Novel Algorithms for Vectorial Total Variation SIAM Imaging Sciences, Albuquerque, May 2016

D. Cremers¹, B. Goldlücke², E. Strekalovskiy³,
J. Duran^{1,4}, T. Möllenhoff¹, and M. Moeller¹

¹Dept. Math & Computer Science Technical University of Munich Garching, Germany

> ³Google Munich, Germany

²Dept. Computer & Information Sci. University of Konstanz Konstanz, Germany

⁴Dept. Math & Computer Science University of Balearic Islands Palma de Mallorca, Spain

Vectorial Total Variation

- A Unified Framework using Mixed Matrix Norms
- Primal-Dual Minimization
- Experimental Evaluation
- 2 Nonlocal Vectorial Total Variation
 - Nonlocal Vectorial TV using Mixed Matrix Norms
 - Experimental Evaluation
- 3 Nonconvex Extensions of V-TV ang V-TGV
 - Nonconvex Versions of Vectorial TV
 - A Primal-Dual Algorithm for Nonconvex Regularizers
 - Nonconvex Versions of Vectorial TGV

- 4 同 6 4 日 6 4 日 6

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Inverse Problems and Total Variation

Consider the inverse problem

$$\min_{u \in \mathsf{BV}(\Omega;\mathbb{R}^C)} \mathsf{J}(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with a noisy input image $f \in L^2(\Omega, \mathbb{R}^C), \Omega \subset \mathbb{R}^M$ and a linear operator A. We focus on the design of an effective regularizer J(u).

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Inverse Problems and Total Variation

Consider the inverse problem

$$\min_{u \in \mathsf{BV}(\Omega;\mathbb{R}^C)} \mathsf{J}(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with a noisy input image $f \in L^2(\Omega, \mathbb{R}^C), \Omega \subset \mathbb{R}^M$ and a linear operator A. We focus on the design of an effective regularizer J(u).

In the scalar-valued setting (C=1), a popular convex regularizer is the total variation [Herve, Shulman '89, Rudin, Osher, Fatemi '92]:

$$J(u) = TV(u) = \int_{\Omega} \|\nabla u(x)\|_2 \, \mathrm{d}x = \sup_{|\xi| \le 1} \int_{\Omega} u \operatorname{div} \xi \, \mathrm{d}x.$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Inverse Problems and Total Variation

Consider the inverse problem

$$\min_{u \in \mathsf{BV}(\Omega;\mathbb{R}^C)} \mathsf{J}(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with a noisy input image $f \in L^2(\Omega, \mathbb{R}^C), \Omega \subset \mathbb{R}^M$ and a linear operator A. We focus on the design of an effective regularizer J(u).

In the scalar-valued setting (C=1), a popular convex regularizer is the total variation [Herve, Shulman '89, Rudin, Osher, Fatemi '92]:

$$J(u) = TV(u) = \int_{\Omega} \|\nabla u(x)\|_2 \, \mathrm{d}x = \sup_{|\xi| \le 1} \int_{\Omega} u \operatorname{div} \xi \, \mathrm{d}x.$$

How can we generalize TV(u) to vector-valued images (C > 1)?

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

・ロン ・回と ・ヨン ・ヨン

3

Vectorial Total Variation

• Channelwise summation [Blomgren, Chan '98]:

$$TV_S(u) := \sum_{i=1}^C TV(u_i) = \sup_{\xi: \Omega \to (\mathbb{R}^d)^C} \sum_{i=1}^C \int_{\Omega} u_i \operatorname{div} \xi_i \mathrm{d}x$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

・ロン ・回と ・ヨン

æ

Vectorial Total Variation

• Channelwise summation [Blomgren, Chan '98]:

$$TV_S(u) := \sum_{i=1}^C TV(u_i) = \sup_{\xi: \Omega \to (\mathbb{E}^d)^C} \sum_{i=1}^C \int_\Omega u_i \operatorname{div} \xi_i \mathrm{d}x$$

• Global channel coupling [Sapiro, Ringach '96]:

$$TV_F(u) := \int_{\Omega} \|\nabla u\|_F dx = \sup_{\xi: \Omega \to \mathbb{E}^{d \times C}} \sum_{i=1}^C \int_{\Omega} u_i \operatorname{div} \xi_i dx$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Vectorial Total Variation

