

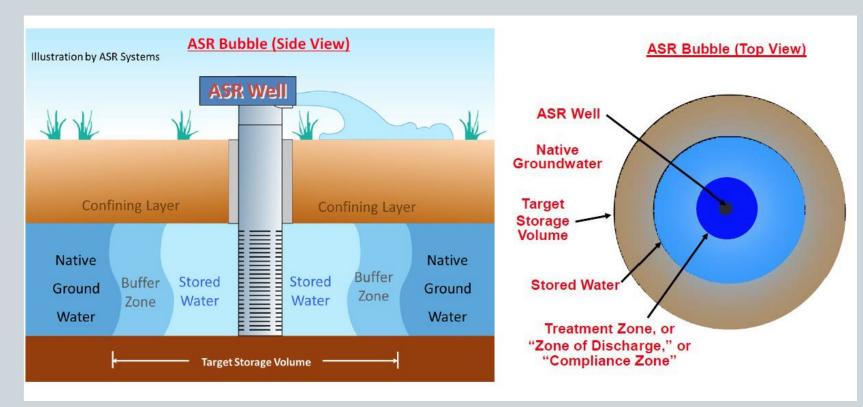
A Modeling Approach to Assess the Feasibility of Water Injection, Storage, and Recovery

ASR Recoverability Guidance Project

Reinaldo E. Alcalde Dr. Charles J. Werth

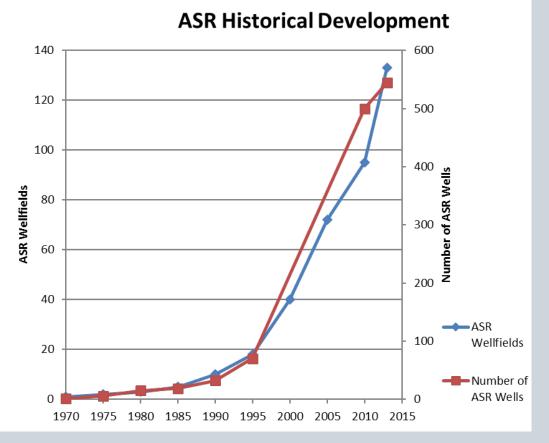
Environmental and Water Resource Engineering University of Texas at Austin

2019 Trade Fair Austin, TX



Aquifer Storage and Recovery (ASR)

ASR: The injection of water into a geologic formation, group of formations, or part of a formation that is capable of underground storage of water *for later retrieval and beneficial use.*


- TCEQ: 30TAC 331.2(8)

ASR Advantages

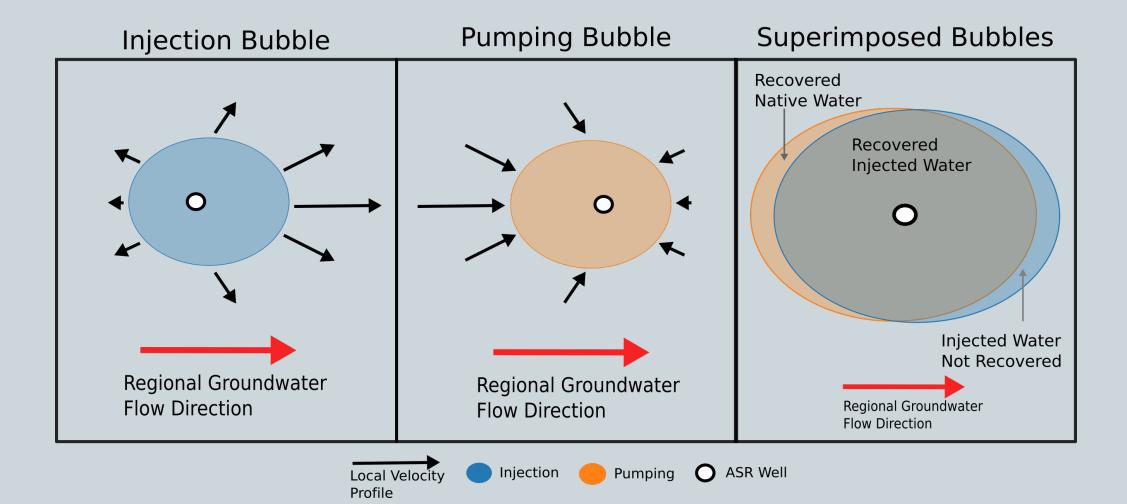
- Little to no evaporative losses
- Minimized environmental disturbance and land consumption
- Low capital cost of implementation on a gallon-per-day capacity
- Versatile technology: Seasonal storage, long-term storage, emergency storage, diurnal storage
 - Bouwer, 2001, Khan et al., 2008, Maliva et al., 2006, Maliva and Missimer, 2010, National Research Council, 2008, Belser and Pyne et al., 2014, Smith et al., 2017

