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Matrix functions

Definition: Matrix function

Let A € C"*" spec(A) C Q2 C Cand f: 2 — C sufficiently
smooth. Then define

where p is the polynomial that interpolates f at spec(A) in the
Hermite sense.

» Wanted: f(A4)b, the action of f(A) on a vector b € C".
» Problem: f(A) is full, even when A is sparse.

» ~ Forming f(A) explicitly and then multiplying it to b is
not feasible for large A.
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Krylov subspace approximation to f(A)b

» Therefore: Try to approximate f(A)b directly.

Definition: Krylov subspace

Let A € C"*". b € C". Then the mth Krylov subspace with
respect to A and b is

Kn(A,b) ={pm(A)b : p,, polynomial with degp,, < m}.

» As f(A)b = p(A)b, approximate

f(A)b =~ £, € Kn(A,b).
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Krylov subspace approximation to f(A)b

» Let A be Hpd, V,, = vy, . ... v,,| the orthonormal basis
obtained from 1 steps of the Lanczos method, then

H

m

*_1""771 — “"771 ]—;7? —i— fm—{—l.m 'Um—i-le

with a tridiagonal matrix 7,,.
» Define mth Lanczos approximation to f(A)b as

.fm — ||b||2‘;nf(Tm)el-

» Question: How well does f,, approximate f(A)b, i.e.,
what do we know about

“f(:{)b _fm||2 ?

~+ When can we stop the iteration?
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Stieltjes functions

Definition: Stieltjes function

A function f : C\ R; — C defined by

1) = [ pautt

with a non-negative, monotonically increasing function /: is
called Stieltjes function.

If ;1(7) is differentiable, then

/0 z+td“(t)_/0 —
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Stieltjes functions

Examples of Stieltjes functions

( . b
3. f(z2)=2z=*a€(0,1)
4. f(z) = =
5. f(z) = =

» Applications: Solution of PDEs, sampling from Gaussian
Markov random fields, Dirichlet-to-Neumann maps,
quantum chromodynamics, ...
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Properties of Stieltjes functions

» For f a Stieltjes function, f(z) € R™ when 2 € R™

» Derivative of Stieltjes functions

Lemma

Let / be a Stieltjes function. Then

19 = -1y [

z+ 1)+l

du(t) for all k € N

» Stieltjes functions are completely monotonic on R, i.e.,

(=1 fY9(2) >0 forall j=0,1,2,... and z € RY.
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Computation of Lanczos error bounds

First step: Error representation

Using the connection to polynomial interpolation, we find

Theorem [Frommer, Guttel, S 2014]

Let / be a Stieltjes function and let f, be the mth Lanczos
approximation to f(A)b. Let spec(7,,) = {b1..... ..} and
define

2 = -1 : du(t).
6m( ) ( 1) ”b||2'7m\/0 ~wm(t) Z-Jr-t H( )

where w,,(t) = (t+61) - - - (t+6,,) and v, = [ [~ tix1.:- Then

f(A)b — [, = em(A) Vi,

where v,, . is the (1 + 1)st Lanczos vector.

Andreas Frommer, Marcel Schweitzer, Error Bounds for Matrix Functions 8/21




First step: Error representation

» Difference between original function and error function:
Reciprocal nodal polynomial 1/w,, () in integrand
» A de = all Ritz values real & positive
> l/u = posmve and monotonlcally decreasing
fo o du(T) positive, monotonically increasing

and bounded
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First step: Error representation

» Difference between original function and error function:
Reciprocal nodal polynomial 1/w,,(t) in integrand

» A Hpd = all Ritz values real & positive

> 1 /u ,,,( ) posmve and monotonically decreasing

s dp(T) positive, monotonically increasing

>'u Ozm

and bounded

Lemma [Frommer, Giittel, S 2014]

When A is Hpd, the error function can be written as

em(2) = (=)™ [BllYmEm(2),
where

= Ta¥ o : _ 1
€alz) = /0 g dp(t) with dp(t) = ol dp(t).

is a Stieltjes function.
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Second step: Error norm as quadratic form

e f(‘ fm e m+1|lb||9 ' € m( ‘l)b lmplles

Corollary [Frommer, S 2015]

Let 4 be Hpd, then

1£(A)b — finllz = 1B1I27m v 418m(A) Vi1

» Straightforward, but helpful result:

Let /.9 be completely monotonic on R™. Then f - g is com-
pletely monotonic on R™.

= ¢,,(2)? is completely monotonic.
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Third step: Gauss quadrature

» So far: Lanczos error norm for Stieltjes function is a
quadratic form induced by a completely monotonic
function

» How can we approximate such a quantity?