• Channelwise summation [Blomgren, Chan '98]:

$$TV_S(u) := \sum_{i=1}^C TV(u_i) = \sup_{\xi: \Omega \to (\mathbb{E}^d)^C} \sum_{i=1}^C \int_\Omega u_i \operatorname{div} \xi_i \mathrm{d}x$$

• Global channel coupling [Sapiro, Ringach '96]:

$$TV_F(u) := \int_{\Omega} \|\nabla u\|_F dx = \sup_{\xi: \Omega \to \mathbb{E}^{d \times C}} \sum_{i=1}^C \int_{\Omega} u_i \operatorname{div} \xi_i dx$$

• Spectral norm coupling [Goldlücke et al. '12]:

$$TV_J(u) := \int_{\Omega} \|\nabla u\|_{\sigma_1} dx = \sup_{\xi: \Omega \to \mathbb{E}^d, \eta: \Omega \to \mathbb{E}^C} \sum_{i=1}^C \int_{\Omega} u_i \operatorname{div}(\eta_i \xi) dx$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

3

Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:

$$\mathbf{u} = (u_1, \dots, u_c) \in \mathbb{R}^{N \times C} \text{ s.t. } u_k \in \mathbb{R}^N, \ \forall k \in \{1, \dots, C\}.$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:

$$\mathbf{u} = (u_1, \dots, u_c) \in \mathbb{R}^{N \times C} \text{ s.t. } u_k \in \mathbb{R}^N, \ \forall k \in \{1, \dots, C\}.$$

The Jacobi matrix at each pixel defines a 3D tensor given by

$$K\mathbf{u} \equiv (Ku)_{i,j,k} \in \mathbb{R}^{N \times M \times C}$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロン イヨン イヨン

Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:

$$\mathbf{u} = (u_1, \dots, u_c) \in \mathbb{R}^{N \times C} \text{ s.t. } u_k \in \mathbb{R}^N, \ \forall k \in \{1, \dots, C\}.$$

The Jacobi matrix at each pixel defines a 3D tensor given by

$$K\mathbf{u} \equiv (Ku)_{i,j,k} \in \mathbb{R}^{N \times M \times C}$$

Definition

For $A \in \mathbb{R}^{N \times M \times C}$, the mixed matrix $\ell^{p,q,r}$ norm is defined as

$$||A||_{p,q,r} = \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{M} \left(\sum_{k=1}^{C} |A_{i,j,k}|^{p}\right)^{q/p}\right)^{r/q}\right)^{1/r}$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

3

Mixed Matrix Norms for Vectorial Total Variation

Schatten *p*-norms penalize the singular values of a given matrix with an ℓ^p -norm.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Mixed Matrix Norms for Vectorial Total Variation

Schatten *p*-norms penalize the singular values of a given matrix with an ℓ^p -norm.

For p = 1, we get the nuclear norm, a convex relaxation of the rank. For p = 2, we get the Frobenius norm. And for $p = \infty$, we penalize the largest singular value.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イヨト イヨト イヨト

Mixed Matrix Norms for Vectorial Total Variation

Schatten p-norms penalize the singular values of a given matrix with an $\ell^p\text{-norm}.$

For p = 1, we get the nuclear norm, a convex relaxation of the rank. For p = 2, we get the Frobenius norm. And for $p = \infty$, we penalize the largest singular value.

Definition

For a tensor $A \in \mathbb{R}^{N \times M \times C}$, the mixed matrix Schatten (S^p, ℓ^q) norm is defined as

$$(S^p, \ell^q)(A) = \left(\sum_{i=1}^N \left\| \left(\begin{array}{ccc} A_{i,1,1} & \cdots & A_{i,1,C} \\ \vdots & \ddots & \vdots \\ A_{i,M,1} & \cdots & A_{i,M,C} \end{array} \right) \right\|_{S^p}^q \right)^{1/q}$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

