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Small change of a system’s parameter can cause large change of its dynamics

ẋ = F (x;µ)
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ẋ = F (x; µ̃)
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Example:

xt+1 = rxt(1� xt)
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bifurcation diagram of the logistic map

Bifurcation, Tipping Point, Etc.
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Bifurcation types

…



scalar time series

EWS

Detecting Bifurcation in Time Series(?)

Idea: track a (scalar) function of the time series 
—> Early-Warning Signals (EWS)



Application of EWS in Detecting Changes
M. Scheffer et al., Early-warning signals for critical transitions, Nature 461, 53-59 (2009)

Examples of EWS:  (increased) AR(1), increased variance, etc.



M. Scheffer et al., Early-warning signals for critical transitions, Nature 461, 53-59 (2009)



Flocking of birds Millennium Bridge

Power grids
Brain Seizure

Networks play a central role in the 
dynamics and functioning of a system.



(a) UCM network (b) MCC network

(c) Complement of UCM network (d) Complement of MCC network
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Small change in network structure can 
lead to large change in network dynamics.
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Detecting Changes in a Networked System?

Q: how to detect the coupling changes via 
analyzing the time series of network dynamics?

scalar time series —> EWS to detect change

What causes the change?
— broken connections

— changing coupling strength

— …

EWS does not provide information on these questions.

x

Challenges: 
— nonlinearity 
— high dimensionality 
— unknown models



i

j

j

i

j

i

j

i
lost of coupling 

change of 

coupling strength

j

i

j

i

j

i

Aij ! 0
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Aij ! µAij
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Detecting Changes in a Networked System?

Q: how to detect the coupling changes via 
analyzing the time series of network dynamics?



Information Theory in a Nutshell

X =

(
1 with probability p

0 with probability 1� p

Fair coin is most difficult to predict.
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p = 0.5Entropy H(X) = �
X

x

p(x) log p(x)

Entropy is a model-free measure of 
unpredictability (or “surprise”) of a r.v.

A Mathematical Theory of Communication, 
Claude E. Shannon (1948).

Will it rain the next day?

?

?

?

[Yes/no question.]

How difficult is it to predict if it is going to rain the next day?
— Characterization of (un)predicability.

Easy

Difficult



Example:

(1) city A

city B

Will it rain the next day in city B?

?
H(Y |X) ⇡ 0

Easy to predict Y once X is known.

(2) city A

city B ?
Knowing X does not help to predict Y.

H(Y |X) ⇡ H(Y )

Information Theory in a Nutshell (cont.)

Conditional entropy H(X|Y ) = H(X,Y )�H(Y )

a measure of “given Y, how much does X remain unpredictable”
H(X|Y ) H(Y |X)

H(X,Y )

H(X) H(Y )



Idea: apply MI to detect information transfer 
/ causality between two time series

{Xt} {Yt}consider two stochastic processes

TY!X = H(Xt+1|Xt)�H(Xt+1|Xt, Yt)

Transfer Entropy (TE)

measures the reduction of uncertainty regarding X’s future by knowing Y

H(Xt)

H(Xt+1)

H(Yt)
TY!X

H(Xt+1|Xt, Yt)

Beyond Linear Model: Transfer Entropy
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TE-based network inference suffers 
from systematic bias (not just 
indirect links or false positives).

Systematic Bias in TE-based Network Inference

rr

JS, E. Bollt, Physica D (2014).
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Y

Z

An Example Yt

Zt

Xt+1|Xt

TY!X

TZ!X

CZ!X|(X,Y )

JS, E. Bollt, Physica D (2014).

Remarks: 
1. CSE itself does not “solve” the causal inference problem.  
2. The definition simply emphasizes the fact that cause-and-effect involves 
all three parts (cause, effect, and conditioning).

uncertainty of P’s 
future given S

uncertainty of P’s 
future given S and Q

Causation Entropy: Measure of Causality in Networks
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Transfer Entropy (T) vs. Causation Entropy (C)

Causation entropy correctly identifies the causal network structure.

Transfer Entropy Causation Entropy
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Transfer Entropy (T) vs. Causation Entropy (C)

Causation entropy correctly identifies the causal network structure.

Transfer Entropy Causation Entropy

JS and Erik Bollt, “Causation entropy identifies indirect influences, 
dominance of neighbors and anticipatory couplings”, Physica D (2014)

JS, Dane Taylor, and Erik Bollt, “Causal network inference by optimal 
causation entropy”, SIAM Journal on Applied Dynamical Systems (2015)



Optimal Causation Entropy (oCSE) Principle

…

The set of causal “parents” is the minimal set of nodes which maximizes causation entropy.

i

Ni

The problem of causal network inference is converted into 
an optimization and estimation problem from given data.



Suppose that observations {#̇ $ } come from a general DE,
represented by #̇ = '(#) , where # ∈ ℝ,. Each component
func:on '. # can be represented using a series expansion (for
example a power series or a Fourier series), wri:ng generally,

In vector form, under a choice of basis and truncation, the
nonlinear system identification problem can be recast into the
form of a linear inverse problem

System Identification 

How Entropic Regression Beats the Outliers Problem 
in Nonlinear System Identification
Abd AlRahman AlMomani1,2, Jie Sun1,3, Erik Bollt1,2,3

1Clarkson Center for Complex Systems Science (/012), 2Department of ECE, 
3Department of Mathematics, Clarkson University, Potsdam, NY 13699

System identification (SID) is central in science and engineering
applications whereby a general model form is assumed, but
active terms and parameters must be inferred from observations.
Sparse SID has recently become an important approach for SID
such as in compressed sensing and Lasso methods. For the
current state-of-art methods, it is still challenging to maintain the
effectiveness of the methods under realistic scenarios where
each observation is subject to non-trivial noise amplitude and
sporadically further contaminated by even large noise and
outliers. To mitigate such issues of large noise and outliers, we
develop an entropic regression approach for nonlinear SID,
whereby true model structures are identified based on relevance
in reducing information flow uncertainty, not necessarily (just)
sparsity. The use of information-theoretic measures as opposed
to a metric-based cost function has a unique advantage, thanks to
the asymptotic equipartition property of probability distributions,
that outliers and other low-occurrence events are conveniently
and intrinsically de-emphasized.

Abstract Entropic Regression Results

The problem of learning a (dynamical) system from observational data is known as system identification

(SID), and often times involves the underlying assumption that the structural form of the DE is known (which
kinds of terms to include in the functional description of the equation), but only the underlying parameters
are not known. For example, suppose we observe the dynamics of a simple dissipative linear spring, then we
may express the model as mẍ + �ẋ + kx = 0 based on Hooke’s law. However, the parameters m, �, and k

might be unknown and need to be estimated in order to completely specify the model for purposes such as
prediction and control. One may directly measure those parameters by static testing (e.g., weighing the mass
on a scale). Alternatively, here we are interested in utilizing the observational data generated by the system
without having to design and perform additional experiments, to estimate the parameters corresponding
to the model that best fits empirical observations, which is a standard viewpoint in SID. In this thought
experiment, the SID process is performed with the underlying physics understood (the form of the Hooke
spring equation). In general it can be applied in the scenario where very little information is previously
known about the system, in a black box manner.

Suppose that observations {z(t)} come from a general (multidimensional, coupled) DE, represented by

ż = F (z), (1)

where z = [z1, . . . , zN ]T 2 RN is the (multivariate) state variable of the system and F = [F1, . . . , FN ]> :
RN

! RN is the vector field. Each component function Fi(z) can be represented using a series expansion
(for example a power series or a Fourier series), writing generally,

żi = Fi(z) =
1X

k=0

aik�k(z), (2)

for a linear combination of basis functions {�k}
1
k=0. The basis functions do not need to be mutually orthog-

onal, and the series can even include multiple bases, for example to contain both a polynomial basis and
a Fourier basis [5]. The coe�cients {aik} are to be determined by contrasting simulations to experimental
measurements, in an optimization process whose details of how error is measured distinguishes the various
methods we discuss here. This was the main theme in previous approaches on nonlinear SID, with di↵erent
methods di↵er mainly on how a model’s fit is quantified. The di↵erent approaches include using standard
squared error measures [53, 9], sparsity-promoting methods [26, 5, 52, 51] as well as using entropy-based cost
functions [19]. Among those, sparsity-promoting methods have proven particularly useful because they tend
to avoid the issue of overfitting, thus allowing a large number of basis functions to be included to capture
possibly rich dynamical behavior [26, 26, 5, 52].

