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Learning Outcomes

• Know the major aluminum alloy groups and their uses 

• Know the principal structural properties of aluminum

• Become proficient in designing aluminum structural 
members and connections 
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Course Outline

• 6 Tension members

• 7 Compression members

• 8 Flexural members

• 9   Members in shear or torsion
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6. Tension Members

• SAS Chapter D covers axial tension

• Tensile limit state is reached at: 
• Rupture on the net section (Ω = 1.95)

• Yield on the gross section (Ω = 1.65)

• Same criteria as in AISC for steel

• It’s assumed that the net section exists only over a short portion of 
the member length, so yielding there won’t cause much elongation
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Net and Gross Sections

Yield on the 

gross section

Rupture on the

net section
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Rupture on the Net Section
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Allowable Tension Stress Example

• 6061-T6 Extrusions:

Fty = 35 ksi, Ftu = 38 ksi

• Allowable stress on the gross section:

F /Ωy = Fty /Ωy = 35/1.65 = 21.2 ksi

• Allowable stress on the net section:

F /Ωu = Ftu /(Ωu kt) = 38/[(1.95)(1.0)] 

= 19.5 ksi

Net section always governs
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Allowable Tensile Stress Example

• 6063-T5 Extrusions:

Fty = 16 ksi, Ftu = 22 ksi

• Allowable stress on the gross section:

F /Ωy = Fty / Ωy = 16/1.65 = 9.7 ksi

• Allowable stress on the net section:

F /Ωu = Ftu /(Ωu kt) = 22/[1.95)(1.0)] 

= 11.3 ksi

Gross or net section could govern
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Tension Coefficient kt

• kt is a notch sensitivity factor

• For alloys in SAS, kt > 1 only for :
• 2014-T6, 2219-T87, 6005-T5, and 6105-T5,  kt = 1.25

• 6066-T6 and 6070-T6, kt = 1.1

• 6005A-T61 has same Fty and Ftu as 6005-T5, but kt = 1.0 for 6005A-T61
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LRFD Tension Example

• 6061-T6 Extrusions:

Fty = 35 ksi, Ftu = 38 ksi

• LRFD design stress on the gross section:

y F = y Fty = 0.90(35) = 31.5 ksi

• LRFD design stress on the net section:

u F = u Ftu /kt = 0.75(38)/(1.0) = 28.5 ksi

So just like ASD, net section governs.
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Net Area

• SAS Section D.3.1

• Net area = gross area – (hole area)

• For staggered hole patterns

net width = w – Dhe + s2/4g

where w = gross width

Dhe = hole effective diameter

s = pitch (spacing ll to load)

g = gauge (spacing ⊥ to load)
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Net Width

Dh

w

s

g

Failure path

LC
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Hole Effective Diameter (Dhe)

• SAS uses, for Dh = nominal hole diameter:
• For drilled holes, Dhe = Dh

• For punched holes, Dhe = Dh + 1/32”

• AISC Steel Spec uses Dhe = Dh + 1/16” for all holes, regardless of how 
they are fabricated
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Shear Lag in a Channel

section unfolded stress
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Effective Net Area in Tension Ae

• SAS Section D.3.2

• If all parts of x-section aren’t connected to joint, full 
net area isn’t effective in tension

• Example: Channel bolted through its web only (not 
flanges)

• SAS addresses angles, channels, tees, zees, 
rectangular tubes, and I beams
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Effective Net Area Ae

• Effective net area = Ae

Ae = An(1 – x/LC)(1 – y/LC)

but no less than An of connected elements

An = net area

x = eccentricity in x direction

y = eccentricity in y direction

LC = length of connection in load direction
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Effective Net Area Example

• For a tee bolted through its flange only:

• Other examples are in ADM Part II D.3.2

• When only a single row of fasteners is used, LC = 0 and Ae = An of 
connected elements only

neutral axis 

of tee

y
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7. Compression Members

• Column = axial compression member 

• SAS Chapter E addresses columns

• Column strength is the least of:
• Member buckling strength

• Local buckling strength

• Interaction between member buckling and local buckling strengths
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Compressive Limit States

