Early Warning and Diagnosis in Complex High Dimensional Systems

Jie Sun
Department of Mathematics
Clarkson Center for Complex Systems Science (C3S2)
Clarkson University
Potsdam, New York 13699, USA

joint work with Erik Bollt (Clarkson)

Bifurcation, Tipping Point, Etc.

Example: bifurcation diagram of the logistic map

$$
x_{t+1}=r x_{t}\left(1-x_{t}\right)
$$

Bifurcation types saddle-node transcritical pitchfork Hopf

Small change of a system's parameter can cause large change of its dynamics

Detecting Bifurcation in Time Series(?)

Vol $461 \mid 3$ September 2009|doi:10.1038/nature08227

nature

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer ${ }^{1}$, Jordi Bascompte ${ }^{2}$, William A. Brock ${ }^{3}$, Victor Brovkin ${ }^{5}$, Stephen R. Carpenter ${ }^{4}$, Vasilis Dakos ${ }^{1}$, Hermann Held ${ }^{6}$, Egbert H. van Nes 1, Max Rietkerk ${ }^{7}$ \& George Sugihara ${ }^{8}$

Idea: track a (scalar) function of the time series \rightarrow Early-Warning Signals (EWS)
scalar time series

Application of EWS in Detecting Changes

Examples of EWS: (increased) AR(1), increased variance, etc.

Figure 4 | Critical slowing down indicated by an increase in lag-1 autocorrelation in climate dynamics. We show the period preceding the transition from a greenhouse state to an icehouse state on the Earth 34 Myr ago. The trends in the CaCO_{3} concentration time series removed by filtering before computing autocorrelation $(\operatorname{AR}(1)$ coefficient) are represented by the grey line. The horizontal dashed arrow shows the width of the moving window used to compute the autocorrelation. Modified from ref. 22.

Figure 5 | Subtle changes in brain activity before an epileptic seizure may be used as an early warning signal. The epileptic seizure clinically detected at time 0 is announced minutes earlier in an electroencephalography (EEG) time series by an increase in variance. Adapted by permission from Macmillan Publishers Ltd: Nature Medicine (ref. 3), copyright 2003.

Box 3 The relation between critical slowing down, increased autocorrelation and increased variance
Critical slowing down will tend to lead to an increase in the autocorrelation and variance of the fluctuations in a stochastically forced system approaching a bifurcation at a threshold value of a control parameter. The example described here illustrates why this is so. We assume that there is a repeated disturbance of the state variable after each period Δt (that is, additive noise). Between disturbances, the return to equilibrium is approximately exponential with a certain recovery speed, λ. . In a simple autoregressive model this can be described as follows

$$
\begin{gathered}
x_{n+1}-\bar{x}=\mathrm{e}^{\lambda \Delta t}\left(x_{n}-\bar{x}\right)+\sigma \varepsilon_{n} \\
y_{n+1}=\mathrm{e}^{\lambda \Delta t} y_{n}+\sigma \varepsilon_{n}
\end{gathered}
$$

Here y_{n} is the deviation of the state variable x from the equilibrium, ε_{n} is a random number from a standard normal distribution and σ is the standard deviation.
If λ and Δt are independent of y_{n}, this model can also be written as a first-order autoregressive (AR(1)) process:

$$
y_{n+1}=\alpha y_{n}+\sigma \varepsilon_{n}
$$

The autocorrelation $\alpha \equiv \mathrm{e}^{\lambda \Delta t}$ is zero for white noise and close to one for red (autocorrelated) noise. The expectation of an AR(1) process $y_{n+1}=c+\alpha y_{n}+\sigma \varepsilon_{n}$ is 18

$$
\mathrm{E}\left(y_{n+1}\right)=\mathrm{E}(c)+\alpha \mathrm{E}\left(y_{n}\right)+\mathrm{E}\left(\sigma \varepsilon_{n}\right) \Rightarrow \mu=c+\alpha \mu+0 \Rightarrow \mu=\frac{c}{1-\alpha}
$$

For $\mathrm{c}=0$, the mean equals zero and the variance is found to be

$$
\operatorname{Var}\left(y_{n+1}\right)=E\left(y_{n}^{2}\right)-\mu^{2}=\frac{\sigma^{2}}{1-\alpha^{2}}
$$

Close to the critical point, the return speed to equilibrium decreases, implying that λ approaches zero and the autocorrelation α tends to one. Thus, the variance tends to infinity. These early-warning signals are the result of critical slowing down near the threshold value of the control parameter.