Regardless of the particular method or system, most previous work on nonlinear SID focused on the
low-noise regime and demonstrated success only when there is a su�cient amount of clean observational
data. In practice, an observation process can be subject to external disturbances in unpredictable ways.
Consequently, the e↵ective noise can be quite large and even with frequently occurring “outliers” both of
which may contaminate the otherwise perfect data. Can SID still work under the presence of large noise
and outliers? At a glance, the answer should be yes, given that several recent SID methods for nonlinear
systems are readily deployable in the presence of noise. For example, compressive sensing can handle noise
by relaxing the constraint set whereas least squares and Lasso can be applied o↵ the shelf—the important
question however is whether the quality of solution is compromised or not, and to what extent. To understand
these important issues, recently Tran and Ward considered the nonlinear SID problem under the presence
of outliers in observational data and showed that even with outliers, so long as there is su�cient amount
of “clean” data and that corrupted data only appear in small isolated time windows, existing techniques
such as SINDy can be extended to reconstruct the exact form of a system with high probability [49]. In the
current work, we are interested a more realistic scenario where e↵ective noise is present everywhere and thus
all data points are contaminated by non-negligible noise and outliers. These features e↵ectively creates a
“high noise and low data amount” regime, where we found that existing nonlinear SID methods including
recent ones that specialize in promoting sparsity, fall short.

In this work we depart from most standard approaches for nonlinear SID. We identify the error quan-
tification via metric-based cost functions as a root cause of existing methods to fail under large noise and

2

Figure 1 shows the structure of the Lorenz system under standard polynomial basis up to quadratic terms.

Figure 1: (Left) Lorenz system as a dynamical system and its standard graph representation. See [42].
(Right) Linear combination of nonlinear basis functions, with coupling coe�cients {aik} forming the structure
of the system (bottom right). Here each directed edges represent the presence of basis terms on the individual
variables of the system.

In vector form, under a choice of basis and truncation, the nonlinear system identification problem can
be recast into the form of a linear inverse problem

f (i) = �a(i) + ⇠(i), (6)

where f (i) = [F̂i(ẑ(t1)), . . . , F̂i(ẑ(t`))]> 2 R`⇥1 represents the i-th component of the estimated vector field
from the observational data, � = [�(1)

, . . . ,�(K)] 2 R`⇥K (with �(k) = [�k(ẑ(t1)), . . . ,�k(ẑ(t`))] 2 R`⇥1)
represent sampled data for the basis functions, ⇠(i) = [⇠i(t1), . . . , ⇠i(t`)]> 2 R`⇥1 represents noise, and
a(i) = [ai1, . . . , aiK ]> 2 RK⇥1 is the vector of parameters which is to be determined. Note that the form
of the equation (6) is the same for each i, and solving each a(i) can be done separately and independently
for each i. In what follows we omit the index when discussing the general methodology, and consider the
following linear inverse problem

f = �a+ ⇠, (7)

where f 2 R`⇥1 and � 2 R`⇥K are given, with the goal to estimate a 2 RK⇥1. This general problem is in
the form of an inverse problem and is typically solved under various assumptions of noise by methods such
as least squares, orthogonal least squares, lasso, compressed sensing, to name a few. Each of these methods,
in addition to the recent approach of SINDy and its generalization, is mentioned in the Results section and
reviewed in the Methods section. In what follows we develop a unique information-theoretic approach called
entropic regression, which we demonstrate has significant advantages.

4

Where 3 ∈ ℝ,×5 and Φ ∈ ℝ,×7 are given with the goal to 
estimate 8 ∈ ℝ7×5 .

Entropic Regression:

The ER method contains two stages (also see Algorithm 1 for the
pseudocode): forward ER and backward ER. In both stages,
selection and elimination are based on an entropy criterion and
parameters are updated in each iteration

Entropic Regression

To overcome the competing challenges of potential overfitting, e�ciency when limited data points are given,
and robustness with respect to noise and in particular outliers in observations, we propose a novel frame-
work that combines the advantage of information-theoretic measures and iterative regression methods. The
framework, which we term entropic regression (ER), is model-free, noise-resilient, and e�cient in discovering
a “minimally su�cient” model to represent data. The key idea is that, for given set of basis functions, a
model should be considered minimally su�cient if no basis function that is not already included in the model
can help increase the information relevance between the model outputs and observed data. In other words,
the residual between the model fit and observational data is statistically independent from any basis function
that is not included in the model—because otherwise the dependence can be harvested to reduce the discrep-
ancy by including such a basis function in the model. We emphasize that, although the idea seems related to
classical model selection principles such as AIC [1], ours combines model construction with selection. In ad-
dition, even though it is not uncommon for entropy measures to be adopted in system identification [19, 37],
the proposed method is unique as it fuses entropy optimization with regression in a principled manner that
enables scalable computation and e�cient estimation in reconstruction nonlinear dynamics under noisy data.
As we shall see below, the proposed ER method is applicable even in the small-sampling regime (by adopting
appropriately defined entropy measures and e�cient estimators) and naturally allows for a computationally
e�cient procedure to build up a model from scratch. In particular, we use (conditional) mutual information
as an information-theoretic criterion and iteratively select relevant basis functions, analogous to the optimal
causation entropy algorithm previously developed for causal network inference [47, 48] but here including
an additional regression component in each step. Thus, ER can be thought of as an information-theoretic
extension of the orthogonal least squares regression, or as a regression version of optimal causation entropy.

We now present the details of ER. The ER method contains two stages (also see Algorithm 1 for the
pseudocode): forward ER and backward ER. In both stages, selection and elimination are based on an entropy
criterion and parameters are updated in each iteration using a standard regression (e.g., least squares).
Consider the inverse problem (7). For an index set S ⇢ N[{0}, the estimated parameters can be thought of
as a mapping from the joint space of �, f and S to a vector denoted as â = R(�,f , S). For instance, under
a least-squares criterion the mapping is given by R(�,f , S)S = �†

Sf (�S denotes the columns of matrix �
indexed by S) and R(�,f , S)i = 0 for all i /2 S. Using the estimated parameters, the recovered signal can be
computed as �R(�,f , S). In the ER algorithm, we start by selecting a basis function �k1 that maximizes
its mutual information with f , compute the corresponding parameter ak1 using the least squares method,
and obtain the corresponding regression model output z1 according to

8
><

>:

k1 = argmaxk I(�R(�,f , {k});f),

â = R(�,f , k1),

z1 = �R(�,f , k1).

(8)

Here I(x;y) denotes mutual information between x and y, which is a model-free measure of the statistical
dependence between two distributions (that is, x and y are independent if and only if their mutual informa-
tion equals zero) [12]. Next, in each iteration of the forward stage, we perform the following computations
and updates, for i = 2, 3, . . . ,

8
><

>:

ki = argmaxk/2{k1,...,ki�1} I(�R(�,f , {k});f |zi�1),

â = R(�,f , {k1, . . . , ki}),

zi = �R(�,f , {k1, . . . , ki})

(9)

The process terminates when maxk I(�R(�,f , k);f |zi�1) ⇡ 0 (or when all basis functions are exhausted),
indicating that none of the remaining basis function is relevant given the current model, in an information-
theoretic sense. The result of the forward ER is a set of indices S = {k1, . . . , km} together with the
corresponding parameters ak1 , . . . , akm (aj = 0 for j /2 S) and model f ⇡ ak1�k1 + · · ·+ aki�ki . Finally, we
turn to the backward stage, where the terms that had previously been included are re-examined for their
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information-theoretic relevance and these that are redundant will be removed. In particular, we sequentially
check for each j = ki 2 S to determine if the basis term �j is redundant by computing

(
â = R(�,f , {k1, . . . , ki}/{ki}),

z̄j = �R(�,f , {k1, . . . , ki}/{ki}),
(10)

and updating S ! S/{j} (that is, remove j from the set S) if I(�R(�,f , S);f |z̄j) ⇡ 0. The result of the
backward ER is the reduced set of indices S = {`1, . . . , `n} with n  m, together with the corresponding
parameters a`1 , . . . , a`n (aj = 0 for j 62 S) computed as a = R(�,f , S), and accordingly the recovered
model f ⇡ �a = �SaS = a`1�`1 + · · · + a`n�`n . In practice, mutual information and conditional mutual
information need to be estimated from data, and whether or not the estimated values should be regarded
as zero is typically done via (approximate) significance testing, the details of which are provided in Methods

(also see Sec. SI.3).