• Yielding (squashing)

• Inelastic buckling

• Elastic buckling 
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Elastic Buckling

• Elastic buckling stress = Fe = 0.852E / 2

• E is the only material property that elastic buckling strength depends 
on

•  = kL/r = largest slenderness ratio for buckling about any axis

• All other things equal, Fe for aluminum is 1/3 Fe for steel since Ea = Es

/3
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Member Buckling

• 0.85 factor accounts for member out-of-straightness

• k = 1 for all members (see Section C.3)

• Allowable member buckling strengths really haven’t changed from 
2005 SAS:
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Inelastic Buckling

• Inelastic buckling strength = Fc = 

(Bc – Dc)[0.85 + 0.15(Cc – )/(Cc – 1)]

• When  = Cc, Fc = 0.85 2E /Cc
2

• When  = 1, Fc = Fcy
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Inelastic Buckling Constants

• Inelastic buckling strength = Fc =

(Bc - Dc)[0.85 + 0.15(Cc - )/(Cc - 1)]

• Bc (y intercept) and Dc (slope) are buckling constants that depend on 
Fcy and E

• Calculate them by SAS equations in:
• Table B.4.1 for O, H, T1 thru T4 tempers
• Table B.4.2 for T5 thru T9 tempers

• Bc , Dc , and Cc are tabulated in ADM Part VI Table 1-1 (unwelded) and 
1-2 (welded)
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Yielding

• Yield strength is simply Fc = Fcy

• Yielding depends only on material strength 
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Buckling Strength vs. Slenderness
Inelastic Buckling 

Fc = (Bc - Dc)[0.85 + 0.15(Cc - )/(Cc - 1)]

Elastic Buckling 

Fc = 0.85π2E/λ2

Yielding 

Fc = Fcy

Strength

Fc

Slenderness ratio = λ = kL/r λ1 Cc = λ2
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Slenderness Limits 1, 2

• 1 is the slenderness for which yield strength = inelastic buckling 
strength

• 2 is the slenderness for which inelastic buckling strength= elastic 
buckling strength

• Slenderness ratios (kL/r) are not limited by 1 and 2; 1 and 2 are 
just the limits of applicability of compressive strength equations
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6061-T6 Column Strength

• ADM Part VI, Table 2-19 gives allowable stresses based on SAS rules

• For kL/r < 17.8, Fcy /Ω = 21.2 ksi

• For 17.8 < kL/r < 66, 

Fc /Ω = 25.2 – 0.232(kL/r) + 0.000465(kL/r)2

• For kL/r > 66, Fc /Ω = 51,350/(kL/r)2
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Slenderness Limits Demonstrated

• For kL/r = 2 = 66:
• Inelastic buckling allowable stress is 

25.2 – 0.232(66) + 0.000465(66)2 = 11.9 ksi

• Elastic buckling allowable stress is 

51,350/(66)2 = 11.8 ksi ≈ 11.9 ksi

• Difference is only due to round off in allowable stress expressions 
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Column Example

• What’s the allowable member buckling compressive stress for a 
column given:

• 6061-T6

• Pinned-end support conditions

• Length = 95”

• Shape is AA Std I 6 x 4.03 

rx = 2.53”, ry = 0.95”

• No bracing
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Column Example Answer

• Column will buckle about minor axis since slenderness ratio kL/r is 
larger there:

• kL/r = (1.0)(95”)/0.95” = 100

• Since kL/r = 100 > 2 = 66 (buckling is elastic), so

Fc /Ω = 51,350/(100)2 = 5.1 ksi

• We need to check local buckling, too
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Flexural & Torsional 
Column Buckling

Flexural Buckling

(lateral movement)

Torsional Buckling

(twisting)