» Make things more complicated: This talk needs more
integrals!

» Let A= QAQY, n=0Q"v,,.;. Then
An

H el ; 2 o A 2 .. )
Um—{—lfm(fl) Umnm+1 = / Em ( 2 ) da ( 2 )
/\

1
with
0 A S /\1
(l(:) = Z;:l |I]j|2 /\i LK /\'H-l
Z;:l il? An < 2
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Third step: Gauss quadrature

» Lanczos error norm is a Riemann—Stieltjes integral of a
completely monotonic function

» Gauss quadrature gives bounds for such integrals

Let ¢ be completely monotonic on [A;. A, and let =,.w, and
2. ¢ be the nodes and weights of the /-point Gauss and (/:+1)-
point Gauss—Radau quadrature rule (with one node fixed at \;)

for f/\ z) da(z ) respectively. Then
An
Zweg %) / g9(z) da(z)
A1
and
k+1 5
> Gy 2 [ a(:)date)
(=1 a
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Third step: Gauss quadrature

» So, things are easy!

» Determine error function and use Gauss quadrature to
find bounds for the Lanczos error norm
» Oh, wait... We don't even know a explicitly
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Computation of Lanczos error bounds

Third step: Gauss quadrature

» So, things are easy!

» Determine error function and use Gauss quadrature to
find bounds for the Lanczos error norm
» Oh, wait... We don't even know o explicitly

» The “"Matrices, moments & quadrature” idea helps:

Theorem [Golub, Meurant]

Let A € C"" be Hpd, v,,.1 € C". Let 2. w, be the nodes
and weights of the /-point Gaussian quadrature rule for approx-
iImating f;l" glz)da(z) with o as before. Then

K
2

) wig(ze) = el g(T”) er.

=1

T,f,z) the tridiag. matrix from / Lanczos steps for A and v,, ;.
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Third step: Gauss quadrature

» Putting everything together gives

Theorem [Frommer, S 2015]

Let / be a Stieltjes function, let A € C"*" be Hpd, let f,,
be the mth Lanczos approximation to f(A)b. Let T ,,52) be the
tridiagonal matrix resulting from / steps of the Lanczos pro-
cess for A and v,,.; and let T,fQ) be the modification of Tk(.z)
corresponding to Gauss—Radau quadrature. Then

2 .y 2
161302 e em (1) 1 < 1£(A)b — Full3 < 1613l Em (T7) e

» So, we do Lanczos to approximate the error in Lanczos. ..
Sure. .. sounds like an awesome plan!
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Fourth step: Getting things efficient

» Naive computation of /-node error bounds:
~ |- additional multiplications with A

» First thought: It's probably better to use these
multiplications for our main Lanczos method and get a
more accurate Iterate. ..

» Or maybe we just use them for both?!
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Fourth step: Getting things efficient

» Naive computation of /-node error bounds:
~ [ additional multiplications with A

» First thought: It's probably better to use these
multiplications for our main Lanczos method and get a
more accurate Iterate. ..

» Or maybe we just use them for both?!

» Lanczos restart recovery:

Theorem [Frommer, Kahl, Lippert, Rittich 2013]

Let 7" be the bottom right (2k + 1) x (2k + 1) submatrix of
I, 1. Then k steps of the Lanczos process for 1" and e,

produce the same matrix T,§2) as / steps of the Lanczos process
for A and v, ..
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Fourth step: Getting things efficient

» So what exactly does restart recovery give us now?

» All multiplications with A advance the primary Lanczos

» We can still recover everything we need to compute error
bounds (with additional cost O(%*?))

» But: Error bounds for iterate from step 12 are not
available before step m + & + 1

» Lanczos converges monotonically for A Hpd ~~ error
bounds computed for f,, are also valid for f,, ...
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Example: Lattice QCD

» [rade-off between accuracy of the bounds and timely
availability.

» |teration number in which the upper bound is below 1077:

number of iterations
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Conclusions & Outlook

Conclusions (+ things | didn’t talk about):

» For 4 € C"*" Hpd, guaranteed error bounds for the mth
Lanczos approximation f,, to f(A)b can be computed
with cost independent of 1 and n

» T[he same techniques can be used to compute estimates
(but no bounds in general) in the non-Hermitian case
with cost independent of n

» Similar results for extended /rational Krylov subspace
methods

» Several variants of (rational) restart recovery for these
subspaces

Outlook
» Theoretical analysis for predicting quality of the bounds
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