Algorithm 1 Entropic Regression

1: procedure Initialization:(f ,�)
2: Tolerance (tol) Estimation.
3: For a set of index S, define the function R(�,f , S) = �†

Sf
4: end procedure

5: procedure Forward ER:(f ,�, tol)
6: Sf = ;, p = ;, v =1, z = ;
7: while v > tol do

8: Sf  p

9: I
est
j := I(�R(�,f , {Sf , j});f |z). for all j /2 Sf

10: v, p := maxj Iestj

11: â := R(�,f , {Sf , p}))
12: z := �â
13: end while

14: return Sf

15: end procedure

16: procedure Backward ER:(f ,�, tol,Sf )
17: Sb = Sf , p = ;, v = �1
18: while v < tol do

19: Sb := {Sb}� {p}

20: for all j 2 Sb do

21: â := R(�,f , {Sb}� {j}))
22: z := �â
23: I

est
j := I(�R(�,f , Sb);f |z),

24: end for

25: v, p := minj(Iestj )
26: end while

27: return Sb

28: end procedure

29: return S = Sb.

Numerical Experiments: Outliers, Expansion Order, and the Paradox of Sparsity

To demonstrate the utility of ER for nonlinear system identification under noisy observations, we benchmark
its performance against existing methods including least squares (LS), orthogonal least squares (OLS),
Lasso, as well as SINDy and its extension by Tran and Ward (TW). The details of the existing approaches

6

Forward:

Backward:

Termination:

Entropic Regression

To overcome the competing challenges of potential overfitting, e�ciency when limited data points are given,
and robustness with respect to noise and in particular outliers in observations, we propose a novel frame-
work that combines the advantage of information-theoretic measures and iterative regression methods. The
framework, which we term entropic regression (ER), is model-free, noise-resilient, and e�cient in discovering
a “minimally su�cient” model to represent data. The key idea is that, for given set of basis functions, a
model should be considered minimally su�cient if no basis function that is not already included in the model
can help increase the information relevance between the model outputs and observed data. In other words,
the residual between the model fit and observational data is statistically independent from any basis function
that is not included in the model—because otherwise the dependence can be harvested to reduce the discrep-
ancy by including such a basis function in the model. We emphasize that, although the idea seems related to
classical model selection principles such as AIC [1], ours combines model construction with selection. In ad-
dition, even though it is not uncommon for entropy measures to be adopted in system identification [19, 37],
the proposed method is unique as it fuses entropy optimization with regression in a principled manner that
enables scalable computation and e�cient estimation in reconstruction nonlinear dynamics under noisy data.
As we shall see below, the proposed ER method is applicable even in the small-sampling regime (by adopting
appropriately defined entropy measures and e�cient estimators) and naturally allows for a computationally
e�cient procedure to build up a model from scratch. In particular, we use (conditional) mutual information
as an information-theoretic criterion and iteratively select relevant basis functions, analogous to the optimal
causation entropy algorithm previously developed for causal network inference [47, 48] but here including
an additional regression component in each step. Thus, ER can be thought of as an information-theoretic
extension of the orthogonal least squares regression, or as a regression version of optimal causation entropy.

We now present the details of ER. The ER method contains two stages (also see Algorithm 1 for the
pseudocode): forward ER and backward ER. In both stages, selection and elimination are based on an entropy
criterion and parameters are updated in each iteration using a standard regression (e.g., least squares).
Consider the inverse problem (7). For an index set S ⇢ N[{0}, the estimated parameters can be thought of
as a mapping from the joint space of �, f and S to a vector denoted as â = R(�,f , S). For instance, under
a least-squares criterion the mapping is given by R(�,f , S)S = �†

Sf (�S denotes the columns of matrix �
indexed by S) and R(�,f , S)i = 0 for all i /2 S. Using the estimated parameters, the recovered signal can be
computed as �R(�,f , S). In the ER algorithm, we start by selecting a basis function �k1 that maximizes
its mutual information with f , compute the corresponding parameter ak1 using the least squares method,
and obtain the corresponding regression model output z1 according to
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>:

k1 = argmaxk I(�R(�,f , {k});f),

â = R(�,f , k1),

z1 = �R(�,f , k1).

(8)

Here I(x;y) denotes mutual information between x and y, which is a model-free measure of the statistical
dependence between two distributions (that is, x and y are independent if and only if their mutual informa-
tion equals zero) [12]. Next, in each iteration of the forward stage, we perform the following computations
and updates, for i = 2, 3, . . . ,

8
><

>:

ki = argmaxk/2{k1,...,ki�1} I(�R(�,f , {k});f |zi�1),

â = R(�,f , {k1, . . . , ki}),

zi = �R(�,f , {k1, . . . , ki})

(9)

The process terminates when maxk I(�R(�,f , k);f |zi�1) ⇡ 0 (or when all basis functions are exhausted),
indicating that none of the remaining basis function is relevant given the current model, in an information-
theoretic sense. The result of the forward ER is a set of indices S = {k1, . . . , km} together with the
corresponding parameters ak1 , . . . , akm (aj = 0 for j /2 S) and model f ⇡ ak1�k1 + · · ·+ aki�ki . Finally, we
turn to the backward stage, where the terms that had previously been included are re-examined for their

5

while:

information-theoretic relevance and these that are redundant will be removed. In particular, we sequentially
check for each j = ki 2 S to determine if the basis term �j is redundant by computing

(
â = R(�,f , {k1, . . . , ki}/{ki}),

z̄j = �R(�,f , {k1, . . . , ki}/{ki}),
(10)

and updating S ! S/{j} (that is, remove j from the set S) if I(�R(�,f , S);f |z̄j) ⇡ 0. The result of the
backward ER is the reduced set of indices S = {`1, . . . , `n} with n  m, together with the corresponding
parameters a`1 , . . . , a`n (aj = 0 for j 62 S) computed as a = R(�,f , S), and accordingly the recovered
model f ⇡ �a = �SaS = a`1�`1 + · · · + a`n�`n . In practice, mutual information and conditional mutual
information need to be estimated from data, and whether or not the estimated values should be regarded
as zero is typically done via (approximate) significance testing, the details of which are provided in Methods

(also see Sec. SI.3).

Algorithm 1 Entropic Regression

1: procedure Initialization:(f ,�)
2: Tolerance (tol) Estimation.
3: For a set of index S, define the function R(�,f , S) = �†

Sf
4: end procedure

5: procedure Forward ER:(f ,�, tol)
6: Sf = ;, p = ;, v =1, z = ;
7: while v > tol do

8: Sf  p

9: I
est
j := I(�R(�,f , {Sf , j});f |z). for all j /2 Sf

10: v, p := maxj Iestj

11: â := R(�,f , {Sf , p}))
12: z := �â
13: end while

14: return Sf

15: end procedure

16: procedure Backward ER:(f ,�, tol,Sf )
17: Sb = Sf , p = ;, v = �1
18: while v < tol do

19: Sb := {Sb}� {p}

20: for all j 2 Sb do

21: â := R(�,f , {Sb}� {j}))
22: z := �â
23: I

est
j := I(�R(�,f , Sb);f |z),

24: end for

25: v, p := minj(Iestj )
26: end while

27: return Sb

28: end procedure

29: return S = Sb.

Numerical Experiments: Outliers, Expansion Order, and the Paradox of Sparsity

To demonstrate the utility of ER for nonlinear system identification under noisy observations, we benchmark
its performance against existing methods including least squares (LS), orthogonal least squares (OLS),
Lasso, as well as SINDy and its extension by Tran and Ward (TW). The details of the existing approaches
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Methods

Results are shown for:

( A ) Double Well Potential.

whereas too large a number of modes (Nm = 20, 24) may be unnecessary. In this example, an adequate
but not excessive number of modes seems to be around Nm = 16, as no significant information is gained by
increasing Nm.

