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Bifurcation, Tipping Point, Etc.

Example: bifurcation diagram of the logistic map
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Small change of a system’s parameter can cause large change of its dynamics



Detecting Bifurcation in Time Series(?)

Vol 461|3 September 2009|doi:10.1038/nature08227 nature

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer!, Jordi Bascompte?, William A. Brock?, Victor Brovkin®, Stephen R. Carpenter?, Vasilis Dakos',
Hermann Held®, Egbert H. van Nes', Max Rietkerk” & George Sugihara®

Idea: track a (scalar) function of the time series

scalar time series

EWS

—> Early-Warning Signals (EWS)
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Application of EWS in Detecting Changes

M. Scheffer et al., Early-warning signals for critical transitions, Nature 461, 53-59 (2009)

Examples of EWS: (increased) AR(1), increased variance, etc.

Greenhouse-icehouse transition Onset of epileptic seizure
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Figure 4 | Critical slowing down indicated by an increase in lag-1
autocorrelation in climate dynamics. We show the period preceding the
transition from a greenhouse state to an icehouse state on the Earth 34 Myr
ago. The trends in the CaCO; concentration time series removed by filtering
before computing autocorrelation (AR(1) coefficient) are represented by the
grey line. The horizontal dashed arrow shows the width of the moving
window used to compute the autocorrelation. Modified from ref. 22.

Figure 5 | Subtle changes in brain activity before an epileptic seizure may
be used as an early warning signal. The epileptic seizure clinically detected
at time 0 is announced minutes earlier in an electroencephalography (EEG)
time series by an increase in variance. Adapted by permission from
Macmillan Publishers Ltd: Nature Medicine (ref. 3), copyright 2003.



M. Scheffer et al., Early-warning signals for critical transitions, Nature 461, 53-59 (2009)

High resilience

a Basin of attraction

©
§, Box 3 | The relation between critical slowing down, increased
g autocorrelation and increased variance
Critical slowing down will tend to lead to an increase in the
autocorrelation and variance of the fluctuations in a stochastically
. . . . forced system approaching a bifurcation at a threshold value of a
0 2 4State6 8 10 control parameter. The example described here illustrates why this is
so. We assume that there is a repeated disturbance of the state
7.8 E ; ; ; ; 78 e variable after each period At (that is, additive noise). Between
776 disturbances, the return to equilibrium is approximately exponential
7.75. ' | with a certain recovery speed, /. In a simple autoregressive model this
=779 _ can be described as follows:
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Low resilience If /. and At are independent of y,, this model can also be written as a
d first-order autoregressive (AR(1)) process:
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Flocking of birds Millennium Bridge
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Networks play a central role in the
dynamics and functioning of a system.
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Sensitive Dependence of Optimal Network Dynamics on Network Structure
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(a) UCM network (A = 12) (b) MCC network (Ao = 11)
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Small change in network structure can
lead to large change in network dynamics.



Detecting Changes in a Networked System?

scalar time series —> EWS to detect change
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X What causes the change?

«— — broken connections
— changing coupling strength

EWS does not provide information on these questions.

Challenges:

Q: how to detect the coupling changes via — nonlinearity

analyzing the time series of network dynamics? — 1gh dimensionality
— unknown models



Detecting Changes in a Networked System?

Aij%()

lost of coupling o/0 o o
@ /
X Aij = A
—~_  change of
coupling strength

Q: how to detect the coupling changes via
analyzing the time series of network dynamics?



Information Theory in a Nutshell
Will it rain the next day? [Yes/no question.]

? Easy
™ ™ ™ ol ol ? Difficult

Y 00000 bbb b0040 Yy

How difficult is it to predict if it is going to rain the next day?
— Characterization of (un)predicability.

A Mathematical Theory of Communication,

Claude E. Shannon (1948). Entropy is a model-free measure of
unpredictability (or “surprise”) of a r.v.
Entropy H(X Z p(z) log p(z 0=0.5
X — 1 with probablhty D _os /largest entropy
\O with probability 1 —p T 04

0.2f

Fair coin is most difficult to predict. .. . . .
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Information Theory in a Nutshell (cont.)
Example: Will it rain the next day in city B?

(1) city A ol S S

(YY YY) (Y Y YY) (Y Y YY)

city B S D ol ?

(Y Y YY) (YY YY) (YY) (Y Y YY) u

Easy to predict Y once X is known.

H(Y|X) ~ 0

(2) city A ™ ™ D

(Y YY) (Y YY) (Y Y YY)

city B ol S S ?

(Y Y YY) (Y Y YY) (YY YY) u

H(Y|X)~ H(Y)

Knowing X does not help to predict Y.