Deflected shape Undeflected shape
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Types of Column Member Buckling

• Flexural (lateral movement)

• Torsional (twisting about longitudinal axis)

• Flexural-Torsional (combined effect)
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Torsional and 
Flexural-Torsional Buckling
• SAS Section E.2.2 addresses 

• a) doubly symmetric sections

• b) singly symmetric sections

• c) unsymmetric sections

Torsional and Flexural-
Torsional Buckling
• Calculate torsional or flexural-torsional elastic buckling stress Fe using 

equations given for the above cases

• Use Fe to calculate the slenderness ratio λ = π √E/Fe

• Use λ in member buckling equations of E.2 to determine compressive 
strength 
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Torsional Buckling Example 

• I 6 x 4.03 is doubly symmetric; E.2.2a gives the torsional buckling 
stress as:
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Torsional Buckling Example
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Because the torsional buckling slenderness (63.7) is 

less than the flexural buckling slenderness (100), the 

torsional buckling strength is greater than the flexural 

buckling strength, and does not govern.
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Local Buckling

• Local buckling is buckling of an element of a shape (i.e., a flange or 
web)

• Buckle length ≈ width of element

• If local buckling strength of all elements > yield strength, the shape is 
compact, and local buckling won’t occur

• Since aluminum shapes vary widely (extrusions, cold-formed shapes), 
we can’t  assume aluminum shapes are compact
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Local Buckling Examples

Web Buckling Flange Buckling

buckled 

shape

Tube Buckling
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Local Buckling of a Tube
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Elements of Shapes are Called:

• Element

• Flange or web

• Component

• (Plate)
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Dividing a Shape Into Elements
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Elements of Shapes

• Cross sections can be subdivided into two types of elements:
• Flat elements (slenderness = b/t )

• Curved elements (slenderness = Rb /t )

• Longitudinal edges of elements can be:
• Free

• Connected to another element

• Stiffened with a small element
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Element Support Conditions

supported edge stiffened edge free edge
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Elements in Uniform Compression
Addressed by the SAS

B.5.4.1 Flat element supported on one edge

(flange of an I beam or channel)

B.5.4.2 Flat element supported on both edges

(web of I beam or channel)

B.5.4.3 Flat element supported on one edge, 

other edge with stiffener

B.5.4.4 Flat element supported on both edges, 

with an intermediate stiffener 

B.5.4.5 Curved element supported on both edges
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Local Buckling Strengths

• Yielding Fc = Fcy

• Inelastic buckling Fc = Bp – Dp (kb/t)

• Elastic buckling Fc = 2E /(kb/t)2

• Postbuckling Fc = k2 (BpE)1/2/ (kb/t)

• k = edge support factor
• k = 5.0 for elements supported on 1 edge

• k = 1.6 for elements supported on both edges

• k2 = postbuckling factor ≈ 2   (Table B.4.3)
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Postbuckling Strength

• Only elements of shapes have postbuckling strength – members do 
not 

• Postbuckling strength is not recognized by SAS for all types of 
elements

• After buckling elastically, some elements are capable of supporting
more load

• If the appearance of buckling is unacceptable, don’t include 
postbuckling
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Element Strength vs. Slenderness
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6061-T6 Column Flange Strength

• Yielding Fc /Ω = Fcy /Ω

1 = 6.7 Fc /Ω = 35/1.65 = 21.2 ksi

• Inelastic buckling Fc /Ω = [Bp – Dp (5.0b/t)]/ Ω

2 = 12 Fc /Ω = 27.3 – 0.910b/t

• Elastic buckling Fc /Ω = [2E /(5.0b/t)2]/ Ω

2 = 10.5 Fc /Ω = 2417 /(b/t)2

• Postbuckling Fc /Ω = [k2 (BpE)1/2/(5.0b/t)]/ Ω

Fc /Ω = 186 /(b/t)
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Column Local Buckling - Flange