Belser and Pyne et al., 2014

TCEQ ASR Authorization Application

Required Elements:

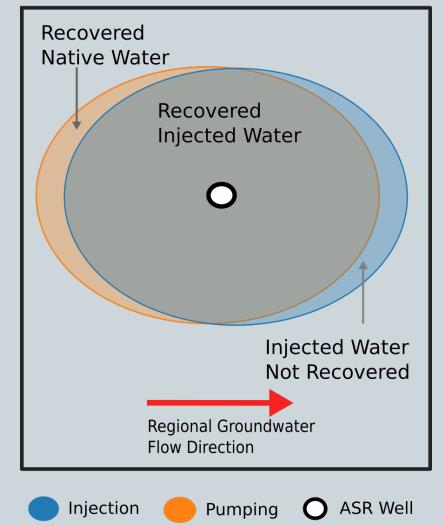
- General Facility/Operator Information
- ASR Project Area
- Area of Review & Artificial Penetrations
- Well Construction & Closure
- Injection Well Operation
- Project Geology, Hydrogeology, and Geochemistry
- Demonstration of Recoverability


Project Objectives and Tasks

Objective: Develop a **site specific** analytical tool for assessing the recoverability of injected waters in ASR operations

- **Task 1:** Identification of Data Needed (physical/operational parameters)
- Task 2: Identification of Modeling Approaches to Assess ASR
- Task 3: User Friendly Implementation of Modeling Approach

Schematic for Recovery



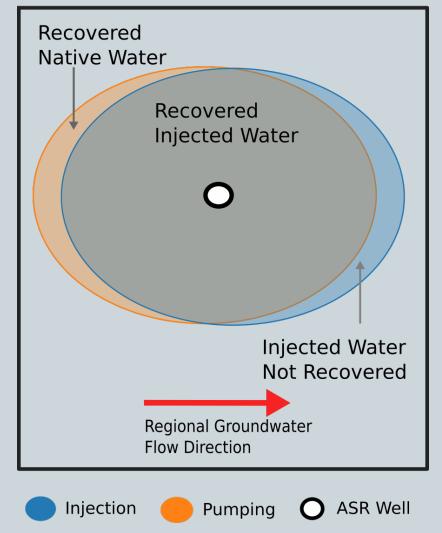
Recovery Efficiency (RE):

$$RE = rac{V_r}{V_i} * 100\%$$

 $V_i = injected \ volume$
 $V_p = pumped \ volume$
 $V_r = recovered \ volume$

Example: $Vi = 100 \ acre - feet$ $Vr = 80 \ acre - feet$ $Vp = 95 \ acre - feet$ $Recovery Efficiency = RE = \frac{V_r}{V_i} * 100\% = \frac{80}{100} * 100 = 80\%$ Lost Injected Fraction = 100% - RE = 20%