Conditional entropy H(X|Y)=H(X,Y) - H(Y)

a measure of “given Y, how much does X remain unpredictable”

N7

H(X.Y)



Beyond Linear Model: Transfer Entropy

VOLUME 85, NUMBER 2 PHYSICAL REVIEW LETTERS 10 JuLy 2000

Measuring Information Transfer

Thomas Schreiber

Idea: apply MI to detect information transfer
/ causality between two time series

consider two stochastic processes {X;} {Y;}

Transfer Entropy (TE)
Ty x = H(Xi11|Xy) — H(X441| X4, Y2)

measures the reduction of uncertainty regarding X’s future by knowing Y



Systematic Bias in TE-based Network Inference
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Causation Entropy: Measure of Causality in Networks

Definition 1 (Causation Entropy). The causation entropy from process Q
to process P conditioned on the set of processes S s defined as

CQ—>’P|(S) — H(Pt+1|5t) _ H(Pt+1|8ta Qt)

S, E. Bollt, Physica D (2014).

uncertainty of P’s uncertainty of P’s

future given S future given S and Q
Iy . x

An Example

Y
Xit1| Xt —
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Cz_x|(x,Y)

; t
Remarks: 17 x
1. CSE itself does not “solve” the causal inference problem.

2. The definition simply emphasizes the fact that cause-and-effect involves
all three parts (cause, effect, and conditioning).



Transfer Entropy (T) vs. Causation Entropy (C)

Transfer Entropy Causation Entropy
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Causation entropy correctly identifies the causal network structure.



Transfer Entropy (T) vs. Causation Entropy (C)

JS and Erik Bollt, “Causation entropy identifies indirect influences,
dominance of neighbors and anticipatory couplings”, Physica D (2014)

JS, Dane Taylor, and Erik Bollt, “Causal network inference by optimal
causation entropy”, SIAM Journal on Applied Dynamical Systems (2015)
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Causation entropy correctly identifies the causal network structure.



Optimal Causation Entropy (0CSE) Principle

SIAM J. APPLIED DYNAMICAL SYSTEMS (© 2015 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 73-106

Causal Network Inference by Optimal Causation Entropy*

Jie Sun’, Dane Taylor!, and Erik M. Bollt

Theorem 2.3 (optimal causation entropy principle for causal network inference). Suppose that
the network stochastic process given by (2.4) satisfies the Markov properties in (2.8). Let

I CV be a given set of nodes and Ny be the set of I'’s causal parents, as defined in (2.3). It
follows that

(a) (Direct inference) Node j € Ny iff <& 3K D Ny such that C;x—{3) > 0 VK C
V, Cjsr(x-(5}) > 0.

(b) (};artz'al conditioning removal) If there exists K C V such that Cj_ 1 (x—{;}) = 0, then
j ¢ Nj.

(¢) (Optimal causation entropy principle) The set of causal parents is the minimal set of

nodes with mazimal causation entropy.
Define the family of sets with mazimal causation entropy as i
(]

(2.26) K= {KlVK’ CV,Ckgr1 < CK—)I}-
Then the set of causal parents is given by

(2.27) N] - nKenK - argmjnKech.

The set of causal “parents” is the minimal set of nodes which maximizes causation entropy.

The problem of causal network inference is converted into
an optimization and estimation problem from given data.
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How Entropic Regression Beats the Outliers Problem

in Nonlinear System Identification
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Abstract

System identification (SID) is central in science and engineering
applications whereby a general model form is assumed, but
active terms and parameters must be inferred from observations.
Sparse SID has recently become an important approach for SID
such as in compressed sensing and Lasso methods. For the
current state-of-art methods, it is still challenging to maintain the
effectiveness of the methods under realistic scenarios where
each observation is subject to non-trivial noise amplitude and
sporadically further contaminated by even large noise and
outliers. To mitigate such issues of large noise and outliers, we
develop an entropic regression approach for nonlinear SID,
whereby true model structures are identified based on relevance
in reducing information flow uncertainty, not necessarily (just)
sparsity. The use of information-theoretic measures as opposed
to a metric-based cost function has a unique advantage, thanks to
the asymptotic equipartition property of probability distributions,
that outliers and other low-occurrence events are conveniently
and intrinsically de-emphasized.
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Entropic Regression

Entropic Regression:

parameters are updated in each iteration

Forward:

d = R(q),f,{kl, e 7k‘i}),
z; = PR(®, f,{k1,...,ki})

Termination: maxy [(PR(P, f,k); flzi—1) =0

a = R(®, f,{k1,...,ki}/{ki}),
Backward: {2 7]%}/{]%})7

I(®R(®, f,S); f|Z;) = 0.

while:

.