Flocking of birds

Power grids

Millennium Bridge

Brain Seizure

 . .

Networks play a central role in the dynamics and functioning of a system.

Sensitive Dependence of Optimal Network Dynamics on Network Structure

Takashi Nishikawa, ${ }^{1}$ Jie Sun, ${ }^{2}$ and Adilson E. Motter ${ }^{1}$
${ }^{1}$ Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA and Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA
${ }^{2}$ Department of Mathematics, Clarkson University, Potsdam, New York 13699, USA, Department of Physics, Clarkson University, Potsdam, New York 13699, USA,
Department of Computer Science, Clarkson University, Potsdam, New York 13699, USA, and Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, New York 13699, USA

(a) UCM network $\left(\lambda_{2}=12\right)$

(c) Complement of UCM network

(b) MCC network $\left(\lambda_{2}=11\right)$

(d) Complement of MCC network

Small change in network structure can
lead to large change in network dynamics.

Detecting Changes in a Networked System?

EWS does not provide information on these questions.

Q: how to detect the coupling changes via analyzing the time series of network dynamics?

Challenges:

- nonlinearity
- high dimensionality
- unknown models

Detecting Changes in a Networked System?

Q: how to detect the coupling changes via analyzing the time series of network dynamics?

Information Theory in a Nutshell

Will it rain the next day? [Yes/no question.]

How difficult is it to predict if it is going to rain the next day?

- Characterization of (un)predicability.

> A Mathematical Theory of Communication, Claude E. Shannon (1948).

Entropy $H(X)=-\sum_{x} p(x) \log p(x)$ $X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}$
Fair coin is most difficult to predict.

Entropy is a model-free measure of unpredictability (or "surprise") of a r.v.

Information Theory in a Nutshell (cont.)

Example: Will it rain the next day in city B ?

Easy to predict Y once X is known.

Conditional entropy $H(X \mid Y)=H(X, Y)-H(Y)$
a measure of "given Y , how much does X remain unpredictable"

Beyond Linear Model: Transfer Entropy

Measuring Information Transfer

Thomas Schreiber

Idea: apply MI to detect information transfer / causality between two time series
consider two stochastic processes $\left\{X_{t}\right\}\left\{Y_{t}\right\}$

Transfer Entropy (TE)

$$
T_{Y \rightarrow X}=H\left(X_{t+1} \mid X_{t}\right)-H\left(X_{t+1} \mid X_{t}, Y_{t}\right)
$$

measures the reduction of uncertainty regarding X's future by knowing Y

Systematic Bias in TE-based Network Inference

$x_{t+1}^{(i)}=f\left[x_{t}^{(i)}\right]+\epsilon \sum_{j \neq i} c_{i j} g\left[x_{t}^{(i)}, x_{t}^{(j)}\right], \quad i=1,2, \ldots, N$.

JS, E. Bollt, Physica D (2014).
TE-based network inference suffers from systematic bias (not just indirect links or false positives).

Causation Entropy: Measure of Causality in Networks

Definition 1 (Causation Entropy). The causation entropy from process \mathcal{Q} to process \mathcal{P} conditioned on the set of processes \mathcal{S} is defined as

$$
C_{\mathcal{Q} \rightarrow \mathcal{P} \mid(\mathcal{S})}=H\left(\mathcal{P}_{t+1} \mid \mathcal{S}_{t}\right)-H\left(\mathcal{P}_{t+1} \mid \mathcal{S}_{t}, \mathcal{Q}_{t}\right)
$$

| uncertainty of P's
 future given S | uncertainty of P's
 future given S and Q |
| :--- | :--- |\quad JS, E. Bollt, Physica D (2014).