Superimposed Bubbles


Native Fraction (NF):

$$NF = rac{Vp - Vr}{Vp} * 100\%$$

 $V_i = injected \ volume$
 $V_p = pumped \ volume$
 $V_r = recovered \ volume$

Example:

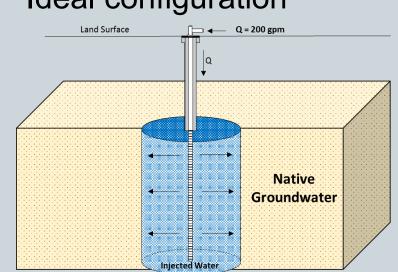
$$Vi = 100 \ acre - feet$$

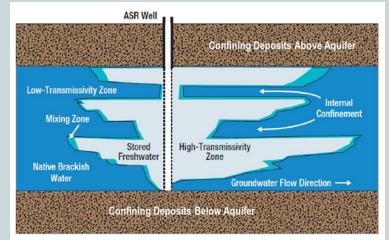
 $Vr = 80 \ acre - feet$
 $Vp = 95 \ acre - feet$
Percent Native Fraction $= \frac{Vp - Vr}{Vp} * 100 = \frac{(95 - 80)}{95} * 100 = 15.8\%$

Superimposed Bubbles

General Approach: Groundwater Models

Groundwater Models: Computational mathematical approximations describing groundwater flow and transport

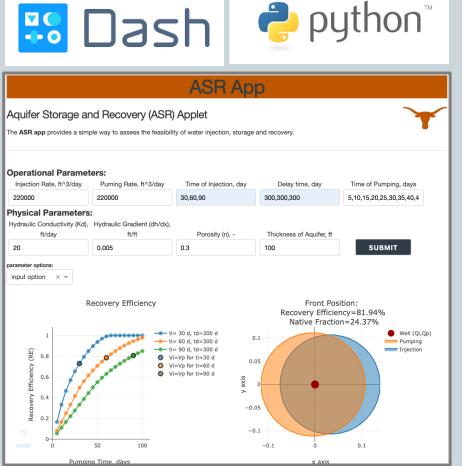

- Analytical Model
 - Equations have exact solution
 - Solution limited by assumptions made
 - Opportunity for misuse is low
- Numerical Model
 - Equations approximate exact solution
 - Adaptable for complex groundwater flow systems
 - Computationally taxing
 - Opportunity for misuse is high


Our Approach: 2-D Analytical Model for Simulating ASR Recoverability

- Obtained by superposition of the complex potentials of uniform flow (derived from hydraulic head and streamlines) Bear and Jacob (1965)
- Determines recoverability for single ASR well
 under steady flow conditions
- Assumptions:
 - Confined aquifer with infinite plane
 - Homogenous aquifer hydraulic properties
 - Constant pumping and injection rates
 - Storativity neglected
 - Mixing and dispersion neglected

See documentation for more details

Complex configuration


(modified from Maliva et al., 2006).

Ideal configuration

User Friendly Model Implementation ASR App

- Simple way for applicants to initiate assessment of water injection, storage, and recovery
- Interactive features for conceptual understating
- Built with **Dash**: A Python framework for building web-based applications
- **Python**: Open-sourced programming language

Aquifer Storage and Recovery (ASR) Applet

The ASR app provides a simple way to assess the feasibility of water injection, storage and recovery.

Pumping Time, days

Operational Parameters: Injection Rate, ft^3/day Puming Rate, ft^3/day Time of Injection, day Delay time, day Time of Pumping, days 220000 220000 30,60,90 300,300,300 5,10,15,20,25,30,35,40,4 **Physical Parameters:** Hydraulic Conductivity (Kd), ft/day Hydraulic Gradient (dh/dx), ft/ft Porosity (n), -Thickness of Aquifer, ft SUBMIT 20 0.001 0.3 100 parameter options: input option × × **Recovery Efficiency** Front Position: Recovery Efficiency=72.22% Native Fraction=0% Well (Qi,Qp) = 30 d, td=300 d i= 60 d, td=300 d Pumping 0.02 - ti= 90 d, td=300 d Injection Recovery Efficiency (RE) 0.8 Vi=Vp for ti=30 d 0 Vi=Vp for ti=60 d 0.01 0 Vi=Vp for ti=90 d axis 0.6 \geq 0.4 -0.01 0.2 -0.02 0 0 20 40 60 80 100 -0.02-0.010 0.01 0.02