• Shape is AA Std I 6 x 4.03:
flange slenderness = b/t

b/t = (4” – 0.19”)/2/0.29” = 6.6

1 = 6.7 > 6.6 so 

Fc /Ω = 21.2 ksi

You can deduct the flange-web fillet 
radius from b if R < 4t, or 
conservatively neglect it

6”

0.29”

0.19”

4”

R
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Column Local Buckling - Web
• Shape is AA Std I 6 x 4.03:

web slenderness = b/t

b/t = [6” – 2(0.29”)]/0.19” = 28.5

1 = 20.8 < 28.5 < 33 = 2, so 

Fc /Ω = 27.3 – 0.291b/t = 

Fc /Ω = 27.3 – 0.291(28.5) = 19.0

You can deduct the flange-web fillet 
radius from b if R < 4t, or conservatively 
neglect it

4”

6”

0.29”
R
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Local Buckling Strength

• Methods for local buckling strength:
• Conservative, but easy approach: Use the least of local buckling strengths of 

the shape’s elements, or

• More accurate, but more work : Use the weighted average (SAS Section E.3.1) 
of the local buckling strengths

• Direct strength method

Designing Aluminum Structures 52

Weighted Average Allowable Compressive Stress 
of I 6 x 4.03

• Fcf /Ω = 21.2 ksi

• Fcw /Ω = 19.0 ksi

• Af = 2(4”)(0.29”) 

= 2.32 in2

• Aw = (6” – 2(0.29”))(0.19”)

= 1.03 in2

• Fca /Ω = 21.2(2.32) + 19.0(1.03)

(2.32 + 1.03) 

=  20.5 ksi

0.19”

R

6”

0.29”
R

51

52



Designing Aluminum Structures 53

Local Buckling/Member Buckling Interaction 

• If the elastic local buckling stress < member buckling stress, member 
buckling stress must be reduced (SAS Section E.4)

• Reduced member buckling stress is Frc:

Frc = (Fc)
1/3(Fe)

2/3

where Fc = elastic member buckling stress

Fe = elastic local buckling stress

This only governs if elements are very slender and postbuckling 
strength is used

Local/Member Buckling Interaction Example

• Flange elastic buckling stress Fef

• Web elastic buckling stress Few
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Local/Member Buckling Interaction Example

• Member buckling stress Fc

• Since Fe = 47.9 ksi > Fc = 8.5 ksi, the member buckling strength need 
not be reduced for interaction between local and member buckling
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Column Design Summary

• Column strength is the least of:
• Member buckling strength

• Local buckling strength

• Interaction between member and local buckling strengths

• Pn = Fc Ag
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8. Flexural Members

• Beam = flexural member

• Beam strength limit states are:
• F.2 Yielding Ω = 1.65

• F.2 Rupture Ω = 1.95

• F.3 Local buckling Ω = 1.65

• F.4 Member buckling (LTB) Ω = 1.65

M M
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Yielding and Rupture in Beams

neutral axis

yielding onsetcross section full yielding

Fy Fy

Fy Fy

MnpMy

rupture

Fu

Fu

Mnu
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yc

yt

Ac

At

Plastic Modulus Z

• When both sides of n.a. are fully yielded, Fty At = 
Fcy Ac

• Use Fcy for both Fcy and Fty to determine Z 

• So Ac = At = A/2

Z = At yt + Ac yc

Z = A(yt + yc)/2
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Yielding in a Beam
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Beam Yielding Strength Mnp

• For wrought products Mnp shall not exceed
• ZFcy , 1.5St Fty , 1.5Sc Fcy

• For cast products Mnp shall not exceed
• St Fty, Sc Fcy

• Before 2015 SAS used only part of the plastic modulus Z for yield 
strength

• 1.5S limit on Z is to prevent yielding at service loads  (AISC limit is 
1.6S)
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Beam Yielding Strength Mnp