Fig. 6 shows the sparse structure of the recovered solution by di↵erent methods. Here we mention that
the true non-zero parameters of KSE using Nm = 16 are 200 parameters that vary in the magnitude from
0.9701 to 1705. With the second order expansion, our basis matrix will have 153 candidate functions, and
it will be nearly singular with condition number 4⇥ 107. Likely due to such high condition number, neither
TW nor SINDy gives reasonable reconstruction. In particular, we note that the solution of SINDy is already
optimized by selecting the threshold value � that is slightly above �⇤ where here �⇤ ⇡ 0.1731 is the smallest
magnitude of the true nonzero parameter of the full least squares solution. A larger value of � only worsens
the reconstruction, as we found numerically.

Figure 6: In analogy to Fig. 4, sparse representation of KSE solution by di↵erent methods. CS, LASSO have
been excluded for their high computation complexity.

The OLS method overcomes the disadvantage of LS by iteratively finding the most relevant “feature”
variables, where relevance is measured in terms of (squared) model error; but it comes at a price: similar
to LS, the OLS is sensitive to outliers in the data and such sensitivity seems to be even more amplified due
to the smaller number of terms typically included in OLS as compared to LS, which cause the high false
negative rate in the OLS solution. Although ER solution has few false negatives, but was completely able to
recover the overall dynamic of the system as shown in Fig.( 7), while all other solutions diverges and failed
to recover u(x, t).

Example 3. Double Well Potential. Finally, in order to gain further insights into why standard methods
fail under the presence of outliers, we consider a relatively simple double-well system, with

f(x) = x
4
� x

2
. (16)

Suppose that we measure x and f , can we identify the function f(x)? We sample 61 equally spaced mea-
surements for x 2 [�1.2, 1.2], and we construct � using the 10th order polynomial expansion with K = 11
is the number of candidate functions. Then, we consider a single fixed value corrupted measurement to be
f(0.6) = 0.2.

Fig. 8 shows the results the double-well SID under a single outlier in the observation. We see the
robustness of ER solution to the outliers while CS failed in detecting the system sparse structure. For the
sake of clearness, Fig. 8 shows the results for CS and ER. The results for each solver and details are provided
in Sec. (SI.4.1) in addition to more numerical examples.
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( B ) Lorenz System.

( C ) Kuramoto-Sivashinsky Equations.

[39, 40] with the representation of a PDE as infinitely many ODE’s in the Banach space, where orbits of
these coe�cients therefore become time varying patterns by Eq. (13). Substituting Eq. (13) into Eq. (12),
we produce the infinitely many evolution equations for the Fourier coe�cients,

ḃk = (k2 � ⌫k
4)bk + ik

1X

m=�1
bmbk�m (14)

In general, the coe�cients bk are complex functions of time t. However, by symmetry, we can reduce to
a subspace by considering the special symmetry case that bk is pure imaginary, bk = iak and ak 2 R. Then,

ȧk = (k2 � ⌫k
4)ak � k

1X

m=�1
amak�m. (15)

where k = 1, .., Nm. However, the assumption that there is a slow manifold [39, 3] (slow modes as an inertial
manifold [40, 39, 24, 38, 25]) suggests the practical matter that a finite truncation of the series Eq. (13), and
correspondingly the a reduction to finitely many ODEs will su�ce. Therefore we choose a su�ciently large
number of modes Nm. Then we solve the resulting Nm-dimensional ODE (15) to produce the estimated
solution of u(x, t) by (13), and use such data for the purpose of SID, have meaning to estimate the structure
and parameters of the ODE model (15).

Figure 5: The first three modes of the ODE Eq.(15) solution. We show the modes a1, a2 and a3 for selected
number of modes. For clear view, we fixed the axis limits to be a1 2 [�1.21, 1.06], a2 2 [�0.75, 0.98] and
a3 2 [�1.1, 1.12] for all plots. We found that there was no significant addition to the dynamic with 16 < Nm.
(meaning that Nm = 16 was enough to describe the system).

Fig. 5 shows the first three dimensions plot under di↵erent number of modes. We see that using just a
few number of modes (Nm = 8, ..., 11) is insu�cient to capture the true dynamical behavior of the system
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are described in the Methods Section. The examples we consider represent di↵erent types of systems and
scenarios, including both ODEs and PDEs. In addition, we consider di↵erent noise models and especially
the presence of outliers in order to evaluate the robustness of the respective methods.

For each example system, we sample the state of each variable at a uniform rate of �t to obtain a
multivariate time series {z(ti)}k=1,...,N ;i=1,...,` where z = [z1, . . . , zd]> 2 Rd; then we add noise to each state
variable and obtain the noisy empirical time series denoted by {ẑ(ti)}, where

ẑk(ti) = zk(ti) + ⌘ki, (11)

with ⌘ki representing state observational noise. The vector field F is estimated using central di↵erence on
the noisy time series {ẑ(t)}.

Example 1. Chaotic Lorenz system. Our first detailed example data set was generated by noisy
observations from a chaotic Lorenz system, which is represented by a three-dimensional ODE which is a
prototype system as a minimal model for thermal convection obtained by a low-ordered modal truncation
of the Saltzman PDE [41], and for many parameter combinations exhibits chaotic behavior [35]. In our
standard notation, we have z = [z1, z2, z3]> and

8
><

>:

ż1 = F1(z) = �(z2 � z1),

ż2 = F2(z) = z1(⇢� z3)� z2,

ż3 = F3(z) = z1z2 � �z3,

with default parameter values � = 10, ⇢ = 28 and � = 8/3 unless otherwise specified. We consider a standard
polynomial basis as in Eq. (3). Over recent years, the Lorenz system has become a favorable and standard
example for testing SID methods and typically requires tens of thousands of measurements for accurate
reconstruction [49, 4, 5].

First, we compare several nonlinear SID methods in reconstructing the Lorenz system when the state
observational noise is drawn independently from a Gaussian distribution, ⌘ ⇠ N (0, ✏2). As we discussed
before, this translates into e↵ective noise that is not necessarily Gaussian or even independent. Fig. 2 shows
the error in the estimated parameters where, error = katrue � aestimatedk2. As shown in Fig. 2, even with
observational noise as low as ✏ = 10�5 (left panel) and ✏ = 10�4 (right panel), ER and OLS outperform
all other methods, in fact, none of the other methods was able to obtain a reasonable solution, while ER
and OLS shows high accuracy in recovering the system parameters. Moreover, while OLS requires more
than 2000 measurements to achieve accurate reconstruction, ER needs less than half the measurements. In
comparison, as noted in [49, 4, 5] and in the implementation provided by the authors, for SINDy and TW
methods to yield accurate reconstruction the number of measurements is at the order of 104.

Next, to explore the performance of SID methods under the presence of outliers, we conduct additional
numerical experiments. The extent to which outliers present is controlled by a single parameter p: each
observation is subject to an added noise ⌘, where ⌘ ⇠ N (0, ✏21) with probability 1� p and ⌘ ⇠ N (0, ✏21 + ✏

2
2)

with probability p. Here we use ✏1 = 10�5, ✏2 = 0.2 and p = 0.2. The results of SID are shown in Fig. 3.
Compared to Fig.(2), we see that with p > 0 OLS performance drops due to the increasing occurrence of
large noise and outliers whereas ER remains its capacity of accurately identifying the underlying system.
As an example, in each of the side panels of Fig. 3, we show the trajectory of the identified dynamics using
the median solution of each method. It is clear that under such noisy chaotic dynamics and at a relatively
under-sampled regime, ER method successfully recovers the system dynamic. As an ample amount of data
becomes available, we note that TW method starts to produce excellent reconstruction which is consistent
with recent findings reported in Ref. [49].

Given that a major theme of modern SID is to seek for sparse representations, and the Lorenz system
under standard polynomial basis is indeed sparse, it is worth asking: what are the respective structure
identified by the di↵erent methods? In Fig. 4 we compare the structure of the identified model using di↵erent
methods across a range of parameter values for ⇢. In this case, under the presence of large noise and outliers
(p = 0.2), none of the methods examined here, including recently proposed sparsity-promoting (CS, SINDy)
and outlier-resilient (TW) methods, is able to identify the correct structure. The proposed ER method,

7

Figure 2: Lorenz system. We perform 100 runs for the comparison, no outliers, 0.0005 step size, and we considered

the median result out of 100 runs. (Left) The error in the parameter estimation for a Lorenz system but subject to

noisy measurements by Gaussian noise, with ✏ = 10
�5

, and using a 5
th
-order polynomial expansion. We see that ER

has an overall superior performance compared to others standard methods. In this low-noise setting, clearly OLS

also performs well whereas LS as expected requires a larger number of measurements to reach reasonable accuracy.