Remarks:

1. CSE itself does not "solve" the causal inference problem.
2. The definition simply emphasizes the fact that cause-and-effect involves all three parts (cause, effect, and conditioning).

Transfer Entropy (T) vs. Causation Entropy (C)

Causation entropy correctly identifies the causal network structure.

Transfer Entropy (T) vs. Causation Entropy (C)

JS and Erik Bollt, "Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings", Physica D (2014)

JS, Dane Taylor, and Erik Bollt, "Causal network inference by optimal causation entropy", SIAM Journal on Applied Dynamical Systems (2015)

Transfer Entropy

Causation Entropy

Causation entropy correctly identifies the causal network structure.

Optimal Causation Entropy (oCSE) Principle

Causal Network Inference by Optimal Causation Entropy*

Jie Sun ${ }^{\dagger}$, Dane Taylor ${ }^{\ddagger}$, and Erik M. Bollt ${ }^{\dagger}$

Theorem 2.3 (optimal causation entropy principle for causal network inference). Suppose that the network stochastic process given by (2.4) satisfies the Markov properties in (2.8). Let $I \subset \mathcal{V}$ be a given set of nodes and N_{I} be the set of I's causal parents, as defined in (2.3). It follows that
(a) (Direct inference) Node $j \in N_{I}$ iff $\Leftrightarrow \exists K \supset N_{I}$ such that $C_{j \rightarrow I \mid(K-\{j\})}>0 \Leftrightarrow \forall K \subset$ $\mathcal{V}, C_{j \rightarrow I \mid(K-\{j\})}>0$.
(b) (Partial conditioning removal) If there exists $K \subset \mathcal{V}$ such that $C_{j \rightarrow I \mid(K-\{j\})}=0$, then $j \notin N_{I}$.
(c) (Optimal causation entropy principle) The set of causal parents is the minimal set of nodes with maximal causation entropy.
Define the family of sets with maximal causation entropy as

$$
\begin{equation*}
\mathcal{K}=\left\{K \mid \forall K^{\prime} \subset \mathcal{V}, C_{K^{\prime} \rightarrow I} \leq C_{K \rightarrow I}\right\} . \tag{2.26}
\end{equation*}
$$

Then the set of causal parents is given by

$$
\begin{equation*}
N_{I}=\cap_{K \in \mathcal{K}} K=\operatorname{argmin}_{K \in \mathcal{K}} K \tag{2.27}
\end{equation*}
$$

The set of causal "parents" is the minimal set of nodes which maximizes causation entropy. The problem of causal network inference is converted into an optimization and estimation problem from given data.

Clarkson

UNIVERSITY
defyconvention
Wollace H. Coulter
School of Engineering

How Entropic Regression Beats the Outliers Problem in Nonlinear System Identification

Abd AlRahman AlMomani ${ }^{1,2}$, Jie Sun ${ }^{\mathbf{1 , 3}}$, Erik Bollt ${ }^{\mathbf{1 , 2 , 3}}$
${ }^{1}$ Clarkson Center for Complex Systems Science $\left(C^{3} S^{2}\right)$, ${ }^{2}$ Department of ECE,
${ }^{3}$ Department of Mathematics, Clarkson University, Potsdam, NY 13699

Results are shown for
(A) Double Well Potential.

$$
f(x)=x^{4}-x^{2}
$$

(B) Lorenz System.

$$
\left\{\begin{array}{l}
\dot{z}_{1}=F_{1}(\boldsymbol{z})=\sigma\left(z_{2}-z_{1}\right), \\
\dot{z}_{2}=F_{2}(\boldsymbol{z})=z_{1}\left(\rho-z_{3}\right)-z_{2}, \\
\dot{z}_{3}=F_{3}(\boldsymbol{z})=z_{1} z_{2}-\beta z_{3},
\end{array}\right.
$$

