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Inverse Problems and Total Variation

Consider the inverse problem

min
u∈BV(Ω;RC)

J(u) +
λ

2
‖Au− f‖22,

with a noisy input image f ∈ L2(Ω,RC),Ω ⊂ RM and a linear
operator A. We focus on the design of an effective regularizer J(u).

In the scalar-valued setting (C=1), a popular convex regularizer is
the total variation [Herve, Shulman ’89, Rudin, Osher, Fatemi ’92]:

J(u) = TV (u) =

∫
Ω
‖∇u(x)‖2 dx = sup

|ξ|≤1

∫
Ω
udiv ξ dx.

How can we generalize TV (u) to vector-valued images (C>1)?
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Vectorial Total Variation

Channelwise summation [Blomgren, Chan ’98]:

TVS(u) :=

C∑
i=1

TV (ui) = sup
ξ:Ω→(Ed)C

C∑
i=1

∫
Ω
ui div ξidx

Global channel coupling [Sapiro, Ringach ’96]:

TVF (u) :=

∫
Ω
‖∇u‖Fdx = sup

ξ:Ω→Ed×C

C∑
i=1

∫
Ω
ui div ξidx

Spectral norm coupling [Goldlücke et al. ’12]:

TVJ(u) :=

∫
Ω
‖∇u‖σ1dx = sup

ξ:Ω→Ed,η:Ω→EC

C∑
i=1

∫
Ω
ui div(ηiξ)dx
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Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:

u = (u1, . . . , uc) ∈ RN×C s.t. uk ∈ RN , ∀k ∈ {1, . . . , C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Ku ≡ (Ku)i,j,k ∈ RN×M×C .

Definition

For A ∈ RN×M×C , the mixed matrix `p,q,r norm is defined as

‖A‖p,q,r =

 N∑
i=1

 M∑
j=1

(
C∑
k=1

|Ai,j,k|p
)q/pr/q


1/r

.

Cremers, Goldlücke, Strekalovskiy, Duran, Möllenhoff, Moeller Novel Algorithms for Vectorial Total Variation



Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:

u = (u1, . . . , uc) ∈ RN×C s.t. uk ∈ RN , ∀k ∈ {1, . . . , C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Ku ≡ (Ku)i,j,k ∈ RN×M×C .

Definition

For A ∈ RN×M×C , the mixed matrix `p,q,r norm is defined as

‖A‖p,q,r =

 N∑
i=1

 M∑
j=1

(
C∑
k=1

|Ai,j,k|p
)q/pr/q


1/r

.
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Mixed Matrix Norms for Vectorial Total Variation

Schatten p-norms penalize the singular values of a given matrix
with an `p-norm.

For p = 1, we get the nuclear norm, a convex relaxation of the
rank. For p = 2, we get the Frobenius norm. And for p =∞, we
penalize the largest singular value.

Definition

For a tensor A ∈ RN×M×C , the mixed matrix Schatten (Sp, `q)
norm is defined as

(Sp, `q)(A) =

 N∑
i=1

∥∥∥∥∥∥∥
 Ai,1,1 · · · Ai,1,C

...
. . .

...
Ai,M,1 · · · Ai,M,C


∥∥∥∥∥∥∥
q

Sp


1/q
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A Unified Framework for Vectorial Total Variation

Variant Continuous Formulation Our Framework

Isotropic
uncoupled

∫
Ω

∑C
k=1

√
(∂x1uk(x))2 + (∂x2uk(x))2dx `2,1,1(der, col, pix)

Anisotropic
uncoupled

∫
Ω

∑C
k=1

(
|∂x1uk(x)|+ |∂x2uk(x)|

)
dx `1,1,1(der, col, pix)

Blomgren
Chan

√√√√ C∑
k=1

(∫
Ω

√
(∂x1uk(x))2 + (∂x2uk(x))2dx

)2

`2,1,2(der, pix, col)

Anisotropic
version

√√√√ C∑
k=1

(∫
Ω

(
|∂x1uk(x)|+ |∂x2uk(x)|

)
dx

)2

`1,1,2(der, pix, col)

Bresson
Chan

∫
Ω

√∑C
k=1

(
∂x1uk(x)

)2
+
∑
k

(
∂x2uk(x)

)2
dx `2,2,1(col, der, pix)

Anisotropic
version

∫
Ω

√∑C
k=1

(
|∂x1uk(x)|+ |∂x2uk(x)|

)2
dx `1,2,1(der, col, pix)
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A Unified Framework for Vectorial Total Variation

Variant Continuous Formulation Our Framework

Anisotropic
variant

∫
Ω

(√∑C
k=1 (∂x1uk(x))2+

√∑C
k=1 (∂x2uk(x))2

)
dx `2,1,1(col, der, pix)

Strong
coupling

∫
Ω

(maxk |∂x1uk(x)|+ maxk |∂x2uk(x)|) dx `∞,1,1(col, der, pix)

Isotropic
version

∫
Ω

√(
maxk |∂x1uk(x)|

)2
+
(

maxk |∂x2uk(x)|
)2

dx `∞,2,1(col, der, pix)

Isotropic
variant

∫
Ω

maxk

√
(∂x1uk(x))2 + (∂x2uk(x))2dx `2,∞,1(der, col, pix)

Sapiro

∫
Ω

∥∥∥∥∥
(

(∂x1uk(x))k=1,...,C
(∂x2uk(x))k=1,...,C

)∥∥∥∥∥
S1

dx S1(col, der), `1(pix)

Goldluecke

∫
Ω

∥∥∥∥∥
(

(∂x1uk(x))k=1,...,C
(∂x2uk(x))k=1,...,C

)∥∥∥∥∥
S∞

dx S∞(col, der), `1(pix)
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Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:

min
u,g

G(u) + F (g) s.t. Ku = g,

with data term G and `p,q,r-norm or (Sp, `q)-norm F .