x axis

Y

Aquifer Storage and Recovery (ASR) Applet

The **ASR app** provides a simple way to assess the feasibility of water injection, storage and recovery.

Oper	rational Parameters:							
900	Injection Rate, ft^3/day	Puming Rate, ft^3/day	Tir	ne of Injection, day		Delay time, day	Time of Pumping, days	
	220000	220000	30,6	60,90		300,300,300	5,10,15,20,25,30,35,40,4	
Phys	ical Parameters:							
Hyd	raulic Conductivity (Kd), ft/day	Hydraulic Gradient (dh/dx), ft/ft		Porosity (n), -		Thickness of Aquifer, ft		
	20	0.001	0.3			100	SUBMIT	
Recovery Efficiency				 Qp= p ti= inj tp= p td= de B= thi n= po K= hy 	ject oump ectio ump elay ickno rosit drau	ion rates bing rates on time (Mu ing time (M time (Multi ess of aquife cy in aquifer lic conducti		ed)

Aquifer Storage and Recovery (ASR) Applet

The ASR app provides a simple way to assess the feasibility of water injection, storage and recovery.

Pumping Time, days

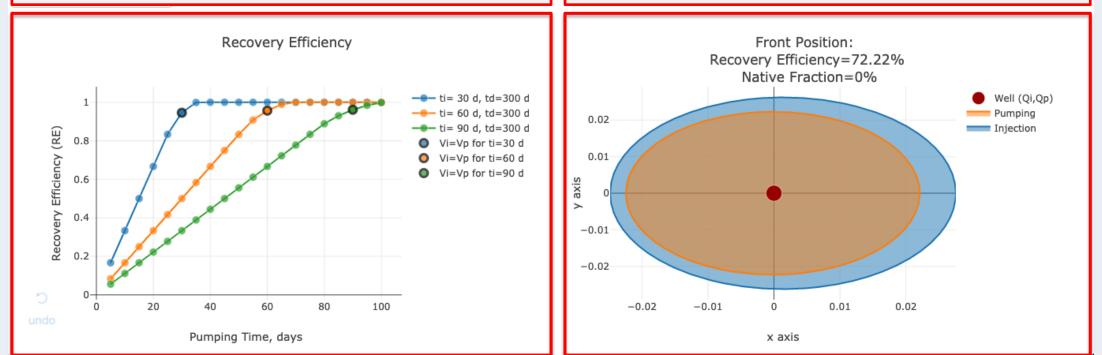
Operational Parameters: Injection Rate, ft^3/day Puming Rate, ft^3/day Time of Injection, day Delay time, day Time of Pumping, days 220000 220000 30,60,90 300,300,300 5,10,15,20,25,30,35,40,4 **Physical Parameters:** Hydraulic Conductivity (Kd), ft/day Hydraulic Gradient (dh/dx), ft/ft Porosity (n), -Thickness of Aquifer, ft SUBMIT 20 0.001 0.3 100 parameter options: input option × × **Recovery Efficiency** Front Position: Recovery Efficiency=72.22% Native Fraction=0% Well (Qi,Qp) = 30 d, td=300 d i= 60 d, td=300 d Pumping 0.02 - ti= 90 d, td=300 d Injection Recovery Efficiency (RE) 0.8 Vi=Vp for ti=30 d 0 Vi=Vp for ti=60 d 0.01 0 Vi=Vp for ti=90 d axis 0.6 \geq 0.4 -0.01 0.2 -0.02 0 0 20 40 60 80 100 -0.02-0.010 0.01 0.02

x axis

Y

Aquifer Storage and Recovery (ASR) Applet

The ASR app provides a simple way to assess the feasibility of water injection, storage and recovery.