(C) Kuramoto-Sivashinsky Equations.

$$
\begin{aligned}
& u_{t}=-\nu u_{x x x x}-u_{x x}+2 u u_{x}, \\
& \quad(t, x) \in[0, \infty) \times(0, L) \\
& \dot{a}_{k}=\left(k^{2}-\nu k^{4}\right) a_{k}-k \sum_{m=-\infty}^{\infty} a_{m} a_{k-m} .
\end{aligned}
$$

C.1. KSE $u(x, t)$ selution ecovere

Methods					
Least Squares (LS):	$\begin{gathered} \min _{a \in \mathbb{R}^{K}}\\|\Phi a-f\\|_{2} \\ \boldsymbol{a}=\boldsymbol{\Phi}^{\dagger} \boldsymbol{f} \end{gathered}$				
Orthogonal Least Squares $\left\{\begin{array}{l} \left(\begin{array}{l} \left.k_{\ell+1}, a_{k_{\ell+1}}\right) \end{array}\right) \\ \boldsymbol{r}_{\ell+1}=\boldsymbol{r}_{\ell}- \end{array}\right.$	(OLS): $\begin{aligned} &)=\arg \min _{k, c}\left\\|\boldsymbol{r}_{\ell}-c \phi_{k}\right\\|_{2}, \\ & \phi_{k_{\ell+1}} a_{k_{\ell+1}} . \end{aligned}$				
LASSO: $\quad \min _{a \in \mathbb{R}^{K}}(\\| \Phi a$	$\left.-\boldsymbol{f}\left\\|_{2}^{2}+\lambda\right\\| \boldsymbol{a} \\|_{1}\right)$,				
Compressed Sensing (CS):	$\left\{\begin{array}{l} \arg \min _{\boldsymbol{a}}\\|\boldsymbol{a}\\|_{1}, \\ \text { subject to }\\|\Phi \boldsymbol{a}-\boldsymbol{f}\\| \leq \epsilon, \end{array}\right.$				

SINDy : Sequential least squares with hard-thresholding.
Tran-Ward (TW): Extend SINDy to the data corruption case, and reconstruct the system assuming that the corrupted data occurs in sparse and isolated time intervals.
 Entropic Regression Beats
Identific
[2] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse identification of of Sciences, 113(15):3932-3937, 2016.
[3] Emmanuel J. Cand'es, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, $59(8): 1207-$ 1223, 2006.
[4] Sheng Chen, Stephen A. Billings, and Wan Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, $50(5): 1873-1896$, 1989
[5] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Press, 2015.
[6] Giang Tran and Rachel Ward. Exact recovery of chaotic systems from highly corrupted data. Multiscale Modeling \& Simulation, 15:1108-1129, 2017.

Acknowledgment
This work was funded in part by the Simons Foundation Grant No. 318812, the Army Research Office Grant No. W911NF-16-1 0081, the Office of Naval Research Grant No. N00014-15-1 2093, and also DARPA

Chaos Focus Issue: Causation Inference and Information Chaos 28, 2018 July Issue Flow in Dynamical Systems: Theory and Applications

Complex networks for tracking extreme rainfall during typhoons
U. Ozturk, N. Marwan, O. Korup, H. Saito more...

