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Understanding Data

* Model relationship between data points
with graphs

e Social networks

e Communication networks
* Biological networks

* Network topologies

* We will consider undirected, unweighted
graphs with no multi-edges or self-loops.




Understanding Data

These graphs tend to be:

Large, often too big to store in main
memory

Dynamic: need scalable ways to update
computations

Distributed: need fast ways for servers to
communicate

Computation becomes intractable

Image due to Tim Davis:

http://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html




Local algorithms

Do not rely on the state of the full graph

* Designing local algorithms: 2 :
 Want space and time complexity in terms of size of output ’ ’

» Guarantees with good initialization (as opposed to global algorithms which have
guarantees regardless of initialization but with incurred cost)

Use random walks, analysis using spectral graph theory

Local, lightweight queries: RandomNode(), RandomNeighbor(), etc.




Local cluster detection

* (Global) clustering

* Increase granularity by identifying similar no
* Make operations on large networks more

tractable

* Local clustering

* Only interested in a particular group of similar

nodes

* Social networks: identify a community

a particular member

* Protein networks: isolate a group of

und

interacting proteins to analyze a component

of a biological system
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Local cluster detection

* Goal: identify a good cluster near a specified node
* We will use the Cheeger ratio (sometimes called conductance) as our metric:
Let S be a subset of nodes in the network, then the Cheeger ratio is

number of edges leaving S volume(S) = Z d,
. VES

D(S) =
($) volume(S)

» Typical formulation of a local clustering algorithm:

“If S is a subset of Cheeger ratio ®(S5) < ¢, then with high probability there are many
nodes in S that can be used as ‘seeds’ for finding a set T with Cheeger ratio ®(T) =

0(f(¢))”

* Would like f to be small
* Would like for running time to be proportional to the size of T




Finding good cuts with stochastic processes

“Single sweep” algorithms:
let p:V — R be a probabilistic function over the nodes of the graph
¥
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Order the nodes according to

p(vy) _ p(vs) _ - p(vp)
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ori =1 - n:
1. LetV; be the set of the first i nodes
2. Check if this set meets the desired volume, Cheeger ratio




Finding good cuts with stochastic processes

» Spectral methods

* [Alon, Milman “85]: the Cheeger inequalities relating the Cheeger ratio to eigenvalues

» Typically use eigenfunctions to find good cuts

* “Single sweep” algorithms:

* [Lovasz, Simonovitz 90, ‘93], [Spielman, Teng ‘04]: lazy random walks
* [Chung '07]: Laplacian eigenvectors

» [Andersen et al., ‘06]: PageRank (or reset) random walks

* [Andersen, Peres ‘09]: evolving (cluster) sets with Markov chains

* [Gharan, Trevisan “12]: lazy random walks + evolving sets

 Random walk or probability diffusion based, local




PageRank as a probability distribution

2
pro. ;s =0 Z(l —a)*fP*

k=0

* Parameters are @, a jumping probability, and f, a starting distribution
» Stationary distribution of a “reset random walk”:
* At every step:
» with probability 1 — a move from u to a neighbor v with probability di‘
» with probability @ jump to a node drawn from the starting distribution
 Common starting distributions: uniform, personalized

* Lower & means more diffusion of probability

* High @ means more probability near the start node




Heat kernel pagerank as a probability distribution
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* Let X be the random variable that takes on value fP¥ with probability p, < e f?.

Then E[X] = p..
* If f is a probability distribution over the nodes, then fP¥ is the distribution over the
nodes after k random walk steps.
* We'll take f to be yx,,, the indicator vector for seed node u, and use p;,, = Py,
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Computing heat kernel pagerank with random walks

 “heat kernel random walk”:
» take k random walk steps with probability k < Poiss(t)
* Atevery step:
* move from u to a neighbor v with probability l/du
* For local clusters, can keep walks short

* e-approximate heat kernel pagerank values:

1. (1 —€)pss(v) — e < prs(v) < (1+€)pt.s(v), and
2. for each node v with p; s(v) = 0, it must be that p; s(v) < €

“Relaxed” notion of approximation which captures nodes with high heat kernel
pagerank value (> €) and ignores the rest




Heat kernel pagerank as a probability distribution
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Let X be the random variable that takes on value fP¥ with probability p; <e

is the distribution over the

Then E[X] = p.f.
If f is a probability distribution over the nodes, then fP

nodes after k random walk steps.
* We'll take f to be yx,,, the indicator vector for seed node u, and use p;,, = Py,
e .'._, f« random
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Computing heat kernel pagerank with random walks

Approximate the estimated distribution E[X] = p,, with random walks:
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Random walks can be performed with local,
lightweight RandomNeighbor() queries

Running time: O(7K)

r =16 3logn
_ _log(i/e)
" loglog(1/e)




Finding local clusters with stochastic processes

* “Single sweep” algorithms:

Algorithm C'(_mductance of mltput set Work/volume ratio

[Spielman, Teng ‘04] O(O l g ' H) ()(Q—g pOI\'EUJ n)
Andersen e O(é'? 1o g 2n) Olo™ p()l viog n)
Andersen, Peres ‘09 O(o' 2 1¢ )_)) % n) O(o~ ; I)()l} l()g n)
st e a0y O(e 1241 '-’) O(ccod /> polyvlog n)
g, S- 14 O(o'* O(s e lognlog(e~") loglog(e™1))

work/volume ratio: ratio between the computational complexity of the
algorithm on a given run and the volume of the output set




Solving local linear systems




Local Laplacian linear systems




Local Laplacian linear systems
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Computing Dirichlet heat kernel pagerank with
random walks
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o ” k=0
e “Dirichlet heat kernel random walk”:

» take k random walk steps with probability k < Poiss(t)
* At every step:
* move from u to a neighbor v with probability l/du
e Ifvisoutside of S, abort the walk and ignore any contribution from it

* Since we only want to consider probability diffusion within S, cannot allow any
random walks which have left S to return any probability to it

* { parameter is more sensitive

* Allow walks of length up to /¢ (in practice 2t is fine)




Summary: local algorithms and applications of
heat kernel pagerank

e Vector values can be computed by sampling random walks

Sublinear number of random walks sufficient

Can bound length of random walks by /.

* |n practice, 2t is more than enough
log(1/¢)

* In some cases, constant K = independent of t, n is enough

loglog(1/¢)

A single vector can be used to compute a local cluster

Vectors can be sampled to compute a local Laplacian linear solution