・ロト ・回ト ・ヨト ・ヨト

3

A Unified Framework for Vectorial Total Variation

Variant	Continuous Formulation	Our Framework		
lsotropic uncoupled	$\int_{\Omega} \sum_{k=1}^{C} \sqrt{(\partial_{x_1} u_k(x))^2 + (\partial_{x_2} u_k(x))^2} \mathrm{d}x$	$\ell^{2,1,1}(\operatorname{der},\operatorname{col},\operatorname{pix})$		
Anisotropic uncoupled	$\int_{\Omega} \sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right) \mathrm{d}x$	$\ell^{1,1,1}(der,col,pix)$		
Blomgren Chan	$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{(\partial_{x_1} u_k(x))^2 + (\partial_{x_2} u_k(x))^2} \mathrm{d}x \right)^2}$	$\ell^{2,1,2}(der, pix, col)$		
Anisotropic version	$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right) \mathrm{d}x \right)^2}$	$\ell^{1,1,2}(der, pix, col)$		
Bresson Chan	$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x)\right)^2 + \sum_{k} \left(\partial_{x_2} u_k(x)\right)^2} dx$	$\ell^{2,2,1}(col, der, pix)$		
Anisotropic version	$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right)^2} \mathrm{d}x$	$\ell^{1,2,1}(der,col,pix)$		

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

・ロト ・回ト ・ヨト ・ヨト

3

A Unified Framework for Vectorial Total Variation

Variant	Continuous Formulation	Our Framework		
Anisotropic variant	$\int_{\Omega} \left(\sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) \right)^2} + \sqrt{\sum_{k=1}^{C} \left(\partial_{x_2} u_k(x) \right)^2} \right) \mathrm{d}x$	$\ell^{2,1,1}(col,der,pix)$		
Strong coupling	$\int_{\Omega} \left(\max_k \partial_{x_1} u_k(x) + \max_k \partial_{x_2} u_k(x) \right) \mathrm{d}x$	$\ell^{\infty,1,1}(col,der,pix)$		
Isotropic version	$\int_{\Omega} \sqrt{\left(\max_{k} \partial_{x_{1}} u_{k}(x) \right)^{2} + \left(\max_{k} \partial_{x_{2}} u_{k}(x) \right)^{2}} \mathrm{d}x$	$\ell^{\infty,2,1}(col,der,pix)$		
lsotropic variant	$\int_{\Omega} \max_{k} \sqrt{\left(\partial_{x_1} u_k(x)\right)^2 + \left(\partial_{x_2} u_k(x)\right)^2} \mathrm{d}x$	$\ell^{2,\infty,1}(der,col,pix)$		
Sapiro	$\int_{\Omega} \left\ \left(\begin{array}{c} (\partial_{x_1} u_k(x))_{k=1,\ldots,C} \\ (\partial_{x_2} u_k(x))_{k=1,\ldots,C} \end{array} \right) \right\ _{S^1} \mathrm{d}x$	$S^1(col, der), \ell^1(pix)$		
Goldluecke	$\int_{\Omega} \left\ \left(\begin{array}{c} (\partial_{x_1} u_k(x))_{k=1,\dots,C} \\ (\partial_{x_2} u_k(x))_{k=1,\dots,C} \end{array} \right) \right\ _{S^{\infty}} \mathrm{d}x$	$S^{\infty}(col, der), \ell^1(pix)$		

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:

$$\min_{u,g} G(u) + F(g) \qquad \text{s.t.} \qquad Ku = g,$$

with data term G and $\ell^{p,q,r}$ -norm or (S^p, ℓ^q) -norm F.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:

$$\min_{u,g} G(u) + F(g) \qquad \text{s.t.} \qquad Ku = g,$$

with data term G and $\ell^{p,q,r}$ -norm or (S^p, ℓ^q) -norm F.

It can be solved by means of the following primal-dual algorithm [Pock, Cremers, Bischof, Chambolle '09]:

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:

$$\min_{u,g} G(u) + F(g) \qquad \text{s.t.} \qquad Ku = g,$$

with data term G and $\ell^{p,q,r}$ -norm or (S^p, ℓ^q) -norm F.

It can be solved by means of the following primal-dual algorithm [Pock, Cremers, Bischof, Chambolle '09]:

Iterate for $n \ge 0$ the following:

$$\begin{cases} \xi^{n+1} = \operatorname{prox}_{\sigma,F^*} \left(\xi^n + \sigma K \bar{u}^n \right), \\ u^{n+1} = \operatorname{prox}_{\tau,G} \left(u^n - \tau K^T \xi^{n+1} \right), \\ \bar{u}^{n+1} = u^{n+1} + \theta(u^{n+1} - u^n). \end{cases}$$

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:

$$\min_{u,g} G(u) + F(g) \qquad \text{s.t.} \qquad Ku = g,$$

with data term G and $\ell^{p,q,r}$ -norm or (S^p, ℓ^q) -norm F.

