Neural Ordinary
Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud

University of Toronto



Background: Ordinary Differential Equations (ODEsSs)

- Model the instantaneous change of a state.
dz(t)
dt

- Solving an initial value problem (I\VP) corresponds to integration.

= f(z(t),t) (explicit form)

t
z(t) = z(tg) + | f(z(t),t)dt  (solution is a trajectory)
to

- Euler method approximates with small steps:

2(t+h) =z2(t)+ hf(z(t),1)



Residual Networks interpreted as an ODE Solver

- Hidden units look like: zi+1 = Fi(z1) = 21 + fi(21)
- Final output is the composition: zp, = Fr,_1 0 Fr_o---0 Fy(20)

Haber & Ruthotto (2017). E (2017).



Residual Networks interpreted as an ODE Solver

- Hidden units look like: zj4+1 = Fi(21) = 21 + fi(21)
- Final output is the composition: zp, = Fr,_1 0 Fr_o---0 Fy(20)

A Az A
2 4
- This can be interpreted as an Euler A
discretization of an ODE. Ao
>

. dZ(t) Zt4+h — <t
- In the limit of smaller steps: — 1 —
T TR T h f(z)

Haber & Ruthotto (2017). E (2017).



Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc. Forward Euler

PolyNet Approximation to Backward Euler
FractalNet Runge-Kutta

DenseNet Runge-Kutta



Deep Learning as Discretized Differential Equations

Many deep learning networks can be interpreted as ODE solvers.

Network Fixed-step Numerical Scheme
ResNet, RevNet, ResNeXt, etc. Forward Euler LU et al' (201 7)
Chang et al. (2018)
PolyNet Approximation to Backward Euler
Zhu et al. (2018)
FractalNet Runge-Kutta
DenseNet Runge-Kutta

But:
(1) What is the underlying dynamics?
(2) Adaptive-step size solvers provide better error handling.



“Neural” Ordinary Differential Equations

Instead of y = F(x),

Residual Network
5
4 b
c 3
o
(O]
85
1
S — 0 5

Input/Hidden/Output



“Neural” Ordinary Differential Equations

Instead of y = F(x), solve y = z(T) 5R€Sldual Network ODE Network
given the initial condition z(0) = x. :
4 ¢
Parameterize dz(t) f(a(t),0(1)) "
: 5
G 2
1 ] : /
0=5 0 5 0="5 0 5
Input/Hidden/Output

Input/Hidden/Output



“Neural” Ordinary Differential Equations

Instead of y = F(x), solve y = z(T) 5R€Sldual Network
given the initial condition z(0) = x.

ODE Network

4 1L
Parameterize %2(t)

Solve the dynamic using any

black-box ODE solver. 1
- Adaptive step size.

Error estimate.

2

-5 5
Input/Hidden/Output

50 5
. Input/Hidden/Output
O(1) memory learning. nput/Hidden/Outpu




Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

L(z(T)) =L (z(to) + ' f(z(t),t, 9)dt> = L (ODESolve(z(to), to, T, 0))

to

oL _,

o0



Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

to

L(z(T)) = L (z(to) L F2(0), 1, H)dt) — L (ODESolve(z(to), to, T, 0))

Naive approach: Know the solver. Backprop through the solver.
- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.



Backprop without knowledge of the ODE Solver

Ultimately want to optimize some loss

T

L(z(T)) =L (z(to) -+ f(z(t),t, 9)dt> = L (ODESolve(z(to), to, T, 8))
to

Naive approach: Know the solver. Backprop through the solver.

- Memory-intensive.
- Family of “implicit” solvers perform inner optimization.

Our approach: Adjoint sensitivity analysis. (Reverse-mode Autodiff.)
- Pontryagin (1962).
+ Automatic differentiation.
+ O(1) memory in backward pass.



Continuous-time Backpropagation

- oL
Residual network. a::= %

Forward: zian = 2zt + hf(zt)

Backward: a; = aiyp + hagin Of (2)
azt
. oL 0f(2(t), 0)
Params: = = ;
ol hain 90

Adjoint method.