Surprisingly, SINDy, and TW shows poor performance (under large span of tuning parameters, see Fig.(SI.13)) at this

number of measurements even with low noise levels. (Right) Again the same fitted Lorenz system and parameters but

now with slightly larger noise with ✏ = 10
�4

, we see the same relative performance and slight drop in OLS accuracy.

however, does identify the correct structure. It is worth pointing out that, often times when expressed in
the right basis, a model will appears to be sparse, the converse is not true: just because a method return
a sparse solution does not suggest (at all) the such a solution gives a reasonable approximation of the true
model structure. Interestingly, as we show in Fig. SI.1 and Fig. SI.2, for the same system and data, as more
basis functions are used–that is, when the true dynamics becomes sparser–the reconstructed dynamics using
existing methods (such as CS) can become worse.

Example 2. Kuramoto-Sivashinsky equations. To further demonstrate the power of ER, we consider
a nonlinear PDE, namely the Kuramoto-Sivashinsky (KS) equation [32, 31, 45, 22, 33], which arises as
a description of flame front flutter of gas burning in a cylindrically symmetric burner. It has become a
popular example of a PDE that exhibits chaotic behavior, in particular spatiotemporal chaos [11, 21]. We
will consider Kuramoto-Sivashinsky system in the following form,

ut = �⌫uxxxx � uxx + 2uux, (t, x) 2 [0,1)⇥ (0, L) (12)

in periodic domain, u(t, x) = u(t, x + L), and we restrict our solution to the subspace of odd solutions
u(t,�x) = �u(t, x). The viscosity parameter ⌫ controls the suppression of solutions with fast spatial
variations, and is set to ⌫ = 0.029910 under which the system exhibit chaotic behavior [11].

Since a PDE corresponds to an infinite-dimensional dynamical system, in practice we focus on an ap-
proximate finite-dimensional representation of the system, for example, by Galerkin-projection onto basis
functions as infinitely many ODE’s in the corresponding Banach space.

To develop the Galerkin projection, we follow the procedure as presented in [13], to expand a periodic
solution u(x, t) using a discrete spatial Fourier series,

u(x, t) =
1X

�1
bk(t)e

ikqx
, where q =

2⇡

L
. (13)

Notice that we have written this Fourier series of basis elements eikqx in terms of time varying combinations
of basis elements. For simplicity, consider L = 2⇡, then q = 1 for the following analysis. This is typical
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however, does identify the correct structure. It is worth pointing out that, often times when expressed in
the right basis, a model will appears to be sparse, the converse is not true: just because a method return
a sparse solution does not suggest (at all) the such a solution gives a reasonable approximation of the true
model structure. Interestingly, as we show in Fig. SI.1 and Fig. SI.2, for the same system and data, as more
basis functions are used–that is, when the true dynamics becomes sparser–the reconstructed dynamics using
existing methods (such as CS) can become worse.

Example 2. Kuramoto-Sivashinsky equations. To further demonstrate the power of ER, we consider
a nonlinear PDE, namely the Kuramoto-Sivashinsky (KS) equation [32, 31, 45, 22, 33], which arises as
a description of flame front flutter of gas burning in a cylindrically symmetric burner. It has become a
popular example of a PDE that exhibits chaotic behavior, in particular spatiotemporal chaos [11, 21]. We
will consider Kuramoto-Sivashinsky system in the following form,

ut = �⌫uxxxx � uxx + 2uux, (t, x) 2 [0,1)⇥ (0, L) (12)

in periodic domain, u(t, x) = u(t, x + L), and we restrict our solution to the subspace of odd solutions
u(t,�x) = �u(t, x). The viscosity parameter ⌫ controls the suppression of solutions with fast spatial
variations, and is set to ⌫ = 0.029910 under which the system exhibit chaotic behavior [11].

Since a PDE corresponds to an infinite-dimensional dynamical system, in practice we focus on an ap-
proximate finite-dimensional representation of the system, for example, by Galerkin-projection onto basis
functions as infinitely many ODE’s in the corresponding Banach space.

To develop the Galerkin projection, we follow the procedure as presented in [13], to expand a periodic
solution u(x, t) using a discrete spatial Fourier series,

u(x, t) =
1X

�1
bk(t)e

ikqx
, where q =

2⇡

L
. (13)

Notice that we have written this Fourier series of basis elements eikqx in terms of time varying combinations
of basis elements. For simplicity, consider L = 2⇡, then q = 1 for the following analysis. This is typical
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Least Squares (LS):
F = GHI

Orthogonal Least Squares (OLS):

min
M∈ℝN

Φ8 − 3 2

Least Squares (LS)

The most commonly used approach to estimate a in Eq. (20) is to use the least squares criterion, which finds
a by solving the following least squares minimization problem:

min
a2RK

k�a� fk2. (21)

The solution can be explicitly computed, giving

a(LS) = �†f , (22)

where �† denotes the pseudoinverse of the matrix � [16]. Note that in the special case where the minimum
is zero (which is unlikely under the presence of noise), the minimizer is not unique and the “least-squares”
solution typically refers to a vector a that has the minimal 2-norm and solves the equation �a = f . The
LS method has several advantages: it is analytically traceable and easy to solve computationally using
standard linear algebra routines (e.g., SVD). However, a main disadvantage of the LS approach in system
identification, as we discuss in the main text, is that it generally produces a “dense” solution, where most
(if not all) components of a are nonzero, which is a severe overfitting of the actual model. This (undesired)
feature also makes the method sensitive to noise, especially in the under-sampling regime.

Orthogonal Least Squares (OLS)

In orthogonal least squares (OLS) [9, 50, 29], the idea is to iteratively select the columns of � that minimize
the (2-norm) model error, which corresponds to iterative assigning nonzero values to the components of a.
In particular, the first step is to select basis �k1 and compute the corresponding parameter ak1 and residual
r1 according to (

(k1, ak1) = argmink,c kf � c�kk2,

r1 = f � �k1ak1 .
(23)

Then, one iteratively selects additional basis functions (until stopping cretia is met) and compute the corre-
sponding parameter value and residual, as

(
(k`+1, ak`+1) = argmink,c kr` � c�kk2,

r`+1 = r` � �k`+1ak`+1 .
(24)

As for stopping criteria, there are several choices including AIC and BIC. In this work, in the absence of
knowledge of the error distribution, we adopt a commonly used criterion where the iterations terminate
when the norm of the residual is below a prescribed threshold. To determine the threshold, we consider 50
log-spaced candidate values in the interval [10�6

, 100] and select the best using 5-fold cross validation.

Lasso

A principled way to impose sparsity on the model structure is to explicitly penalize solution vectors that are
non-sparse, by formulating a regularized optimization problem:

min
a2RK

�
k�a� fk22 + �kak1

�
, (25)

where the parameter � � 0 controls the extent to which sparsity is desired: as � ! 1 the second term
dominates and the only solution is a vector of all zeros, whereas at the other extreme � = 0 and the problem
becomes identical to a least squares problem which generally yields a full (non-sparse) solution. Values
of � in between then balances the “model fit” quantified by the 2-norm and the sparsity of the solution
characterized by the 1-norm. For a given problem, the parameter � needs to be tuned in order to specify
a particular solution. A common way to select � is via cross validation [20]. In our numerical experiments,
we choose � span according to [20], with 5-Folds cross validation and 10 values � span. We adopt the CVX
solver [18], and from all the solutions found for each � we select the solution with minimum residual.
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LASSO:

Least Squares (LS)

The most commonly used approach to estimate a in Eq. (20) is to use the least squares criterion, which finds
a by solving the following least squares minimization problem:

min
a2RK

k�a� fk2. (21)

The solution can be explicitly computed, giving

a(LS) = �†f , (22)

where �† denotes the pseudoinverse of the matrix � [16]. Note that in the special case where the minimum
is zero (which is unlikely under the presence of noise), the minimizer is not unique and the “least-squares”
solution typically refers to a vector a that has the minimal 2-norm and solves the equation �a = f . The
LS method has several advantages: it is analytically traceable and easy to solve computationally using
standard linear algebra routines (e.g., SVD). However, a main disadvantage of the LS approach in system
identification, as we discuss in the main text, is that it generally produces a “dense” solution, where most
(if not all) components of a are nonzero, which is a severe overfitting of the actual model. This (undesired)
feature also makes the method sensitive to noise, especially in the under-sampling regime.