• Example I 12 x 14.3:
• S = 52.89 in3 elastic section modulus

• Z = 58.36 in3 plastic section modulus

• Z = 2[5.382(0.31)/2 + 7(0.62)(5.38 + 0.62/2)]

web flange

• Z/S = 1.10 = shape factor < 1.5

• Mnp = (58.36 in3)(35 k/in2) = 2043 in-k

• Mnp /Ω= (2043 in-k)/1.65 = 1238 in-k
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Beam Rupture Strength Mnu

• For wrought products and cast products Mnu = Z Ftu /kt

• Before 2015 SAS used only part of the plastic modulus Z for rupture 
strength

• For I 12 x 14.3, 

Mnu = (58.36 in3)(38 k/in2)/1 = 2218 in-k

Mnu /Ω= (2218 in-k)/1.95 = 1137 in-k
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Local Buckling Flexural Strength

• Determine by one of these methods:
• F.3.1 Weighted average

• F.3.2 Direct strength

• F.3.3 Limiting element
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Local Buckling of Beam Elements

• Beam elements in uniform compression (flanges) are just like column 
elements in uniform compression (see B.5.4)
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Beam Flange Stress

neutral axis

bending stresscross section

Compression

Tension
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Local Buckling of a Flange
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Local Buckling - Flange

• Shape is AA Std I 12 x 14.3:
flange slenderness = b/t

b/t = (7” – 0.31”)/2/0.62” = 5.4

5.4 < 6.7= 1 so 

Fc /Ω = 21.2 ksi

You can deduct the flange-web fillet 
radius from b if R < 4t, or 
conservatively neglect it

12”

0.62”

0.31”

7”

R
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Beam Elements in SAS –Elements in Flexure (Webs)

B.5.5.1 Flat element - both edges supported 

(web of I beam or channel)

B.5.5.2 Flat element - compression edge free, 

tension edge supported 

B.5.5.3 Flat element with a longitudinal stiffener –

both edges supported (see B.5.5.3 for 

stiffener requirements
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Local Buckling - Web
• Shape is AA Std I 12 x 14.3:

web slenderness = b/t

b/t = [12” – 2(0.62”)]/0.31” = 34.7

1 = 33.1 < 34.7 < 77 = 2, so 

Fc /Ω = 40.5 – 0.262b/t = 

Fc /Ω = 40.5 – 0.262(28.5) = 31.4

You can deduct the flange-web fillet 
radius from b if R < 4t, or conservatively 
neglect it

12”

0.62”

0.31”

7”

R
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Weighted Average Bending Strength (F.3.1)

ccf ccw

If

Iw

If

tension side

compression side

MnLB = Fcf If /ccf + Fcw Iw /ccw

Weighted Average Example

• For I 12 x 14.3,

MnLB /Ω = Fcf If /Ωccf + Fcw Iw /Ωccw

= (21.2)(281.3)/5.69 + 

(31.4)(32.18)/5.38

= 1236 in-k
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12”

0.62”

0.31”

7”

R
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Direct Strength Method (F.3.2)

• Determine elastic local buckling stress Fe (one way is finite strip 
method, like for members in axial compression)

• Determine slenderness 

ratio λ for the shape λ = π √E/Fe

Use F.3.2 to determine the local buckling strength of the shape
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Limiting Element Method (F.3.3)

• Stress in each element shall not exceed the local buckling strength of 
that element

• Determine FLB using B.5.4.1 thru B.5.4.4 for elements in uniform 
compression

• Determine FLB using B.5.5.1 thru B.5.5.4 for elements in flexural 
compression
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Lateral-Torsional Buckling (LTB)
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Major (Strong) Axis LTB

Top flange

(in compression)

buckles laterally

Bottom flange

(in tension) stays

In place

Undeflected shape

Deflected shape 

at ultimate load

Load

LTB = Lateral-torsional buckling
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6061-T6 LTB Strength

• Inelastic buckling λ < Cc = 66

Mnmb/Ω = [Mnp(1 – λ/Cc) + 2EλSc /Cc
3]/Ω

Mnmb/Ω = Mnp /1.65 – λ(Mnp /109 – 0.210Sc)