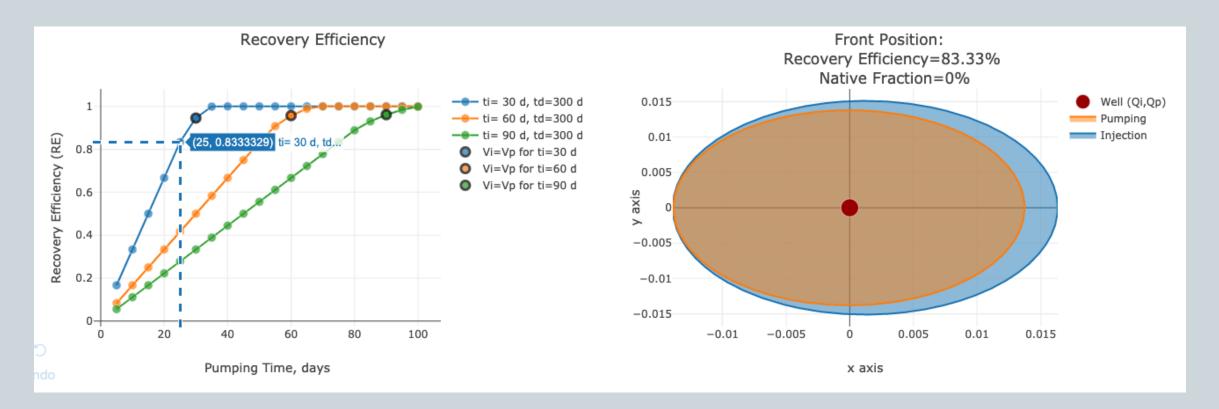

Operational Parameters:

Interactive Graphical Output:

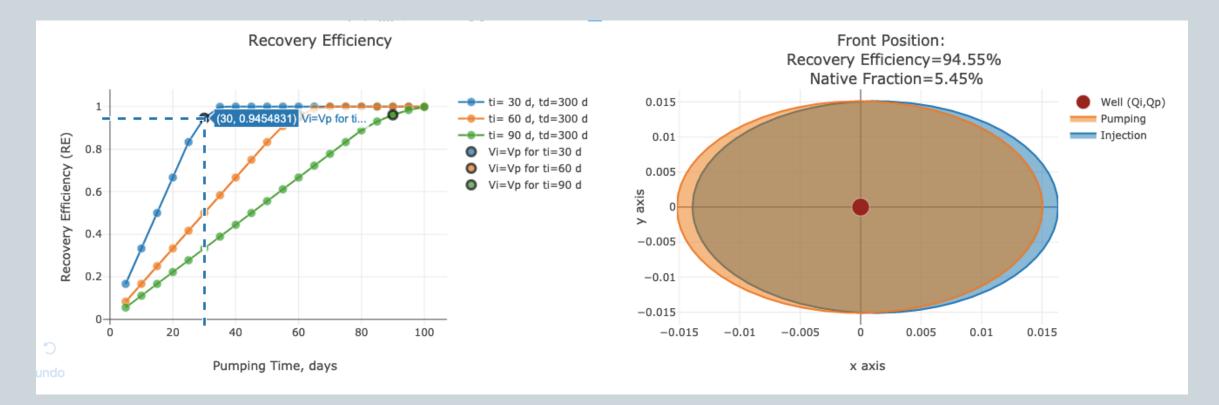
- Recovery Efficiency vs Pumping Time for multiple injection times
- Critical RE where Vi=Vp is displayed

Interactive Graphical Output:

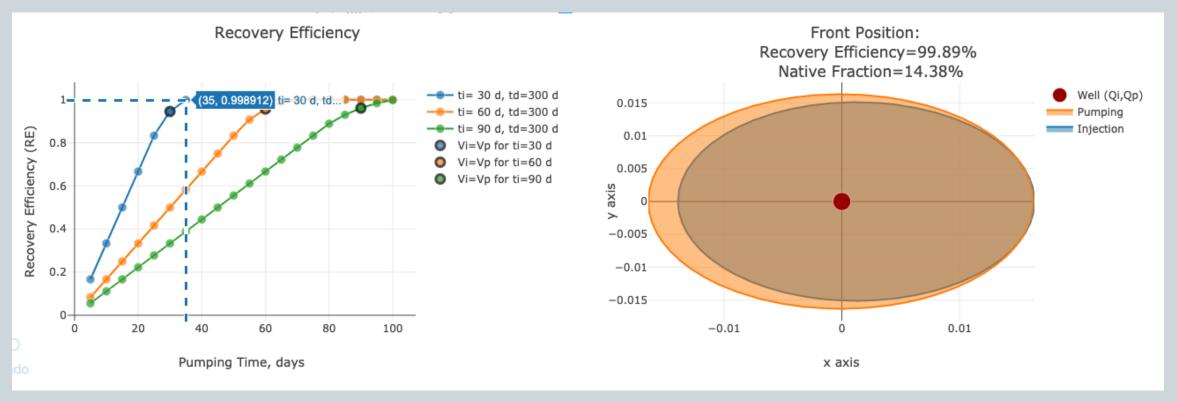
- Allows for viewing front or bubble position for any and all RE values
- Native fraction pumped is displayed



Selected RE: Vp<Vi

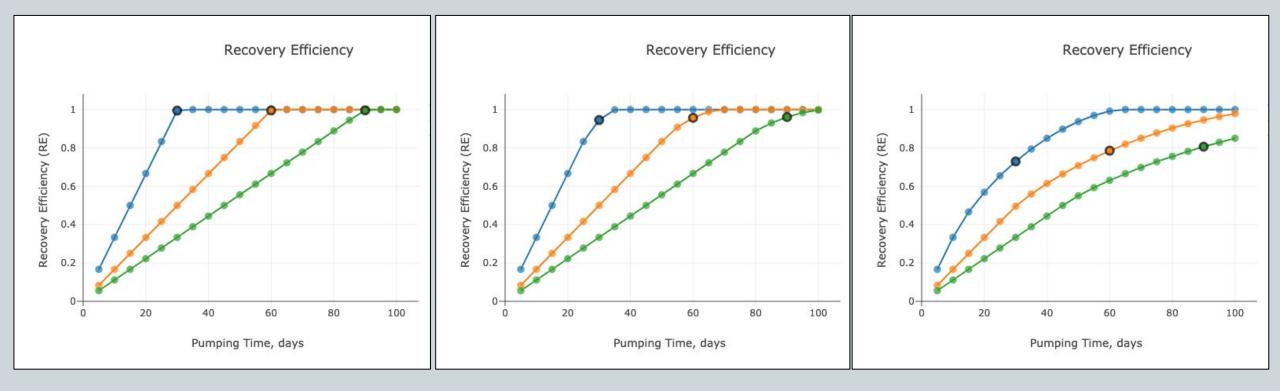

- Recovers 83.3% of injected water
- Captures 0% native water

Selected RE: Vi = Vp


- Recovers 94.6% of injected water
- Captures 5.5% native water

Selected RE: Vp > Vi

- Exceeds injected volume
- Recovers 99.9% of injected water
- Captures 14.4% native water



Hydraulic Gradient (dh/dx) effects

dh/dx= 0.0001 (Low)

dh/dx = 0.001 (Mid)

Model Comparison: Numerical (MODFLOW) vs Analytical (ASR APP)

