.75
	slide211-0.85
	slide212-0.85
	slide213-0.83
	slide214-0.88
	slide215-0.54
	slide216-0.84
	slide217-0.85
	slide218-0.80
	slide219-0.85
	slide220-0.86
	slide221-0.78
	slide222-0.85
	slide223-0.86
	slide224-0.87
	slide225-0.86
	slide226-0.76
	slide227-0.86
	slide228--0.39
	slide229-0.87
	slide230-0.68
	slide231-0.57
	slide232-0.16
	slide233-0.74
	slide234-0.80
	slide235--0.12
	slide236-0.84
	slide237-0.83
	slide238-0.78
	slide239-0.87
	slide240-0.79
	slide241-0.88
	slide242-0.88
	slide243-0.88
	slide244-0.88
	slide245-0.87
	slide246-0.88
	slide247-0.87
	slide248-0.87
	slide249-0.86
	slide250-0.86
	slide251-0.79
	slide252-0.40
	slide253-0.43
	slide254-0.46
	slide255-0.50
	slide256-0.72
	slide257-0.73
	slide258-0.85
	slide259-0.86
	slide260-0.78
	slide261-0.72
	slide262-0.87
	slide263-0.84
	slide264-0.81
	slide265-0.86
	slide266-0.79
	slide267-0.84
	slide268-0.86
	slide269-0.74
	slide270-0.76
	slide271-0.85
	slide272-0.85
	slide273-0.81
	slide274-0.77
	slide275-0.83
	slide276-0.81
	slide277-0.04
	slide278-0.05
	slide279-0.05
	slide280-0.07
	slide281-0.83
	slide282-0.85
	slide283-0.86
	slide284-0.87
	slide285-0.84
	slide286-0.87
	slide287-0.75
	slide288-0.83
	slide289-0.88
	slide290-0.86
	slide291-0.80
	slide292-0.77
	slide293-0.87
	slide294-0.77
	slide295-0.67
	slide296-0.75
	slide297-0.60
	slide298-0.69
	slide299--0.11
	slide300-0.17
	slide301-0.79
	slide302-0.87
	slide303-0.87
	slide304-0.88
	slide305-0.76
	slide306-0.31
	slide307-0.78
	slide308-0.86
	slide309-0.87
	slide310-0.63
	slide311-0.49
	slide312-0.85
	slide313-0.19
	slide314-0.73
	slide315-0.72
	slide316-0.46
	slide317-0.80
	slide318-0.78
	slide319-0.85
	slide320-0.85
	slide321-0.76
	slide322-0.86
	slide323-0.85
	slide324-0.88
	slide325-0.80
	slide326-0.01
	slide327-0.22
	slide328-0.11
	slide329-0.04