It can be solved by means of the following primal-dual algorithm [Pock, Cremers, Bischof, Chambolle '09]:

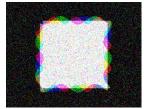
Iterate for $n \ge 0$ the following:

$$\begin{cases} \xi^{n+1} = \operatorname{prox}_{\sigma,F^*} \left(\xi^n + \sigma K \bar{u}^n \right), \\ u^{n+1} = \operatorname{prox}_{\tau,G} \left(u^n - \tau K^T \xi^{n+1} \right), \\ \bar{u}^{n+1} = u^{n+1} + \theta(u^{n+1} - u^n). \end{cases}$$

Converges to a saddle-point $(\hat{u}, \hat{\xi})$ for $\tau \sigma \|K\|^2 < 1$.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

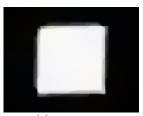
Which is the best channel coupling?



Noisy

 $\ell^{1,1,1}(col, der, pix)$

 $\ell^{2,1,1}(col, der, pix)$



 $\overline{\ell}^{\infty,1,1}(col, der, pix)$ → ∃ → < ∃⇒

Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller

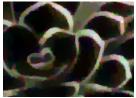
Novel Algorithms for Vectorial Total Variation

Э

A Unified Framework using Mixed Matrix Norms **Primal-Dual Minimization Experimental Evaluation**

Which is the best channel coupling?

Noisy

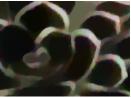


 $\ell^{1,1,1}(col, der, pix)$

 $\ell^{2,2,1}(col, der, pix)$

 $\ell^{\infty,1,1}(col, der, pix)$

 $(S^1(col, der), \ell^1(pix)) \quad (S^\infty(col, der), \ell^1(pix))$



・ロン ・聞と ・ほと ・ほと

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Experimental Results on Image Denoising

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Experimental Results on Image Denoising

Figure: $\ell^{\infty,1,1}$ -regularization with $\lambda = 0.1$. PSNR = 24.92.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Experimental Results on Image Denoising

Figure: $\ell^{\infty,1,1}$ -regularization with optimal $\lambda = 0.04$. PSNR = 27.93.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

э

Experimental Results on Image Denoising

Figure: $\ell^{\infty,1,1}$ -regularization with $\lambda = 0.01$. PSNR = 24.09.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Quantitative Evaluation on Kodak Database

Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller

Novel Algorithms for Vectorial Total Variation

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Quantitative Evaluation on Kodak Database

	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{2,\infty,1}$	(S^1, ℓ^1)	(S^{∞}, ℓ^1)
1	24.78	28.14	29.07	28.51	29.90	29.19	29.07	29.20	27.96
2	24.76	28.54	29.48	29.22	30.18	29.87	29.66	29.83	28.62
3	24.80	29.20	30.15	29.81	30.85	30.51	30.25	30.33	29.24
4	24.68	30.92	32.22	31.80	32.73	32.71	32.13	32.32	31.01
5	24.71	31.50	32.75	32.41	33.13	33.30	32.64	32.81	31.65
6	24.72	27.36	28.19	27.98	29.01	28.64	28.52	28.59	27.47
7	24.71	29.46	30.39	30.12	30.86	30.71	30.35	30.57	29.53
8	24.96	31.08	32.10	31.84	32.41	32.40	32.02	32.20	31.22
9	25.68	30.92	31.74	31.54	32.10	32.00	31.78	31.85	31.11
10	24.66	29.75	30.81	30.49	31.48	31.29	30.94	31.05	29.84
11	24.66	30.14	31.10	30.84	31.49	31.46	31.07	31.22	30.25
12	24.71	31.85	33.15	32.84	33.45	33.69	33.03	33.25	32.05
Ø	24.82	29.91	30.93	30.62	31.47	31.31	30.96	31.10	30.00

Table: For each matrix TV method, the optimal λ in terms of PSNR was computed on the first Kodak image and then used on the others. The input noise standard deviation was 15.