• Elastic buckling λ > Cc = 66

Mnmb /Ω = 2ESc /(Ωλ2)

Mnmb /Ω = 60,400Sc /λ2

Lateral-Torsional 
Buckling (LTB) Stress
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ks
i

LTB Slenderness λLTB

Lateral-Torsional Buckling Stress

Local Buckling Stress

Cc

FLTB = π2E/λLTB
2

FLTB = (Mnp/Sc)(1 - λLTB/Cc) + π2EλLTB/Cc
3

Cc

Mnp /Sc
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Slenderness Ratio λ for LTB
Section Shape λ Example

F.4.2.1 sym about 

bending axis

F.4.2.3 closed shape

F.4.2.4 rectangular 

bar

F.4.2.5 any shape
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Unbraced Length for Beams Lb

• Slenderness ratio depends on unbraced beam length Lb

• Lb = length between bracing points or between a brace point and the 
free end of a cantilever beam.  Braces:

• restrain the compression flange against lateral movement, or 

• restrain the cross section against twisting

• Appendix 6 addresses brace design
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Bending Coefficient Cb

• Cb accounts for moment variation along the beam. For doubly 
symmetric sections:

• Cb = 4Mmax

(M2
max + 4M2

A + 7M2
B + 4M2

C)0.5

where MA = moment at ¼ point

MB = moment at midpoint

MC = moment at ¾ point
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Cb Examples

• Cb = 1.0 (min)

• Cb = 2.3

• Cb = 1.13

• It’s always conservative to use Cb = 1; max Cb = 3.0

M M

M

M

w
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rye for Shapes Symmetric About the Bending 
Axis
• F.4.2.1 allows using 1.2ry or ryd /(2rx) for rye

• That’s easy, but conservative in neglecting torsional strength, and 
unconservative if load is applied toward shear center

• It’s worth determining rye using more precise equations given in 
F.4.2.1 

• That’s more work, but more accurate

Calculating rye

• F.4.2.1 Shapes symmetric about the bending axis:
uses equations based         on Iy, Cw, Sx, J, Lb, and 
where the load is applied relative to the beam’s 
neutral axis

• F.4.2.2 Singly symmetric shapes unsymmetric about 
the bending axis

• If Iyc < Iyt, you can transform the tension flange to look like 
the compression flange and use F.4.2.1
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Singly Symmetric Beam Unsymmetric 
About Bending Axis
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Treat this shape As if it were this shape

Compression Flange
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Transverse Load Location
Load acts toward shear center

(smallest buckling strength)

Load acts away from shear center

(greatest buckling strength)

Load applied at shear center
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rye for Shapes Symmetric 
about the Bending Axis

• Load applied toward shear center

• Load applied at shear center, or 
no load

• Load applied away from shear 
center
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LTB Example

• What’s the allowable LTB moment for a beam given:
• 6061-T6

• Length = 86”

• Shape is AA Standard I 12 x 14.3, ry = 1.71,

Iy = 35.48, Sx = 52.89, Cw = 1148, J = 1.26

• No bracing between beam ends

• Transverse load applied toward shear center
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LTB Example Answer

• rye for slenderness ratio Lb /rye is

= 1.67

λ = Lb /rye = 86”/1.67” = 51.5

• Since Lb /ry = 51.5 < 66 = Cc, 

MnLTB /Ω = Mnp /1.65 – λ(Mnp /109 – 0.210Sc)

= 2043/1.65 – 51.5(2043/109 –0.210(52.89))

= 845 in-k

Open Section LTB Strength

• Open section beam (e.g., I beam) resists lateral buckling mostly by 
warping strength; LTB strength is given by F.4.2.1 for shapes sym
about the bending axis

• F.4.2.1 includes torsion strength (which increases as Lb increases) and
warping strength if you don’t use the approximation 1.2ry or ryd /(2rx) 
for rye
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Closed Section LTB Strength