Detecting directional couplings from multivariate flows by the joint distance distribution

José M. Amigó, and Yoshito Hirata
Transient and equilibrium causal effects in coupled oscillators

Dmitry A. Smirnov
The quoter model: A paradigmatic model of the social flow of written information

James P. Bagrow, and Lewis Mitchell
Detecting causality using symmetry transformations

Subhradeep Roy, and Benjamin Jantzen

Inter-scale information flow as a surrogate for downward causation that maintains spiral waves

Hiroshi Ashikaga, and Ryan G. James

Causality, dynamical systems and the arrow of time

Milan Paluš, Anna Krakovská, Jozef Jakubík, and Martina Chvosteková

> Anatomy of leadership in collective behaviour
> Joshua Carland, Andrew M. Berdahl, Jie Sun, and Erik M. Bollt

Open or closed? Information flow decided by transfer operators and forecastability quality metric

Erik M. Bollt

Causal network reconstruction from time series: From theoretical assumptions to practical estimation
J. Runge

Causation and information flow with respect to relative entropy

[^0]
Analytical Properties of CSE

Theorem 2.2 (basic analytical properties of causation entropy). Suppose that the network stochastic process given by (2.4) satisfies the Markov assumptions in (2.8). Let $I \subset \mathcal{V}$ be a set of nodes and N_{I} be its causal parents. Consider two sets of nodes $J \subset \mathcal{V}$ and $K \subset \mathcal{V}$. The following results hold:
(a) (Redundancy) If $J \subset K$, then $C_{J \rightarrow I \mid K}=0$.
(b) (No false positive) If $N_{I} \subset K$, then $C_{J \rightarrow I \mid K}=0$ for any set of nodes J.
(c) (True positive) If $J \subset N_{I}$ and $J \not \subset K$, then $C_{J \rightarrow I \mid K}>0$.
(d) (Decomposition) $C_{J \rightarrow I \mid K}=C_{(K \cup J) \rightarrow I}-C_{K \rightarrow I}$.
(a)

$$
C_{J \rightarrow I \mid K}=0
$$

$$
\begin{equation*}
C_{J \rightarrow I \mid K}=0 \tag{b}
\end{equation*}
$$

(c) $\quad C_{J \rightarrow I \mid K}>0$

Figure 3. Basic analytical properties of causation entropy (Theorem 2.2) allowing for the inference of the causal parents N_{I} of a set of nodes I. (a) Redundancy: If J is a subset of the conditioning set $K(J \subset K)$, then the causation entropy $C_{J \rightarrow I \mid K}=0$.(b) No false positive: If N_{I} is already included in the conditioning set $K\left(N_{I} \subset K\right)$, then $C_{J \rightarrow I \mid K}=0$. (c) True positive: If a set J contains at least one causal parent of I that does not belong to the conditioning set K, i.e., $\left(J \subset N_{I}\right) \wedge(J \not \subset K)$, then $C_{J \rightarrow I \mid K}>0$.

JS, D. Taylor, E. Bollt, Causal network inference by optimal causation entropy, SIAM Journal on Applied Dynamical Systems (2015).

Model-free Measures of Pairwise Coupling

Causation Entropy (CSE)

$$
\begin{aligned}
& C_{j \rightarrow i \mid K_{i}}=H\left(X_{t+1}^{(i)} \mid X_{t}^{\left(K_{i}\right)}\right)-H\left(X_{t+1}^{(i)} \mid X_{t}^{\left(K_{i}\right)}, X_{t}^{(j)}\right) \\
& \text { where } K_{i}=N_{i} /\{j\}
\end{aligned}
$$

The observed "net" influence of j on i given the rest of the nbs of i
JS and Erik Bollt, "Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings", Physica D (2014)

JS, Dane Taylor, and Erik Bollt, "Causal network inference by optimal causation entropy", SIAM Journal on Applied Dynamical Systems (2015)

Results: Detecting a Disconnected Edge

Results: Detecting Increased Coupling

increased CSE

Results: Detecting Increased Coupling

$A_{81} \rightarrow 11 A_{81}$

increased CSE increased coupling

Detection from Random Walk Dynamics on Networks

JS, F. Quevedo, E. Bollt, Data Fusion Reconstruction of
Spatially Embedded Complex Networks, arXiv: 1707.00731.

Q: detecting this edge disconnection?

The use of CSE to track coupling enables detection of:

- edge disconnection (coupling $\rightarrow>0$)
- increase/decrease of information flow

[^0]: X. San Liang

