Using the Heat Kernel of a Graph for Local Algorithms

Complex Networks Minisymposium SIAM Applied Linear Algebra October 28, 2015

Olivia Simpson
UC San Diego
osimpson@ucsd.edu

Joint work with Fan Chung

Understanding Data

- Model relationship between data points with graphs
 - Social networks
 - Communication networks
 - Biological networks
 - Network topologies
- We will consider undirected, unweighted graphs with no multi-edges or self-loops.

Understanding Data

- · These graphs tend to be:
 - Large, often too big to store in main memory
 - Dynamic: need scalable ways to update computations
 - Distributed: need fast ways for servers to communicate
- Computation becomes intractable

Image due to Tim Davis: http://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html

Local algorithms

- · Do not rely on the state of the full graph
- Designing local algorithms:
 - Want space and time complexity in terms of size of output
 - Guarantees with good initialization (as opposed to global algorithms which have guarantees regardless of initialization but with incurred cost)
- Use random walks, analysis using spectral graph theory
- Local, lightweight queries: RandomNode(), RandomNeighbor(), etc.

Local cluster detection

(Global) clustering

Increase granularity by identifying similar nodes

Make operations on large networks more tractable

Local clustering

Only interested in a particular group of similar nodes

 Social networks: identify a community around a particular member

 Protein networks: isolate a group of interacting proteins to analyze a component of a biological system

Local cluster detection

- Goal: identify a good cluster near a specified node
 - We will use the Cheeger ratio (sometimes called conductance) as our metric:
 Let S be a subset of nodes in the network, then the Cheeger ratio is

$$\Phi(S) = \frac{number\ of\ edges\ leaving\ S}{\text{volume}(S)}.$$

$$volume(S) = \sum_{v \in S} d_v$$

Typical formulation of a local clustering algorithm:

"If S is a subset of Cheeger ratio $\Phi(S) \leq \phi$, then with high probability there are many nodes in S that can be used as 'seeds' for finding a set T with Cheeger ratio $\Phi(T) = O(f(\phi))$ "

- Would like f to be small
- Would like for running time to be proportional to the size of T

Finding good cuts with stochastic processes

"Single sweep" algorithms:

let $p: V \to \mathbb{R}$ be a probabilistic function over the nodes of the graph

1. Order the nodes according to

$$\frac{p(v_1)}{d_{v_1}} \ge \frac{p(v_2)}{d_{v_2}} \ge \cdots \ge \frac{p(v_n)}{d_{v_n}}$$

- 2. For $i = 1 \rightarrow n$:
 - 1. Let V_i be the set of the first i nodes
 - Check if this set meets the desired volume, Cheeger ratio

Finding good cuts with stochastic processes

- Spectral methods
 - [Alon, Milman '85]: the Cheeger inequalities relating the Cheeger ratio to eigenvalues
 - Typically use eigenfunctions to find good cuts
- "Single sweep" algorithms:
 - [Lovász, Simonovitz '90, '93], [Spielman, Teng '04]: lazy random walks
 - [Chung '07]: Laplacian eigenvectors
 - [Andersen et al., '06]: PageRank (or reset) random walks
 - · [Andersen, Peres '09]: evolving (cluster) sets with Markov chains
 - [Gharan, Trevisan '12]: lazy random walks + evolving sets
 - · Random walk or probability diffusion based, local

PageRank as a probability distribution

$$\operatorname{pr}_{\alpha,f} = \alpha \sum_{k=0}^{\infty} (1-\alpha)^k f P^k$$

- Parameters are α , a jumping probability, and f, a starting distribution
- Stationary distribution of a "reset random walk":
 - · At every step:
 - with probability $1-\alpha$ move from u to a neighbor v with probability $\frac{1}{d_u}$
 - with probability α jump to a node drawn from the starting distribution
- · Common starting distributions: uniform, personalized
- Lower α means more diffusion of probability
- High α means more probability near the start node

Heat kernel pagerank as a probability distribution

$$\rho_{t,f} = e^{-t} f I + e^{-t} t f P + e^{-t} \frac{t^2}{2!} f P^2 + \dots + e^{-t} \frac{t^k}{k!} f P^k + \dots$$

- $\sum_{k=0}^{\infty} e^{-t} \frac{t^k}{k!} = 1 \dots$
- Let X be the random variable that takes on value fP^k with probability $p_k \leftarrow e^{-t} \frac{t^k}{k!}$. Then $\mathbb{E}[X] = \rho_{t,f}$.
- If f is a probability distribution over the nodes, then fP^k is the distribution over the nodes after k random walk steps.
 - We'll take f to be χ_u , the indicator vector for seed node u, and use $ho_{t,u}\coloneqq
 ho_{t,\chi_u}$
- Redefine the random process: X takes on the probability distribution after k random walk steps starting from node u with probability $p_k \leftarrow e^{-t} \frac{t^k}{k!}$.