Orthogonal Least Squares (OLS)

In orthogonal least squares (OLS) [9, 50, 29], the idea is to iteratively select the columns of � that minimize
the (2-norm) model error, which corresponds to iterative assigning nonzero values to the components of a.
In particular, the first step is to select basis �k1 and compute the corresponding parameter ak1 and residual
r1 according to (

(k1, ak1) = argmink,c kf � c�kk2,

r1 = f � �k1ak1 .
(23)

Then, one iteratively selects additional basis functions (until stopping cretia is met) and compute the corre-
sponding parameter value and residual, as

(
(k`+1, ak`+1) = argmink,c kr` � c�kk2,

r`+1 = r` � �k`+1ak`+1 .
(24)

As for stopping criteria, there are several choices including AIC and BIC. In this work, in the absence of
knowledge of the error distribution, we adopt a commonly used criterion where the iterations terminate
when the norm of the residual is below a prescribed threshold. To determine the threshold, we consider 50
log-spaced candidate values in the interval [10�6

, 100] and select the best using 5-fold cross validation.

Lasso

A principled way to impose sparsity on the model structure is to explicitly penalize solution vectors that are
non-sparse, by formulating a regularized optimization problem:

min
a2RK

�
k�a� fk22 + �kak1

�
, (25)

where the parameter � � 0 controls the extent to which sparsity is desired: as � ! 1 the second term
dominates and the only solution is a vector of all zeros, whereas at the other extreme � = 0 and the problem
becomes identical to a least squares problem which generally yields a full (non-sparse) solution. Values
of � in between then balances the “model fit” quantified by the 2-norm and the sparsity of the solution
characterized by the 1-norm. For a given problem, the parameter � needs to be tuned in order to specify
a particular solution. A common way to select � is via cross validation [20]. In our numerical experiments,
we choose � span according to [20], with 5-Folds cross validation and 10 values � span. We adopt the CVX
solver [18], and from all the solutions found for each � we select the solution with minimum residual.
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Compressed Sensing (CS):

Compressed sensing (CS)

Originally developed in the signal processing literature [8, 7, 14], the idea of compressed sensing (CS) has
been adopted in several recent work in nonlinear system identification [10, 52, 5, 6] Under the CS framework,
one solves the following constrained optimization problem,

(
argmina kak1,

subject to k�a� fk  ✏,
(26)

where the parameter ✏ � 0 is used to relax the otherwise strict constraint �a = f , to allow for the presence
of noise in data. In our numerical experiments, we choose 10 log-spaced values for ✏ 2 [10�6

, 100], and
5-Folds cross validation. We adopt the CVX solver [18], and from all the solutions found for each ✏ we select
the solution with minimum residual.

SINDy

In their recent contribution, Brunton, Proctor and Kutz introduced SINDy (Sparse Identification of Nonlinear
Dynamics) as a way to perform nonlinear system identification [5]. Their main idea is, after formulating
the inverse problem (20), to seek a sparse solution. In particular, given that Lasso can be computationally
costly, they proposed to use sequential least squares with (hard) thresholding as an alternative. For a
(prechosen) threshold �, the method starts from a least squares solution and abandons all basis functions
whose corresponding parameter in the solution has absolute value smaller than �; then the same is repeated
for the data matrix associated with the remaining basis functions, and so on and so forth, until no more
basis function (and the corresponding parameter) is removed. For fairness of comparison, we present results
of SINDy according to the best threshold parameter � manually chosen so that no active basis function is
removed in the very first step (see KSE example); for the Lorenz system example, we choose � = 0.02 as
used in a similar example as in Ref. [4].

Tran-Ward (TW)

In their recent paper [49], Tran and Ward considered the SID problem where certain fraction of data points
are corrupted, and proposed a method to simultaneously identify these corrupted data and reconstruct the
system assuming that the corrupted data occurs in sparse and isolated time intervals. In addition to an
initial guess of the solution and corresponding residual, which can be assigned using standard least squares,
the TW approach requires a pre-determiniation of three additional parameters: a tolerance value to set the
stopping criterion, threshold value � used in each iteration to set those parameters whose absolute values
are below � to be zero, and another parameter µ to control the extent to which data points that do not
(approximately) satisfy the prescribed model are to be considered as “corrupted data” and removed. For
the Lorenz system example, we used the same parameters as in Ref. [49] whereas for the KSE example, we
fix µ = 0.0125 (the same used in Ref. [49] and select � similarly as for the implementation of SINDy.

Implementation Details of Entropic Regression (ER)

As described in the main text, and as shown in details in Algorithm (1), a key quantity to compute in ER is
the conditional mutual information I(X;Y |Z) among three (possibly multivariate) random variables X, Y
and Z via samples from these variables, denoted by (xt, yt, zt)t=1,...,T . Since the distribution of the variables
and their dependences are generally unknown, we adopt a nonparametric estimator for I(X;Y |Z) which is
based on statistics of k nearest neighbors [30]. We fix k = 2 in all of the reported numerical experiments;
we have found that the results change quite minimally when k is varied from this fixed value, suggesting
relative robustness of the method.

Another important issue in practice is the determination of threshold under which the conditional mutual
information I(X;Y |Z) should be regarded zero. In theory I(X;Y |Z) is always nonnegative and equals zero
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SINDy : Sequential least squares with hard-thresholding. 

Tran-Ward (TW): Extend SINDy to the data corruption case, and
reconstruct the system assuming that the corrupted data occurs
in sparse and isolated time intervals.
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Causation Entropy (CSE)
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<latexit sha1_base64="jDe7whvDKB8zzwhjJNsdzWtf4sU=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIYA8eKl48VrAf0Iaw2W7apZtN2J0oIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59sqra1vbG6Vtys7u3v7B/bhUUfHqaKsTWMRq15ANBNcsjZwEKyXKEaiQLBuMLmZ+d0HpjSP5T1kCfMiMpI85JSAkXy7eu3nDXc6UHw0BqJU/Igd3645dWcOvErcgtRQgZZvfw2GMU0jJoEKonXfdRLwcqKAU8GmlUGqWULohIxY31BJIqa9fH78FJ8aZYjDWJmSgOfq74mcRFpnUWA6IwJjvezNxP+8fgphw8u5TFJgki4WhanAEONZEnjIFaMgMkMIVdzciumYKELB5FUxIbjLL6+Sznndderu3UWteVXEUUbH6ASdIRddoia6RS3URhRl6Bm9ojfryXqx3q2PRWvJKmaq6A+szx8MfpRZ</latexit><latexit sha1_base64="jDe7whvDKB8zzwhjJNsdzWtf4sU=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIYA8eKl48VrAf0Iaw2W7apZtN2J0oIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59sqra1vbG6Vtys7u3v7B/bhUUfHqaKsTWMRq15ANBNcsjZwEKyXKEaiQLBuMLmZ+d0HpjSP5T1kCfMiMpI85JSAkXy7eu3nDXc6UHw0BqJU/Igd3645dWcOvErcgtRQgZZvfw2GMU0jJoEKonXfdRLwcqKAU8GmlUGqWULohIxY31BJIqa9fH78FJ8aZYjDWJmSgOfq74mcRFpnUWA6IwJjvezNxP+8fgphw8u5TFJgki4WhanAEONZEnjIFaMgMkMIVdzciumYKELB5FUxIbjLL6+Sznndderu3UWteVXEUUbH6ASdIRddoia6RS3URhRl6Bm9ojfryXqx3q2PRWvJKmaq6A+szx8MfpRZ</latexit><latexit sha1_base64="jDe7whvDKB8zzwhjJNsdzWtf4sU=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIYA8eKl48VrAf0Iaw2W7apZtN2J0oIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59sqra1vbG6Vtys7u3v7B/bhUUfHqaKsTWMRq15ANBNcsjZwEKyXKEaiQLBuMLmZ+d0HpjSP5T1kCfMiMpI85JSAkXy7eu3nDXc6UHw0BqJU/Igd3645dWcOvErcgtRQgZZvfw2GMU0jJoEKonXfdRLwcqKAU8GmlUGqWULohIxY31BJIqa9fH78FJ8aZYjDWJmSgOfq74mcRFpnUWA6IwJjvezNxP+8fgphw8u5TFJgki4WhanAEONZEnjIFaMgMkMIVdzciumYKELB5FUxIbjLL6+Sznndderu3UWteVXEUUbH6ASdIRddoia6RS3URhRl6Bm9ojfryXqx3q2PRWvJKmaq6A+szx8MfpRZ</latexit><latexit sha1_base64="jDe7whvDKB8zzwhjJNsdzWtf4sU=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5KIYA8eKl48VrAf0Iaw2W7apZtN2J0oIdS/4sWDIl79Id78N27bHLT1wcDjvRlm5gWJ4Boc59sqra1vbG6Vtys7u3v7B/bhUUfHqaKsTWMRq15ANBNcsjZwEKyXKEaiQLBuMLmZ+d0HpjSP5T1kCfMiMpI85JSAkXy7eu3nDXc6UHw0BqJU/Igd3645dWcOvErcgtRQgZZvfw2GMU0jJoEKonXfdRLwcqKAU8GmlUGqWULohIxY31BJIqa9fH78FJ8aZYjDWJmSgOfq74mcRFpnUWA6IwJjvezNxP+8fgphw8u5TFJgki4WhanAEONZEnjIFaMgMkMIVdzciumYKELB5FUxIbjLL6+Sznndderu3UWteVXEUUbH6ASdIRddoia6RS3URhRl6Bm9ojfryXqx3q2PRWvJKmaq6A+szx8MfpRZ</latexit>