The ER method contains two stages (also see Algorithm 1 for the
pseudocode): forward ER and backward ER. In both stages,
selection and elimination are based on an entropy criterion and

ki = argmaxygqy, g3 HOR(®, £, {k}); Flzi-1),

? N

Results are shown for:

( A) Double Well Potential.
f(z) = z* — 22.

( B ) Lorenz System.

z1 = Fl(Z) = 0'(22 — 21),
2y = Fo(2) = z1(p — 2z3) — 22,
23 = F3(z) = 2125 — P23,
( € ) Kuramoto-Sivashinsky Equations.
Ut = —VUgggr — Uge + 2U,Um,

(t,z) € [0,00) x (0,L)

ap = (k% — 1/k:4)ak —k Z Ay, Ol — -

J

m=—0oQ

.

-

inllda —

min|[®a - £,
a= otf

Orthogonal Least Squares (OLS):

Least Squares (LS):

(Ket1, ak,,,) = argming, . [|7e — cor[2,
To+1 =Ty — ¢kz+1akz+1'

: i da— fl2+ A R
LASSO min ([ @a £+ Alalh)

Compressed Sensing (CS): arg ming, [|al1,
subject to || ®a — f| <e¢,

SINDy : Sequential least squares with hard-thresholding.
Tran-Ward (TW): Extend SINDy to the data corruption case, and

reconstruct the system assuming that the corrupted data occurs
in sparse and isolated time intervals. )

(4 \
System Identification

Lorenz System o CRASKRRRAN)
v — _ (1) y(6) ) [= (L T T O T T TR T T} ( i =)
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y=x(p—2)-y SEEEEL8ES
7=xy-pz e ) 0000000000
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Suppose that observations {z(t)} come from a general DE,
represented by z = F(z), where z € RN.Each component
function F;(z) can be represented using a series expansion (for
example a power series or a Fourier series), writing generally,

By = Fz(Z) = Zaik(bk‘(z)v
k=0

In vector form, under a choice of basis and truncation, the
nonlinear system identification problem can be recast into the
form of a linear inverse problem

f=<I>a+E7

Where f € R¥*! and @ € RV*K are given with the goal to
estimate a € RE*1 |

.
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Analytical Properties of CSE

Theorem 2.2 (basic analytical properties of causation entropy). Suppose that the network
stochastic process given by (2.4) satisfies the Markov assumptions in (2.8). Let I C V be a
set of nodes and Ny be its causal parents. Consider two sets of nodes J CV and K C V. The
following results hold:

(a) (Redundancy) If J C K, then Cj_ 5 = 0.

(b) (No false positive) If Ny C K, then Cj_qx = 0 for any set of nodes J.

(¢) (True positive) If J C Ny and J & K, then Cj_,px > 0.

(d) (Decomposition) Cj_pjx = Cxuny—s1 — Cr—r.

(a> CJ—>I|K =0 (b) CJ—»I]K =0 (C) CJ—>I|K >0

Figure 3. Basic analytical properties of causation entropy (Theorem 2.2) allowing for the inference of the
causal parents N1 of a set of nodes I. (a) Redundancy: If J is a subset of the conditioning set K (J C K),
then the causation entropy Cj_rx = 0. (b) No false positive: If Nt is already included in the conditioning set
K (N;r C K), then Cj_ 1k = 0. (c) True positive: If a set J contains at least one causal parent of I that does
not belong to the conditioning set K, v.e., (J C Nr)AN(J ¢ K), then Cj_ 5k > 0.

JS, D. Taylor, E. Bollt, Causal network inference by optimal causation

entropy, SIAM Journal on Applied Dynamical Systems (2015).



Model-free Measures of Pairwise Coupling

Causation Entropy (CSE)
1 K; [/ K;
Cjvite, = HX X)) = HXE) X, X))
where K; = N, /{j}

The observed “net” influence of j on i given the rest of the nbs of |

JS and Erik Bollt, “Causation entropy identifies indirect influences, dominance of
neighbors and anticipatory couplings”, Physica D (2014)

JS, Dane Taylor, and Erik Bollt, “Causal network inference by optimal causation entropy’,
SIAM Journal on Applied Dynamical Systems (2015)

/ Change of link strength A;; — A;; +0A4,;; & C;; — Ci; + 00},

——— Linkremoval A;; = 0< C;_; 1k, — 0



Results: Detecting a Disconnected Edge
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'Results: Detecting Increased Coupling
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‘Results: Detecting Increased Coupling
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Detection from Random Walk Dynamics on Networks

observational
layer (visible) M

%
=

I
dynamical
layer (hidden)
JS, F. Quevedo, E. Bollt, Data Fusion Reconstruction of
< po > 219 Spatially Embedded Complex Networks, arXiv: 1707.00731.
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The use of CSE to track coupling enables detection of:

— edge disconnection (coupling —> 0)

— increase/decrease of information flow