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

Quantitative Evaluation on McMaster Database

Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller

Novel Algorithms for Vectorial Total Variation

A Unified Framework using Mixed Matrix Norms Primal-Dual Minimization Experimental Evaluation

イロト イポト イヨト イヨト

Quantitative Evaluation on McMaster Database

	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{\infty,\infty,1}$	$\ell^{2,\infty,1}$	(S^1, ℓ^1)	(S^{∞}, ℓ^1)
1	29.29	29.83	29.64	29.74	29.52	28.97	29.25	29.98	29.16
2	27.80	28.41	28.26	28.43	28.32	27.80	28.02	28.60	27.75
3	30.44	30.96	30.84	30.78	30.66	30.16	30.39	31.17	30.33
4	29.26	29.91	29.75	29.95	29.82	29.30	29.54	30.13	29.22
5	31.11	31.46	31.40	30.97	30.84	30.33	30.55	31.64	30.89
6	29.83	30.49	30.32	30.34	30.13	29.55	29.84	30.74	29.68
7	30.96	31.63	31.48	31.41	31.21	30.66	30.98	31.80	30.87
8	31.98	32.72	32.60	32.50	32.30	31.78	32.15	32.88	31.99
9	32.54	33.36	33.32	33.08	32.93	32.50	32.85	33.53	32.70
10	32.26	33.06	33.02	32.70	32.54	32.10	32.49	33.20	32.37
11	30.21	30.85	30.75	30.87	30.73	30.35	30.59	30.98	30.29
12	30.58	31.18	30.99	31.11	30.87	30.36	30.69	31.30	30.50
Ø	30.52	31.16	31.03	30.99	30.82	30.32	30.61	31.33	30.48

Table: For each matrix TV method, the optimal λ in terms of RMSE was computed on the first McMaster image and then used on the others.

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Nonlocal Vectorial Total Variation

Continuous Formulation	Our Framework
$\int_{\Omega} \left(\sum_{k=1}^{C} \sqrt{\int_{\Omega} \left(u_k(y) - u_k(x) \right)^2 \omega(x, y) \mathrm{d}y} \right) \mathrm{d}x$	$\ell^{2,1,1}(\operatorname{der},\operatorname{col},\operatorname{pix})$
$\int_\Omega \left(\sum_{k=1}^C \int_\Omega u(y)-u(x) \sqrt{\omega(x,y)} \mathrm{d} y ight) \mathrm{d} x$	$\ell^{1,1,1}(\operatorname{der},\operatorname{col},\operatorname{pix})$
$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) \mathrm{d}y} \mathrm{d}x \right)^2}$	$\ell^{2,1,2}(der, pix, col)$
$\int_{\Omega} \int_{\Omega} \sqrt{\sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y)} \mathrm{d}y \mathrm{d}x$	$\ell^{2,1,1}(col, der, pix)$
$\int_{\Omega} \sqrt{\int_{\Omega} \sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y) \mathrm{d}y} \mathrm{d}x$	$\ell^{2,2,1}(col, der, pix)$
$\int_{\Omega} \int_{\Omega} \max_{k} \left(\left(u_{k}(y) - u_{k}(x) \right)^{2} \omega(x, y) \right) \mathrm{d}y \mathrm{d}x$	$\ell^{\infty,1,1}(col, der, pix)$
	$\int_{\Omega} \left(\sum_{k=1}^{C} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) \mathrm{d}y} \right) \mathrm{d}x$ $\int_{\Omega} \left(\sum_{k=1}^{C} \int_{\Omega} u(y) - u(x) \sqrt{\omega(x, y)} \mathrm{d}y \right) \mathrm{d}x$ $\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) \mathrm{d}y \mathrm{d}x} \right)^2}$ $\int_{\Omega} \int_{\Omega} \sqrt{\sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y) \mathrm{d}y \mathrm{d}x}$ $\int_{\Omega} \sqrt{\int_{\Omega} \sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y) \mathrm{d}y \mathrm{d}x}$

