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Background: Ordinary Differential Equations (ODEs)

- Model the instantaneous change of a state.

(explicit form)

- Solving an initial value problem (IVP) corresponds to integration.

(solution is a trajectory)

- Euler method approximates with small steps:



Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:

Haber & Ruthotto (2017). E (2017). 



Residual Networks interpreted as an ODE Solver
- Hidden units look like:

- Final output is the composition:

- This can be interpreted as an Euler 
discretization of an ODE.

Haber & Ruthotto (2017). E (2017). 

- In the limit of smaller steps:
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But:
(1) What is the underlying dynamics?
(2) Adaptive-step size solvers provide better error handling.
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Parameterize

“Neural” Ordinary Differential Equations

Solve the dynamic using any 
black-box ODE solver.

- Adaptive step size.
- Error estimate.
- O(1) memory learning.

Instead of y = F(x), solve y = z(T) 
given the initial condition z(0) = x.
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Backprop without knowledge of the ODE Solver
Ultimately want to optimize some loss

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)
- Pontryagin (1962).

+ Automatic differentiation.
+ O(1) memory in backward pass.
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A Differentiable Primitive for AutoDiff

Reversible networks (Gomez et al. 2018) also only require O(1)-memory, but 
require very specific neural network architectures with partitioned dimensions.

Don’t need to store layer activations for reverse pass - just follow dynamics in 
reverse!



Reverse versus Forward Cost

- Empirically, reverse 
pass roughly half as 
expensive as forward 
pass.

-

- Adapts to instance 
difficulty.

-

- Num evaluations can 
be viewed as number of 
layers in neural nets.

NFE = Number of Function Evaluations.



Dynamics Become Increasingly Complex

- Dynamics become 
more demanding to 
compute during 
training.

- Adapts computation 
time according to 
complexity of diffeq.

In contrast, Chang et al. (ICLR 2018) 
explicitly add layers during training.



Continuous-time RNNs for Time Series Modeling
- We often want arbitrary measurement times, ie. irregular time intervals.
- Can do VAE-style inference with a latent ODE.



ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very 
stiff dynamics, 
have exploding 
gradients. 

-

- Whereas ODEs 
are guaranteed 
to be smooth.
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Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function 

- In other words,

With an 
invertible F:



Continuous Normalizing Flows

1D: 2D: Data Discrete-NF CNF



Stochastic Unbiased Log Density



Stochastic Unbiased Log Density

Can further reduce time complexity using stochastic estimators.

Grathwohl et al. (2019)



FFJORD - Stochastic Continuous Flows

Grathwohl et al. (2019)

MNIST - Model Samples CIFAR10 - Model Samples



ODE Solving as a Modeling Primitive
Adaptive-step solvers with O(1) memory backprop.

github.com/rtqichen/torchdiffeq

Future directions we’re currently working on:

- Latent Stochastic Differential Equations.
- Network architectures suited for ODEs.
- Regularization of dynamics to require fewer evaluations.
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Extra Slides



Latent Space Visualizations



• Released an implementation of reverse-mode 
autodiff through black-box ODE solvers.

• Solves a system of size 2D + K + 1.

• In contrast, forward-mode implementation 
solves a system of size D^2 + KD.

• Tensorflow has Dormand-Prince-Shampine 
Runge-Kutta 5(4) implemented, but uses 
naive autodiff for backpropagation.



How much precision is needed?

https://docs.google.com/file/d/1-51ddfTReHHWHQF897E1JQ96GCQajtrq/preview
https://docs.google.com/file/d/1gvuKFmRWqGQ9V-lYKLhp-_nJ-wrs2V-u/preview


Explicit Error Control

- More fine-grained 
control than 
low-precision floats.

- Cost scales with 
instance difficulty.

NFE = Number of Function Evaluations.



Computation Depends on Complexity of Dynamics

- Time cost is dominated by 
evaluation of dynamics f.

NFE = Number of Function Evaluations.



Why not use an ODE solver as modeling primitive?
- Solving an ODE is expensive.



Future Directions
- Stochastic differential equations and Random ODEs. Approximates stochastic 

gradient descent.
- Scaling up ODE solvers with machine learning.
- Partial differential equations.
- Graphics, physics, simulations.


