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large-scale data processing

[he (ig) data processing pipeline. simphtied
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Dilemma: There s an ongoing, inherent stress between processing operations
that we desire to perform, and those we can tractably implement!

This talk examines [in part) fundamental relationships between these
of operations..
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We consider a common computational

“primitive” arising in data processing:

Matrix-vector multiplication with
(dimensionality reducing) operator

Qur (Initial) Aim

Approximate onginal s - "
operator using a .
‘partial airculant’ v S

operator




Problem Statement

some preliminaries

Let (\, denote the set of all (real) n = n circulant matrnices of the torm
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wherec =[a -+ ¢ =K

Let 8. be the set of m < n (m <. n) row sampling matrices whose rows comprise

m different canonical basis vectors of 2. with permutations

The set of all m < n real partial circu/ant matrices is

Plunsr={SCeR"™" Sc8m.Ce(h)




Results
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A Fundamental “Partial Circulant”
Matrix Approximation Result
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partial circulant approximation - further insights

Cansider matrices A w row spaces distributed umiformiy at random on G m. n)

(Grassmanman mamfold of m-dimensional linear subspaces of =)

3 Qn._wl fy proportion of matrnces w.accurate er'tiJ circulant approximations. ..

Thm - Approximable Proportion: [Swayambheoo Jain & JH 2015)

For2 << m<= n. let A = E™"" have iid N(0.1) entries. For
y 2 [0.1,/8). and n is sufficiently large, there exists 4 positive
constant ¢(d) such that

Pr(Ewc,. .(A) < SJA|F) = Ofe S5 ™)
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Take-away' Most (tat) matrices cannot be approximated to high accuracy (in
Frob. norm) by partial circulant matrices — the fraction admitting “good”
approximations is exponentially small in the product of the matrix dimensions




two extensions

We consider two extensions of the parfial circolant tframewaork

1) Post-processing: Rather than approximate A == SC, consider
A = PSC,

where S=F" """ (m" > m). P=TF""7" is arbitrary "post-processing’ matrix




two extensions

We consider two extensions of the parfial circolant framewark

1) Post-processing: Rather than approximate A == SC, consider
A = PSC,

where S=F™ """ (m' > m). P=F""7 is arhitrary "post-processing’ matrix

Implications:
® Enables accurate approximations when row space of A (not A itself) well
approximated by vectors related by circular shifts

® Slightly higher computational complexity - O(mm’  nlog n)
(can still be O(nlog n) when m" is small wrt n, e.g., when m o(n )...)




graphically...

Generahized approach — approximations ¢f the form




two extensions

action of A tor vectors x belonging
J

2) Restricted Input Domains. Approximate
a subspace. union of subspaces. mamfold

to “restricted” set .\" of nputs (e.g

New .\'-dependent approximation metrics, € g.. for any loss. distortion function
e " = 2, can consider the "worst-case’ distortion

!

sup {{Ax. PSCx)
x L]

‘average case distortion

[/ (Ax. PSCx)]
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pyv defined gn x <~ .\

for a specified distribution p

Implications:
main «nowledge

® doesn't require approximating A outside of “interesting’ inputs = .\
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experimental investigation

Consider 1440 vectorized, resized (to 45 « 45)
Mages from COIL-20 IMage database
A4S~ VW .43 . 2L NRBiR . 00/ CAVE I0ETHAT R/ 30 01t/ /e58l -0 . 307

Let rows of A (to be approximated) be the top 30 principal component vectors

Here: Minimize an (empirical) average Frobenius approximation error. let X he
a matrix whose columns are the vectorized images described above. Then, seek
to minimize

AX  PSCX ¢

by choice of matrices P. S and C




algorithmic approach

Algorithm 1 “Data-Driven” Partial Circulant Approximation

Inputs: LDR matrnx A ~ 2" ", paramerters \. s, J
Matrix of “representative” data X = 7 °F,
Initialize: M" = UT {from the SVD AX = UTV "), chy'" AX
repeat
i arg ming AX - MY ICX £ — 4 Clz
M ! arg Minpg ;. =+ - |AX = MC'"'X|z =AM
obj' = [AX MICIIX|+ « o C'™ - - AIMIT L.
until o b T e oyt

Output: M* - M'©' . C = CF

Here, (M, =N" |M where (M |

-~

§ Euchdean norm of column M

Insight: Combine actions of P and S into M enforce M to be column-sparse!




We have established the tollowing preliminary result tor thus general framework

Theorem: (Swayambhueo Jain & JH 2015)

ol L)

Let A= E""7 be any fixed matrix, and i : K" < Z" — & any loss that is
L-Lipschitz continuous (m Frobenius norm). Let .U be any countable set of
n-dimensional unit-norm vectors

For any r ©~ (0.12). there exists a post-processing P © _" "™ | sampling matrix

S € RE" 7" comprised of rows of identity, and circulant C < 7" for which

sup f(Ax. PSCx) < Le A |1,
xe A

provided that

m > ¢ log (cam|.Y' ) log™(n).
Here, ¢, and ¢ are universal positive constants.
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Extensions to uncountable sets .Y can be derived using covering arguments
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