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

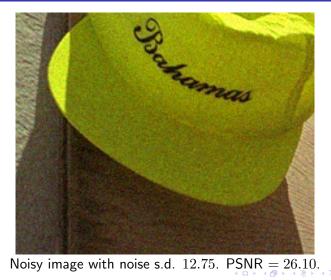
イロト イヨト イヨト イヨト

Local versus Nonlocal Color Total Variation

Clean image

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Local versus Nonlocal Color Total Variation



Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Local versus Nonlocal Color Total Variation

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Local versus Nonlocal Color Total Variation

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Local versus Nonlocal Color Total Variation

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Local versus Nonlocal Color Total Variation

Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller Novel Algorithms for Vectorial Total Variation

Nonlocal Vectorial TV using Mixed Matrix Norms Experimental Evaluation

Quantitative Evaluation on Kodak Database

Kodak	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$
1	26.15	31.01	31.14	31.07	31.20
2	26.14	31.23	31.36	31.21	31.44
3	26.17	31.78	31.88	31.76	31.99
4	26.08	34.38	35.06	34.66	35.03
5	26.10	35.02	35.69	35.35	35.73
6	26.11	29.28	29.37	29.30	29.60
7	26.08	31.64	31.70	31.58	31.77
8	26.31	33.88	34.24	34.02	34.29
9	26.98	34.40	34.74	34.67	34.78
10	26.06	32.21	32.50	32.36	32.61
11	26.06	32.31	32.39	32.27	32.45
12	26.09	35.17	35.93	35.33	35.94
Ø	26.19	32.69	33.00	32.80	33.07

Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller N

(ロ) (同) (E) (E) (E)

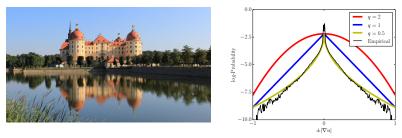
SQC

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イヨト イヨト イヨト

Nonconvex Extension

The statistics of natural images [Huang, Mumford '99] suggest the use of nonconvex regularizers.



The nuclear norm is a convex relaxation of rank minimization. Respective non-convex formulations should more directly penalize the rank of the Jacobian thereby favoring parallel color gradients (rank 1) and piecewise constant regions (rank 0).

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イヨト イヨト イヨト

3

Nonconvex Extension

We propose the following generalizations:

• Vectorial TV^q based on Frobenius norm:

$$TV_F^q(u) = \int_{\Omega} \|\nabla u\|_F^q \, \mathrm{d}x, \qquad q \ge 0.$$

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イヨト イヨト イヨト

3

Nonconvex Extension

We propose the following generalizations:

• Vectorial TV^q based on Frobenius norm:

$$TV_F^q(u) = \int_{\Omega} \|\nabla u\|_F^q \, \mathrm{d}x, \qquad q \ge 0.$$

• Schatten-q TV:

$$TV_{S^q}^q(u) = \int_{\Omega} \|\nabla u\|_{S^q}^q \, \mathrm{d}x, \qquad q \ge 0,$$

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イポト イヨト イヨト

Nonconvex Extension

We propose the following generalizations:

• Vectorial TV^q based on Frobenius norm:

$$TV_F^q(u) = \int_{\Omega} \|\nabla u\|_F^q \, \mathrm{d}x, \qquad q \ge 0.$$

• Schatten-q TV:

$$TV_{S^q}^q(u) = \int_{\Omega} \|\nabla u\|_{S^q}^q \, \mathrm{d}x, \qquad q \ge 0,$$

where the Schatten-q norm is defined as

$$||A||_{S_q} = (\sigma_1^q + \dots + \sigma_n^q)^{1/q}.$$

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

3

Nonsmooth and nonconvex optimization

• Majorization-minimization methods for non-convex problems

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イポト イヨト イヨト

Nonsmooth and nonconvex optimization

- Majorization-minimization methods for non-convex problems
- Iteratively reweighted L_1 minimization [Ochs et al. '12]

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イポト イヨト イヨト

Nonsmooth and nonconvex optimization

- Majorization-minimization methods for non-convex problems
- Iteratively reweighted L_1 minimization [Ochs et al. '12]
- Iteratively reweighted nuclear norm min. [Gu et al. '14]

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

・ロト ・回ト ・ヨト

Nonsmooth and nonconvex optimization

- Majorization-minimization methods for non-convex problems
- Iteratively reweighted L_1 minimization [Ochs et al. '12]
- Iteratively reweighted nuclear norm min. [Gu et al. '14]
- Extend primal-dual algorithms to the nonconvex setting