Computing heat kernel pagerank with random walks

- "heat kernel random walk":
 - take k random walk steps with probability $k \leftarrow Poiss(t)$
 - · At every step:
 - move from u to a neighbor v with probability $\frac{1}{d_u}$
- For local clusters, can keep walks short
- ε-approximate heat kernel pagerank values:
 - 1. $(1 \epsilon)\rho_{t,s}(v) \epsilon \le \hat{\rho}_{t,s}(v) \le (1 + \epsilon)\rho_{t,s}(v)$, and
 - 2. for each node v with $\hat{\rho}_{t,s}(v) = 0$, it must be that $\rho_{t,s}(v) \leq \epsilon$

"Relaxed" notion of approximation which captures nodes with high heat kernel pagerank value ($> \epsilon$) and ignores the rest

Heat kernel pagerank as a probability distribution

$$\rho_{t,f} = e^{-t} f I + e^{-t} t f P + e^{-t} \frac{t^2}{2!} f P^2 + \dots + e^{-t} \frac{t^k}{k!} f P^k + \dots$$

- $\sum_{k=0}^{\infty} e^{-t} \frac{t^k}{k!} = 1 \dots$
- Let X be the random variable that takes on value fP^k with probability $p_k \leftarrow e^{-t} \frac{t^k}{k!}$. Then $\mathbb{E}[X] = \rho_{t,f}$.
- If f is a probability distribution over the nodes, then fP^k is the distribution over the nodes after k random walk steps.
 - We'll take f to be χ_u , the indicator vector for seed node u, and use $ho_{t,u}\coloneqq
 ho_{t,\chi_u}$
- Redefine the random process: X takes on the probability distribution after k random walk steps starting from node u with probability $p_k \leftarrow e^{-t} \frac{t^k}{k!}$.

Computing heat kernel pagerank with random walks

Approximate the estimated distribution $\mathbb{E}[X] = \rho_{t,u}$ with random walks:

```
ApproxHKPR(G, t, u, \epsilon):
\hat{\rho} \leftarrow 0\text{-vector of size n}
K \leftarrow \max_{\mathbf{w}} \max_{\mathbf{k}} \lim_{\mathbf{k}} \mathbf{k}
for r rounds do:
k \leftarrow \min_{\mathbf{k}} (\text{Poiss}(t), \mathbf{k})
\text{perform a k-step random walk from u}
v \leftarrow \text{last node visited in the random walk}
\hat{\rho}[v] += 1
\text{return } \hat{\rho}/\text{r}
```

Random walks can be performed with local, lightweight RandomNeighbor() queries

Running time: O(rK)

- $r = 16\epsilon^{-3} \log n$
- $K = \frac{\log(1/\epsilon)}{\log\log(1/\epsilon)}$

Finding local clusters with stochastic processes

"Single sweep" algorithms:

Algorithm	Conductance of output set	Work/volume ratio
[Spielman, Teng '04]	$O(\phi^{1/2}\log^{3/2}n)$	$O(\phi^{-2} \operatorname{polylog} n)$
[Andersen et al., '06]	$O(\phi^{1/2}\log^{1/2}n)$	$O(\phi^{-1} \operatorname{polylog} n)$
[Andersen, Peres '09]	$O(\phi^{1/2}\log^{1/2}n)$	$O(\phi^{-1/2} \operatorname{polylog} n)$
[Gharan, Trevisan '12]	$O(\epsilon^{-1/2}\phi^{1/2})$	$O(\varsigma^{\epsilon}\phi^{-1/2}\operatorname{polylog} n)$
[Chung, S. '14]	$O(\phi^{1/2})$	$O(\varsigma^{-1}\epsilon^{-3}\log n\log(\epsilon^{-1})\log\log(\epsilon^{-1}))$

work/volume ratio: ratio between the computational complexity of the algorithm on a given run and the volume of the output set

Solving local linear systems

Local Laplacian linear systems

Local Laplacian linear systems

$$x_S = \mathcal{L}_S^{-1}b_1$$

$$\sum_{j=1}^N \rho_{S,jT/N,b_2} \frac{T}{N} D_S^{-1/2}$$

approximate the sum by sampling $r \leftarrow \gamma^{-2} \log(s\gamma^{-1})$ Dirichlet heat kernel pagerank vectors

[Chung, S. WAW'13], [Chung, S. IM'15]

Computing Dirichlet heat kernel pagerank with random walks $\rho_{S,t,f} = \sum_{k=0}^{\infty} e^{-t} \frac{t^k}{k!} f P_S^k$

- "Dirichlet heat kernel random walk":
 - take k random walk steps with probability $k \leftarrow Poiss(t)$
 - · At every step:
 - move from u to a neighbor v with probability $^1\!/_{d_u}$
 - · If v is outside of S, abort the walk and ignore any contribution from it
 - Since we only want to consider probability diffusion within S, cannot allow any random walks which have left S to return any probability to it
- t parameter is more sensitive
 - Allow walks of length up to t/ε (in practice 2t is fine)

Summary: local algorithms and applications of heat kernel pagerank

- Vector values can be computed by sampling random walks
- Sublinear number of random walks sufficient
- Can bound length of random walks by ^t/ε
 - In practice, 2t is more than enough
 - In some cases, constant $K = \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}$ independent of t,n is enough
- · A single vector can be used to compute a local cluster
- Vectors can be sampled to compute a local Laplacian linear solution