Define: a(t) :=

oL
0z(t)




Continuous-time Backpropagation

- oL
Residual network. a::= %

Forward: zian = 2zt + hf(zt)

Backward: a; = aryn + haitn (91;(;0
t
: f(2(1),0)
Params: —— — ;
o0 hai4p, 90

Adjoint method.

t+1
Forward: z(t+1)=z(t) +
t

Define: a(t) :

0L
-~ 0z(t)

f(z(t)) dt



Continuous-time Backpropagation

Residual network. a ==§—ft Adjoint method.  Define: a(t) := aié)

t+1

Forward:  zi4n = 2zt + hf(2t) Forward: z(t+1)=z(t) + f(z(t)) dt
t

t Of(z(t
Backward: a; = atyn + haiin 9/z) | Backward: a(t) = a(t +1) +/ a(t) J=0)
0z — t+1 0z(t)
Adjoint State Adjoint DiffEq
. 0L of(2(t),0)
Params: I ’
BY: haitn 20




Continuous-time Backpropagation

Residual network. a ==§—i Adjoint method.  Define: a(t) := aié)

t+1

Forward:  zi4n = 2zt + hf(2t) Forward: z(t+1)=z(t) + f(z(t)) dt
t

Of(z)

b0 (1)
95, dt

Backward: a(t) = a(t+1) + /t—l—l a(t) 9z(t)

Adjoint State Adjoint DiffEq

01 ((t),0) oL /+ oy 200

Params: — =
00 06 00

Backward: a; = atrp + haian

OL
Params: 50 = haisn




A Differentiable Primitive for AutoDiff

L
s
: ®
Forward: /\/j o)
i State
Adjoint State
Backward: " a(ty)
A oL
\ 0z(tN)




A Differentiable Primitive for AutoDiff

Forward:

z(to) 2(ti41) State
Adjoint State

g i a(t; :
alta) S :
% 0z(t;) ’\/x
Backward: L x 7 oL 1 /—\
) ‘ .

| | | | >
| [ [ | i
t() tz ti—l tN



A Differentiable Primitive for AutoDiff

Don’t need to store layer activations for reverse pass - just follow dynamics in

reverse!

Table 1: Performance on MNIST. "From LeCun
et al. (1998).

Test Error  Memory  Time

1-Layer MLP' 1.60%

ResNet 0.41% O(L) O(L)
RK-Net 0.47% O(L) O(L)
ODE-Net 0.42% O(1) O(L)

Reversible networks (Gomez et al. 2018) also only require O(1)-memory, but
require very specific neural network architectures with partitioned dimensions.



Reverse versus Forward Cost

N 150 - m le-0
- Empirically, reverse o 4 H
pass roughly half as © le-1
expensive as forward < 100
AV le-2
- pass. O %
- Adapts to instance m ., ' le-3
o 7 -
| difficulty. E y . _—
- Num evaluations can = .
be viewed as number of O S0 100 150 £
layers in neural nets. (c) NFE Forward

NFE = Number of Function Evaluations.



Dynamics Become Increasingly Complex

- Dynamics become
more demanding to
compute during
training.

- Adapts computation
time according to
complexity of diffeq.

NFE Forward

0 25 50 75 100

(d) Training Epoch

In contrast, Chang et al. (ICLR 2018)
explicitly add layers during training.



Continuous-time RNNs for Time Series Modeling

- We often want arbitrary measurement times, ie. irreqular time intervals.
- Can do VAE-style inference with a latent ODE.

RNN encoder {2 [ i)

<h>~<>*~f>——» S e

|
" 1 % Latent space I I A ;.
i : . Data space ¥ ! : ' i
M M
Time CE(t Zl?(t)

L @— L @ 00— % L ® *—0 0
to t1 tn  tN+1 iy to t1 tn tNy1 ty
- > B - > <—>.

Observed Unobserved Prediction Extrapolation



ODEs vs Recurrent Neural Networks (RNNs)

- RNNs learn very
stiff dynamics,
have exploding
gradients.

- Whereas ODEs
are guaranteed
to be smooth.

me  Ground Truth
® Observation

= Prediction

== Extrapolation

(b) Latent Neural Ordinary Differential Equation



Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function f

dh Ologp(h(t)) of
i f(h(t),t) = > = —tr ( )

Oh(1)



Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function f

dh O0logp(h(t))

E — f(h(t)>t) — ot

- In other words,

o

h(tg) = x,h(t1) = 2 = logp(z) = logp(2) —I—/ 1 tr

)



Continuous Normalizing Flows

Instantaneous Change of variables (iCOV):

- For a Lipschitz continuous function f

dh Ologp(h(t)) of
il f(h(t),t) = > = —tr (8h(t))

In other words,

h(to) = z,h(t1) = 2z = logp(x) zlogp(2)+/t K (ai—@

OF
det —
¢ ox

With an
invertible F:

F(x) =2z = logp(x) = logp(z) + log




Continuous Normalizing Flows

1D: Data Discrete-NF

Vvv\
l

p(z(t1))

|
1 -
¥’ ' - -
) \
N\
' ' /
( :
N—

p(z(to))
- E= ~
N



Stochastic Unbiased Log Density

logp(z) =logp(z) + /t:l tr ((‘92{15)) - O(Dz)




Stochastic Unbiased Log Density
(505) € O(D?)

log p(z) = logp(z) +/ 1 tr (D)

to

Can further reduce time complexity using stochastic estimators.
tr(A) =E[ v1Av | ifEw!']=1
N——
trace estimator

/ (ana) = / | . G aj{w |=® U EF-on

7

Not an ODE - O(D)

Grathwonhl et al. (2019)



FFJORD - Stochastic Continuous Flows

MNIST - Model Samples CIFAR10 - Model Samples

O~ 0w\

o
3
4L
;
9
2
B,
Q
3
£

3LY\ ¥ &
5x475%50
366a22w¢7
93 S HIF
3940097 2
oLy 39
3511 491
£ 18 ¢606
63 ¢%8Q

Grathwonhl et al. (2019)



ODE Solving as a Modeling Primitive

Adaptive-step solvers with O(1) memory backprop.

github.com/rtgichen/torchdiffeq

Future directions we’re currently working on:

- Latent Stochastic Differential Equations.
- Network architectures suited for ODEs.
- Regularization of dynamics to require fewer evaluations.



Co-authors:

Jese encurt David Duvenaud

Thanks!

7 VECTOR
INSTITUTE




Extra Slides



Latent Space Visualizations




def grad_odeint({yt, func, v@, t, func_args, skkwargs):

T, D = np.shape(yt)
flat_args, unflatten = flatten{func_args)

def flat_func(y, t, flat_args):

s N e e e « Released an implementation of reverse-mode
def unpack(x): '
“ autodiff through black-box ODE solvers.

return x[0:D] x[b:rz.* D] x[2"* D] x[2 %D + 1:]

def augmented_dynamics(augmented_state t, flat_args):
Q vj/p_y _i_\‘:_>= Jﬁbaék(éagéénfeﬁ_ﬁt\a{ei L e .
vjp_all, dy_dt = make_vjp(flat_f =(0, 1, 2))(y, t, flat_ ) °
VIbLy. VIP.T, vip.args = vip.allivipy) | g s Solves a SYStem of size 2D + K+ 1,
return np.hstack((dy_dt, vip_y, vjp_t, vip_args))
def vip_all(g):
py = ot « In contrast, forward-mode implementation

VIP_Br98 = np.BAYD8 pBESEC 1t _orgs) solves a system of size D/2 + KD.

for i in range(T - 1, @, -1):
F e el 18 i sy g « Tensorflow has Dormand-Prince-Shampine
RCR— ] T Runge-Kutta 5(4) implemented, but uses
aug_y@ = np.hstack((yt[i, :]1, vip_y, vip_t@, vjp_args)) . . .
P ot ot U weetirecares ), e NAIVE @UTOIiff fOr backpropagation.

np.array([t[i]
vip_y, vip_t@, vip_args = unpack(aug_ans[1])

vip_y = vip_y + gli - 1, :]
time_vjp_list.append(vjp_t@)
vjp_times = np.hstack(time_vjp_list)[::-1]

return None, vjp_y, vjp_times, unflatten(vjp_args)
return vip_all



How much precision is needed?

p(2) Density Samples p(2) Density Samples


https://docs.google.com/file/d/1-51ddfTReHHWHQF897E1JQ96GCQajtrq/preview
https://docs.google.com/file/d/1gvuKFmRWqGQ9V-lYKLhp-_nJ-wrs2V-u/preview

Explicit Error Control

More fine-grained
control than
low-precision floats.

Cost scales with
instance difficulty.

1ol le-0
S | |

Lﬁ le-1
— 107 le-2
O =
a i le-3
@ 103

g _____________________ le-4
< 1072 . le-5

0 50 100 150

(a) NFE Forward

NFE = Number of Function Evaluations.



Computation Depends on Complexity of Dynamics
le-0

. ¥l
le-2

le-3

i '

0.0 le-5

0 50 100 150

(b) NFE Forward

£
o

- Time cost is dominated by
evaluation of dynamics f.

Relative Time

NFE = Number of Function Evaluations.



Why not use an ODE solver as modeling primitive?

- Solving an ODE is expensive.



Future Directions

- Stochastic differential equations and Random ODEs. Approximates stochastic
gradient descent.

- Scaling up ODE solvers with machine learning.

- Partial differential equations.

- Graphics, physics, simulations.