CSE —> 0  
coupling —> 0

Results: Detecting a Disconnected Edge
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A81 ! 5A81
<latexit sha1_base64="LgRuzmhxgmBvqZPX5Xn23SbYVI0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEFHvwUPHisYL9gDaEzXbTLt1kw+5EKaF48a948aCIV3+FN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tgpLyyura8X10sbm1vaOvbvX1DJVlDWoFFK1A6KZ4DFrAAfB2oliJAoEawXD64nfumdKcxnfwShhXkT6MQ85JWAk3z648rOqO+4q3h8AUUo+4POZ5Ntlp+JMgReJm5MyylH37a9uT9I0YjFQQbTuuE4CXkYUcCrYuNRNNUsIHZI+6xgak4hpL5u+MMbHRunhUCpTMeCp+nsiI5HWoygwnRGBgZ73JuJ/XieFsOplPE5SYDGdLQpTgUHiSR64xxWjIEaGEKq4uRXTAVGEgkmtZEJw519eJM3TiutU3Nuzcu0yj6OIDtEROkEuukA1dIPqqIEoekTP6BW9WU/Wi/VufcxaC1Y+s4/+wPr8ASuPlps=</latexit><latexit sha1_base64="LgRuzmhxgmBvqZPX5Xn23SbYVI0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEFHvwUPHisYL9gDaEzXbTLt1kw+5EKaF48a948aCIV3+FN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tgpLyyura8X10sbm1vaOvbvX1DJVlDWoFFK1A6KZ4DFrAAfB2oliJAoEawXD64nfumdKcxnfwShhXkT6MQ85JWAk3z648rOqO+4q3h8AUUo+4POZ5Ntlp+JMgReJm5MyylH37a9uT9I0YjFQQbTuuE4CXkYUcCrYuNRNNUsIHZI+6xgak4hpL5u+MMbHRunhUCpTMeCp+nsiI5HWoygwnRGBgZ73JuJ/XieFsOplPE5SYDGdLQpTgUHiSR64xxWjIEaGEKq4uRXTAVGEgkmtZEJw519eJM3TiutU3Nuzcu0yj6OIDtEROkEuukA1dIPqqIEoekTP6BW9WU/Wi/VufcxaC1Y+s4/+wPr8ASuPlps=</latexit><latexit sha1_base64="LgRuzmhxgmBvqZPX5Xn23SbYVI0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEFHvwUPHisYL9gDaEzXbTLt1kw+5EKaF48a948aCIV3+FN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tgpLyyura8X10sbm1vaOvbvX1DJVlDWoFFK1A6KZ4DFrAAfB2oliJAoEawXD64nfumdKcxnfwShhXkT6MQ85JWAk3z648rOqO+4q3h8AUUo+4POZ5Ntlp+JMgReJm5MyylH37a9uT9I0YjFQQbTuuE4CXkYUcCrYuNRNNUsIHZI+6xgak4hpL5u+MMbHRunhUCpTMeCp+nsiI5HWoygwnRGBgZ73JuJ/XieFsOplPE5SYDGdLQpTgUHiSR64xxWjIEaGEKq4uRXTAVGEgkmtZEJw519eJM3TiutU3Nuzcu0yj6OIDtEROkEuukA1dIPqqIEoekTP6BW9WU/Wi/VufcxaC1Y+s4/+wPr8ASuPlps=</latexit><latexit sha1_base64="LgRuzmhxgmBvqZPX5Xn23SbYVI0=">AAACAnicbVBNS8NAEN3Ur1q/op7Ey2IRPJVEFHvwUPHisYL9gDaEzXbTLt1kw+5EKaF48a948aCIV3+FN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tgpLyyura8X10sbm1vaOvbvX1DJVlDWoFFK1A6KZ4DFrAAfB2oliJAoEawXD64nfumdKcxnfwShhXkT6MQ85JWAk3z648rOqO+4q3h8AUUo+4POZ5Ntlp+JMgReJm5MyylH37a9uT9I0YjFQQbTuuE4CXkYUcCrYuNRNNUsIHZI+6xgak4hpL5u+MMbHRunhUCpTMeCp+nsiI5HWoygwnRGBgZ73JuJ/XieFsOplPE5SYDGdLQpTgUHiSR64xxWjIEaGEKq4uRXTAVGEgkmtZEJw519eJM3TiutU3Nuzcu0yj6OIDtEROkEuukA1dIPqqIEoekTP6BW9WU/Wi/VufcxaC1Y+s4/+wPr8ASuPlps=</latexit>

C81
<latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit><latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit><latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit><latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit>

increased CSE  
increased coupling

Results: Detecting Increased Coupling
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C81
<latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit><latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit><latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit><latexit sha1_base64="80dbW5y4Dci/o0736kjATIubr0Y=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mIYA8eCr14rGA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvDAR3Fjf//YKG5tb2zvF3dLe/sHhUfn4pG1UqilrUSWU7obEMMEla1luBesmmpE4FKwTThpzv/PEtOFKPthpwoKYjCSPOCXWSe3GIKvh2aBc8av+Amid4JxUIEdzUP7qDxVNYyYtFcSYHvYTG2REW04Fm5X6qWEJoRMyYj1HJYmZCbLFtTN04ZQhipR2JS1aqL8nMhIbM41D1xkTOzar3lz8z+ulNqoFGZdJapmky0VRKpBVaP46GnLNqBVTRwjV3N2K6JhoQq0LqORCwKsvr5P2VRX7VXx/Xanf5nEU4QzO4RIw3EAd7qAJLaDwCM/wCm+e8l68d+9j2Vrw8plT+APv8wf4qY6z</latexit>