	Parameter	Value	Units
Qi	Injection rate	20,000	ft³/day
Q _p	Pumping rate	220,000	ft³/day
ti	Injection time	330	days
ta	Delay time	0	days
t _p	Pumping time	30	days
n	Porosity in aquifer	0.3	-
К	Hydraulic conductivity	20	ft/day
dh/dx	Regional hydraulic gradient	0.001	ft/ft
В	Thickness of aquifer	100	ft
Vi	Injection Volume	6.60E+06	ft ³
Vp	Pumping Volume	6.60E+06	ft ³

*Numerical analysis courtesy of Intera

Model Comparison: Numerical (MODFLOW) vs Analytical (ASR APP)

	Parameter	Value	Units
Qi	Injection rate	20,000	ft³/day
Qp	Pumping rate	220,000	ft³/day
ti	Injection time	330	days
td	Delay time	0	days
t _p	Pumping time	30	days
n	Porosity in aquifer	0.3	-
K	Hydraulic conductivity	20	ft/day
dh/dx	Regional hydraulic gradient	0.001	ft/ft
В	Thickness of aquifer	100	ft
Vi	Vi Injection Volume		ft ³
Vp	Pumping Volume	6.60E+06	ft ³

*Numerical analysis courtesy of Intera

	Sensitivity Parameter	Numerical Model	Analytical Model	RL		
Ι	Hydra	Hydraulic Gradient				
	0.01	63.6%	63.6%			
	0.001	96.0%	96.2%			
	0.0001	99.5%	99.6%			
Ц	T	icknees	-			
	50 feet	97.0%	97.3%			
	100 feet	96.0%	96.2%			
	200 feet	94.3%	94.6%			
	Hydrauli	ic Conductivity	1			
	6.8 ft/day	98.5%	98.8			
	20 ft/day	96.0%	96.2%			
	60 ft/day	82.4	82.9			
	F	orosity				
	30%	96.0%	96.2%			
	20%	95.1%	95.3%			
	15%	93.0%	93.3%			
	Injec	Injected Volume				
	2.2E+06 ft ³	92.8%	93.0%			
	6.6E+06 ft ³	96.0%	96.2%			
	1.2E+07 ft ³	97.5%	97.8%			
	Storage Period					
	No Delay	96.0%	96.2%			
	100 days	94.4%	94.6%			
	200 days	92.7%	92.9%			

Concluding remarks...

We identified and developed a user friendly application for assessing site specific recoverability of injected waters in ASR operations.

- Coded an analytical model though Python
- Developed a web-based app through Dash
- Compared our analytical solution with numerical models (MODFLOW)
- Addressed some limitations

The ASR app is an initial assessment, complex aquifer systems may require additional complex numerical modelling to justify recoverability.

Continued work...

- Deployment of ASR App to UT web-server for public use
- Case study documentation for our final deliverable

Aquifer Storage and F	Recovery (ASR) Applet				
The ASR app provides a simple wa	ay to assess the feasibility of water in	estion	c?		¥
Operational Parameters:	•		5:		
Injection Rate, ft^3/day	Puming Rate, ft^3/day			Time of Pumping, days	
220000	220000			5,10,15,20,25,30,35,40,4	
Physical Parameters:					
Hydraulic Conductivity (Kd), ft/da	ay Hydraulic G			SUBMIT	
20		ntact i	nio:	SOBMIT	
input option × -			•••••		
	Reina	Ido E. Alcalde			
	Recovery E Ph.D.	Student		ront Position:	
	Enviro	nmental and V		y Efficiency=72.22% tive Fraction=0%	
		irces Engineer		Well (0 Pumpi Injecti	ng
8.0 (K		niversity of Tex		1	
0.0 Efficie	402-2	17-3322			
8.0 (E) 6.0	alcald	erei@utexas.e	<u>edu</u>		
		-0	.02		
0 20	40 60 80 100	_	-0.02 -0.01	0 0.01 0.02	
undo	Pumping Time, days			x axis	