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロン イ部ン イヨン イヨン 三日

Nonsmooth and nonconvex optimization

- Majorization-minimization methods for non-convex problems
- Iteratively reweighted L_1 minimization [Ochs et al. '12]
- Iteratively reweighted nuclear norm min. [Gu et al. '14]
- Extend primal-dual algorithms to the nonconvex setting

Proposition

Let $F(g) = |g|^q$ and $0 \le q < 1$. The Fenchel conjugate is given by

$$F^*(\xi) = \begin{cases} 0, & |\xi| = 0, \\ \infty, & |\xi| \neq 0, \end{cases}$$

and the biconjugate/convex envelope $(F^*)^*$ is zero everywhere.

Direct application of the PDHG doesn't impose any regularization!

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

3

A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers '14], we consider the problem

 $\min_{u,g} G(u) + F(g) \quad \text{s.t. } g = Ku, \quad \text{with nonconvex } F.$

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers '14], we consider the problem

 $\min_{u,g} G(u) + F(g) \quad \text{s.t. } g = Ku, \quad \text{with nonconvex } F.$

Introducing a Lagrange multiplier y leads to

$$\max_{y} \min_{u,g} G(u) + F(g) + \langle y, Ku - g \rangle,$$

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers '14], we consider the problem

 $\min_{u,g} G(u) + F(g) \quad \text{s.t. } g = Ku, \quad \text{with nonconvex } F.$

Introducing a Lagrange multiplier y leads to

$$\max_{y} \min_{u,g} G(u) + F(g) + \langle y, Ku - g \rangle,$$

which is solved with primal-dual algorithm

$$g^{n+1} = \arg\min_{g} \frac{\sigma}{2} ||g - K\bar{u}^{n}||^{2} - \langle g, y^{n} \rangle + F(g),$$

$$y^{n+1} = y^{n} + \sigma(K\bar{u}^{n} - g^{n+1}),$$

$$u^{n+1} = \arg\min_{u} \frac{1}{2\tau} ||u - u^{n}||^{2} + \langle Ku, y^{n+1} \rangle + G(u),$$

$$\bar{u}^{n+1} = u^{n+1} + \theta(u^{n+1} - u^{n}).$$

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロト イポト イヨト イヨト

A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV '14)

For convex problems, the above algorithm is equivalent to the primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof '09].

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

・ロト ・回ト ・ヨト ・ヨト

A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV '14)

For convex problems, the above algorithm is equivalent to the primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof '09].

Proposition (Strekalovskiy, Cremers ECCV '14)

For nonconvex regularizers F, the above algorithm still incorporates the regularizer in a non-trivial manner.

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV '14)

For convex problems, the above algorithm is equivalent to the primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof '09].

Proposition (Strekalovskiy, Cremers ECCV '14)

For nonconvex regularizers F, the above algorithm still incorporates the regularizer in a non-trivial manner.

Proposition (Möllenhoff, Strekalovskiy, Möller, Cremers SIIMS '15)

Let $G - \frac{c}{2} \| \cdot \|_2^2$ and $F + \frac{\omega}{2} \| \cdot \|_2^2$ be convex with $c > \omega \|K\|_2^2$. Then the latter algorithm converges to the (unique) minimizer of

G(u) + F(Ku)

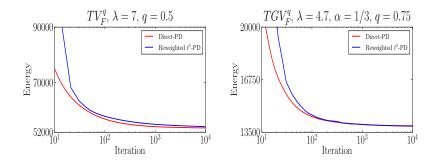
for $0 < \sigma = 2\omega$, $\tau\sigma \|K\|_2^2 \le 1$, and any $\theta \in [0,1]$ with rate 1/N.

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロン イヨン イヨン イヨン

Э

Numerical results - convergence

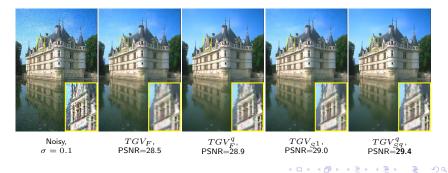


Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller Novel Algorithms for Vectorial Total Variation

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

Numerical results - natural image denoising (q = 0.75)

Extending the Total Generalized Variation (TGV) [Bredies, Kunisch, Pock '10] and the multichannel version TGV_F [Bredies '14], we proposed a nuclear-norm vectorial version TGV_{S^1} and respective non-convex formulations TGV_F^q and $TGV_{S^q}^q$.



Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller Novel Algorithms for Vectorial Total Variation

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

・ロト ・回ト ・ヨト ・ヨト

3

Conclusion

• We introduced a unified framework for Vectorial Total Variation based on the mixed matrix norms $\ell^{p,q,r}$ and (S^p, ℓ^q) .

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

イロン イヨン イヨン イヨン

3

- We introduced a unified framework for Vectorial Total Variation based on the mixed matrix norms $\ell^{p,q,r}$ and (S^p, ℓ^q) .
- Depending on the amount of inter-channel correlation, different matrix norms are suited.

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

(ロ) (同) (E) (E) (E)

- We introduced a unified framework for Vectorial Total Variation based on the mixed matrix norms $\ell^{p,q,r}$ and (S^p, ℓ^q) .
- Depending on the amount of inter-channel correlation, different matrix norms are suited.
- $\ell^{\infty,1,1}$ and (S^1,ℓ^1) best exploit color-channel correlations.

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

・ロット (四) (日) (日)

- We introduced a unified framework for Vectorial Total Variation based on the mixed matrix norms $\ell^{p,q,r}$ and (S^p, ℓ^q) .
- Depending on the amount of inter-channel correlation, different matrix norms are suited.
- $\ell^{\infty,1,1}$ and (S^1,ℓ^1) best exploit color-channel correlations.
- We proposed respective Nonlocal Vectorial Total Variations.

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

・ロン ・回 と ・ ヨ と ・ ヨ と

- We introduced a unified framework for Vectorial Total Variation based on the mixed matrix norms $\ell^{p,q,r}$ and (S^p, ℓ^q) .
- Depending on the amount of inter-channel correlation, different matrix norms are suited.
- $\ell^{\infty,1,1}$ and (S^1,ℓ^1) best exploit color-channel correlations.
- We proposed respective Nonlocal Vectorial Total Variations.
- We proposed non-convex formulations of respective Vectorial TV and Vectorial TGV. In particular, $TGV_{S^q}^q$ enables a more direct rank penalization enforcing color channel alignment.

Nonconvex Versions of Vectorial TV A Primal-Dual Algorithm for Nonconvex Regularizers Nonconvex Versions of Vectorial TGV

- We introduced a unified framework for Vectorial Total Variation based on the mixed matrix norms $\ell^{p,q,r}$ and (S^p, ℓ^q) .
- Depending on the amount of inter-channel correlation, different matrix norms are suited.
- $\ell^{\infty,1,1}$ and (S^1,ℓ^1) best exploit color-channel correlations.
- We proposed respective Nonlocal Vectorial Total Variations.
- We proposed non-convex formulations of respective Vectorial TV and Vectorial TGV. In particular, $TGV_{S^q}^q$ enables a more direct rank penalization enforcing color channel alignment.
- We proposed two primal-dual algorithms for convex and non-convex regularizers F which coincide for convex F.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Publications

- Duran, Moeller, Sbert, Cremers, "Collaborative Total Variation: A General Framework for Vectorial TV Models", SIAM-IS 2015.
- Duran, Moeller, Sbert, Cremers, "On the Implementation of Collaborative TV Regularization", IPOL 2016.
- Duran, Moeller, Sbert, Cremers, "A Novel Framework for Nonlocal Vectorial Total Variation Based on *l*^{p,q,r}-norms", EMMCVPR 2015.
- Moellenhoff, Strekalovskiy, Moeller, Cremers, "Low Rank Priors for Color Image Regularization", EMMCVPR 2015.
- Pock, Cremers, Chambolle, Bischof, "An Algorithm for Minimizing the Mumford-Shah Functional", ICCV 2009.
- Strekalovskiy, Cremers, "Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional", ECCV 2014.
- Moellenhoff, Strekalovskiy, Moeller, Cremers, "The Primal-Dual Hybrid Gradient Method for Semiconvex Splittings", SIAM-IS 2015.