A81 ! 11A81
<latexit sha1_base64="Kv9DDJX9EwilLVZROcQ5riT53Bc=">AAACA3icbVC7SgNBFJ31GeNr1U6bwSBYhR0RTGERsbGMYB6QLMvsZDYZMju7zNxVwhKw8VdsLBSx9Sfs/Bsnj0ITD1w4nHMv994TplIY8LxvZ2l5ZXVtvbBR3Nza3tl19/YbJsk043WWyES3Qmq4FIrXQYDkrVRzGoeSN8PB9dhv3nNtRKLuYJhyP6Y9JSLBKFgpcA+vgrxCRh0ten2gWicPmJCpFrglr+xNgBcJmZESmqEWuF+dbsKymCtgkhrTJl4Kfk41CCb5qNjJDE8pG9Aeb1uqaMyNn09+GOETq3RxlGhbCvBE/T2R09iYYRzazphC38x7Y/E/r51BVPFzodIMuGLTRVEmMSR4HAjuCs0ZyKEllGlhb8WsTzVlYGMr2hDI/MuLpHFWJl6Z3J6XqpezOAroCB2jU0TQBaqiG1RDdcTQI3pGr+jNeXJenHfnY9q65MxmDtAfOJ8/nPuW0g==</latexit><latexit sha1_base64="Kv9DDJX9EwilLVZROcQ5riT53Bc=">AAACA3icbVC7SgNBFJ31GeNr1U6bwSBYhR0RTGERsbGMYB6QLMvsZDYZMju7zNxVwhKw8VdsLBSx9Sfs/Bsnj0ITD1w4nHMv994TplIY8LxvZ2l5ZXVtvbBR3Nza3tl19/YbJsk043WWyES3Qmq4FIrXQYDkrVRzGoeSN8PB9dhv3nNtRKLuYJhyP6Y9JSLBKFgpcA+vgrxCRh0ten2gWicPmJCpFrglr+xNgBcJmZESmqEWuF+dbsKymCtgkhrTJl4Kfk41CCb5qNjJDE8pG9Aeb1uqaMyNn09+GOETq3RxlGhbCvBE/T2R09iYYRzazphC38x7Y/E/r51BVPFzodIMuGLTRVEmMSR4HAjuCs0ZyKEllGlhb8WsTzVlYGMr2hDI/MuLpHFWJl6Z3J6XqpezOAroCB2jU0TQBaqiG1RDdcTQI3pGr+jNeXJenHfnY9q65MxmDtAfOJ8/nPuW0g==</latexit><latexit sha1_base64="Kv9DDJX9EwilLVZROcQ5riT53Bc=">AAACA3icbVC7SgNBFJ31GeNr1U6bwSBYhR0RTGERsbGMYB6QLMvsZDYZMju7zNxVwhKw8VdsLBSx9Sfs/Bsnj0ITD1w4nHMv994TplIY8LxvZ2l5ZXVtvbBR3Nza3tl19/YbJsk043WWyES3Qmq4FIrXQYDkrVRzGoeSN8PB9dhv3nNtRKLuYJhyP6Y9JSLBKFgpcA+vgrxCRh0ten2gWicPmJCpFrglr+xNgBcJmZESmqEWuF+dbsKymCtgkhrTJl4Kfk41CCb5qNjJDE8pG9Aeb1uqaMyNn09+GOETq3RxlGhbCvBE/T2R09iYYRzazphC38x7Y/E/r51BVPFzodIMuGLTRVEmMSR4HAjuCs0ZyKEllGlhb8WsTzVlYGMr2hDI/MuLpHFWJl6Z3J6XqpezOAroCB2jU0TQBaqiG1RDdcTQI3pGr+jNeXJenHfnY9q65MxmDtAfOJ8/nPuW0g==</latexit><latexit sha1_base64="Kv9DDJX9EwilLVZROcQ5riT53Bc=">AAACA3icbVC7SgNBFJ31GeNr1U6bwSBYhR0RTGERsbGMYB6QLMvsZDYZMju7zNxVwhKw8VdsLBSx9Sfs/Bsnj0ITD1w4nHMv994TplIY8LxvZ2l5ZXVtvbBR3Nza3tl19/YbJsk043WWyES3Qmq4FIrXQYDkrVRzGoeSN8PB9dhv3nNtRKLuYJhyP6Y9JSLBKFgpcA+vgrxCRh0ten2gWicPmJCpFrglr+xNgBcJmZESmqEWuF+dbsKymCtgkhrTJl4Kfk41CCb5qNjJDE8pG9Aeb1uqaMyNn09+GOETq3RxlGhbCvBE/T2R09iYYRzazphC38x7Y/E/r51BVPFzodIMuGLTRVEmMSR4HAjuCs0ZyKEllGlhb8WsTzVlYGMr2hDI/MuLpHFWJl6Z3J6XqpezOAroCB2jU0TQBaqiG1RDdcTQI3pGr+jNeXJenHfnY9q65MxmDtAfOJ8/nPuW0g==</latexit>

increased CSE  
increased coupling

Results: Detecting Increased Coupling
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Detection from Random Walk Dynamics on Networks
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Q: detecting this edge disconnection?
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C39
<latexit sha1_base64="IpR8QhmSP9afUea+xdqtV2KopEA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8lV0VVPBQ6MVjBfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxnreN1pZXVvf2CxsFbd3dvf2SweHTaNSTVmDKqF0OySGCS5Zw3IrWDvRjMShYK1wVJv6rSemDVfywY4TFsRkIHnEKbFOatZ62cXNpFcqexVvBrxM/JyUIUe9V/rq9hVNYyYtFcSYju8lNsiItpwKNil2U8MSQkdkwDqOShIzE2Szayf41Cl9HCntSlo8U39PZCQ2ZhyHrjMmdmgWvan4n9dJbXQdZFwmqWWSzhdFqcBW4enruM81o1aMHSFUc3crpkOiCbUuoKILwV98eZk0zyu+V/HvL8vV2zyOAhzDCZyBD1dQhTuoQwMoPMIzvMIbUugFvaOPeesKymeO4A/Q5w/9M462</latexit><latexit sha1_base64="IpR8QhmSP9afUea+xdqtV2KopEA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8lV0VVPBQ6MVjBfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxnreN1pZXVvf2CxsFbd3dvf2SweHTaNSTVmDKqF0OySGCS5Zw3IrWDvRjMShYK1wVJv6rSemDVfywY4TFsRkIHnEKbFOatZ62cXNpFcqexVvBrxM/JyUIUe9V/rq9hVNYyYtFcSYju8lNsiItpwKNil2U8MSQkdkwDqOShIzE2Szayf41Cl9HCntSlo8U39PZCQ2ZhyHrjMmdmgWvan4n9dJbXQdZFwmqWWSzhdFqcBW4enruM81o1aMHSFUc3crpkOiCbUuoKILwV98eZk0zyu+V/HvL8vV2zyOAhzDCZyBD1dQhTuoQwMoPMIzvMIbUugFvaOPeesKymeO4A/Q5w/9M462</latexit><latexit sha1_base64="IpR8QhmSP9afUea+xdqtV2KopEA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8lV0VVPBQ6MVjBfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxnreN1pZXVvf2CxsFbd3dvf2SweHTaNSTVmDKqF0OySGCS5Zw3IrWDvRjMShYK1wVJv6rSemDVfywY4TFsRkIHnEKbFOatZ62cXNpFcqexVvBrxM/JyUIUe9V/rq9hVNYyYtFcSYju8lNsiItpwKNil2U8MSQkdkwDqOShIzE2Szayf41Cl9HCntSlo8U39PZCQ2ZhyHrjMmdmgWvan4n9dJbXQdZFwmqWWSzhdFqcBW4enruM81o1aMHSFUc3crpkOiCbUuoKILwV98eZk0zyu+V/HvL8vV2zyOAhzDCZyBD1dQhTuoQwMoPMIzvMIbUugFvaOPeesKymeO4A/Q5w/9M462</latexit><latexit sha1_base64="IpR8QhmSP9afUea+xdqtV2KopEA=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8lV0VVPBQ6MVjBfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmhYngxnreN1pZXVvf2CxsFbd3dvf2SweHTaNSTVmDKqF0OySGCS5Zw3IrWDvRjMShYK1wVJv6rSemDVfywY4TFsRkIHnEKbFOatZ62cXNpFcqexVvBrxM/JyUIUe9V/rq9hVNYyYtFcSYju8lNsiItpwKNil2U8MSQkdkwDqOShIzE2Szayf41Cl9HCntSlo8U39PZCQ2ZhyHrjMmdmgWvan4n9dJbXQdZFwmqWWSzhdFqcBW4enruM81o1aMHSFUc3crpkOiCbUuoKILwV98eZk0zyu+V/HvL8vV2zyOAhzDCZyBD1dQhTuoQwMoPMIzvMIbUugFvaOPeesKymeO4A/Q5w/9M462</latexit>

The use of CSE to track coupling enables detection of:
— edge disconnection (coupling —> 0)
— increase/decrease of information flow