• Closed section beam (e.g., rectangular tube) resists lateral buckling by 
torsion strength; LTB strength is given by F.4.2.3

• F.4.2.3 includes torsion strength only, not warping strength. If Cw << 
0.038JLb

2, this isn’t overly conservative

• F.4.2.3 assumes shape is sym about bending axis & load acts at shear 
center; usually this isn’t very unconservative

Any Shape LTB Strength

• F.4.2.5 gives LTB for any shape; eq F.4-9: 

λ =              ,

• U = C1go + C2β/2, where

• go = distance from load application to s.c.

• β = coefficient of monosymmetry

• C1 and C2 depend on loading; ≈ 0.5
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I 12 x 14.3 Available Strengths

• Yielding Mnp /Ω = 1238 in-k

• Rupture Mnu /Ω = 1137 in-k

• Local buckling MnLB /Ω = 1236 in-k

• LTB MnLTB /Ω = 845 in-k

The available flexural strength is the least of these: 

Mn /Ω = 845 in-k
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9. Members in Shear or Torsion

• Shear is addressed in SAS Chapter G

• Torsion is addressed in SAS Section H.2

• Safety factors:
• Rupture (Ω = 1.95, new in 2015)

• Yield and buckling (Ω = 1.65)
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Shear Buckling

normal 

stress

shear stress

Mohr’s circle

pure shear

pure compression

fs

fs

fc

fc

fc

fs

45o

Web Shear Buckling
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Elements in Shear in SAS

G.2 Flat element supported 

on both edges

G.3 Flat element supported 

on one edge

G.4 Pipes and 

round or oval tubes

G.5 Rods
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6061-T6 Web Shear Strength

• Yielding Fs /Ω = Fsy /Ω

λ1 = 35 Fs /Ω = 0.6(35)/1.65 = 12.7 ksi

• Inelastic buckling 

Fs /Ω = [Bs – Ds (1.25b /t)]/ Ω

λ2 = 63 Fs /Ω = 16.5 – 0.107b /t

• Elastic buckling 

Fs /Ω = [2E /(1.25b /t)2]/ Ω

Fs /Ω = 38,700 /(b /t)2
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Web Shear Example

• What’s the allowable shear stress 
for a flat web given:

• 6061-T6

• Shape is AA Std I 6 x 4.69 

d = 6”, tf = 0.35”, tw = 0.21”

V

0.35”

0.21” 6”
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Web Shear Example Answer

• Web height is b = d – 2tf = 6” – 2(0.35”)

b = 5.3”

• Web slenderness ratio is 

b/tw = 5.3”/0.21” = 25.2 < λ1 = 35

• For yield Fsy /Ω = 0.6(35)/1.65 = 12.7 ksi 

• For rupture Fsu /Ω = 0.6(38)/1.95 = 11.7 ksi

• V /Ω = (dtw)Fs /Ω = (6”)(0.21”)(11.7 k/in2)

= 14.7 k
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Torsion

• H.2.1 Pipes and

Round or Oval Tubes 

• H.2.2 Rectangular Tubes

• H.2.3 Rods

• H.2.4 Open Shapes
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Torsion in a Round Tube

• 5050-H34 tube, Fcy = 0.9(20) = 18 ksi

• 10” diameter x 0.050” thick

• 96” long

• Determine the allowable 

shear stress Fs /Ω

T
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Torsion Example

• Section H.2.1, slenderness λ:

• λ = 2.9(R/t)5/8(L/R)1/4

• λ = 2.9(5”/0.05”)5/8(96”/5”)1/4

• λ = 108 < 108 = λ2

• So Fs /Ω = 10.0 – 0.061(108) = 3.4 ksi 
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Thank You
• Please contact me with questions

• rkissell@trinityconsultants.com

• office: 919-493-8952; cell: 919-636-0072

103

104