It can be solved by means of the following primal-dual algorithm
[Pock, Cremers, Bischof, Chambolle ’09]:

Iterate for n ≥ 0 the following:
ξn+1 = proxσ,F ∗ (ξn + σKūn) ,

un+1 = proxτ,G
(
un − τKT ξn+1

)
,

ūn+1 = un+1 + θ(un+1 − un).

Converges to a saddle-point (û, ξ̂) for τσ‖K‖2 < 1.
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Which is the best channel coupling?

Noisy `1,1,1(col, der, pix)

`2,1,1(col, der, pix) `∞,1,1(col, der, pix)
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Which is the best channel coupling?

Noisy `1,1,1(col, der, pix) `2,2,1(col, der, pix)

`∞,1,1(col, der, pix) (S1(col, der), `1(pix)) (S∞(col, der), `1(pix))
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Experimental Results on Image Denoising

Figure: Noisy image with standard deviation 25. PSNR = 20.74.
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Experimental Results on Image Denoising

Figure: `∞,1,1−regularization with λ = 0.1. PSNR = 24.92.
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Experimental Results on Image Denoising

Figure: `∞,1,1−regularization with optimal λ = 0.04. PSNR = 27.93.
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Experimental Results on Image Denoising

Figure: `∞,1,1−regularization with λ = 0.01. PSNR = 24.09.
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Quantitative Evaluation on Kodak Database

Kodak 1 Kodak 2 Kodak 3 Kodak 4

Kodak 5 Kodak 6 Kodak 7 Kodak 8

Kodak 9 Kodak 10 Kodak 11 Kodak 12
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Quantitative Evaluation on Kodak Database

Noisy `1,1,1 `2,1,1 `2,2,1 `∞,1,1 `∞,2,1 `2,∞,1 (S1, `1) (S∞, `1)

1 24.78 28.14 29.07 28.51 29.90 29.19 29.07 29.20 27.96

2 24.76 28.54 29.48 29.22 30.18 29.87 29.66 29.83 28.62

3 24.80 29.20 30.15 29.81 30.85 30.51 30.25 30.33 29.24

4 24.68 30.92 32.22 31.80 32.73 32.71 32.13 32.32 31.01

5 24.71 31.50 32.75 32.41 33.13 33.30 32.64 32.81 31.65

6 24.72 27.36 28.19 27.98 29.01 28.64 28.52 28.59 27.47

7 24.71 29.46 30.39 30.12 30.86 30.71 30.35 30.57 29.53

8 24.96 31.08 32.10 31.84 32.41 32.40 32.02 32.20 31.22

9 25.68 30.92 31.74 31.54 32.10 32.00 31.78 31.85 31.11

10 24.66 29.75 30.81 30.49 31.48 31.29 30.94 31.05 29.84

11 24.66 30.14 31.10 30.84 31.49 31.46 31.07 31.22 30.25

12 24.71 31.85 33.15 32.84 33.45 33.69 33.03 33.25 32.05

∅ 24.82 29.91 30.93 30.62 31.47 31.31 30.96 31.10 30.00

Table: For each matrix TV method, the optimal λ in terms of PSNR was
computed on the first Kodak image and then used on the others. The
input noise standard deviation was 15.
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Quantitative Evaluation on McMaster Database

McM 1 McM 2 McM 3 McM 4

McM 5 McM 6 McM 7 McM 8

McM 9 McM 10 McM 11 McM 12
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Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Quantitative Evaluation on McMaster Database

`1,1,1 `2,1,1 `2,2,1 `∞,1,1 `∞,2,1 `∞,∞,1 `2,∞,1 (S1, `1) (S∞, `1)

1 29.29 29.83 29.64 29.74 29.52 28.97 29.25 29.98 29.16

2 27.80 28.41 28.26 28.43 28.32 27.80 28.02 28.60 27.75

3 30.44 30.96 30.84 30.78 30.66 30.16 30.39 31.17 30.33

4 29.26 29.91 29.75 29.95 29.82 29.30 29.54 30.13 29.22

5 31.11 31.46 31.40 30.97 30.84 30.33 30.55 31.64 30.89

6 29.83 30.49 30.32 30.34 30.13 29.55 29.84 30.74 29.68

7 30.96 31.63 31.48 31.41 31.21 30.66 30.98 31.80 30.87

8 31.98 32.72 32.60 32.50 32.30 31.78 32.15 32.88 31.99

9 32.54 33.36 33.32 33.08 32.93 32.50 32.85 33.53 32.70

10 32.26 33.06 33.02 32.70 32.54 32.10 32.49 33.20 32.37

11 30.21 30.85 30.75 30.87 30.73 30.35 30.59 30.98 30.29

12 30.58 31.18 30.99 31.11 30.87 30.36 30.69 31.30 30.50

∅ 30.52 31.16 31.03 30.99 30.82 30.32 30.61 31.33 30.48

Table: For each matrix TV method, the optimal λ in terms of RMSE was
computed on the first McMaster image and then used on the others.
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Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Nonlocal Vectorial Total Variation

Variant Continuous Formulation Our Framework

Isotropic
uncoupled

∫
Ω

(
C∑
k=1

√∫
Ω

(uk(y)− uk(x))2 ω(x, y) dy

)
dx `2,1,1(der, col, pix)

Anisotropic
uncoupled

∫
Ω

(
C∑
k=1

∫
Ω
|u(y)− u(x)|

√
ω(x, y) dy

)
dx `1,1,1(der, col, pix)

Duan
Pan, Tai

√√√√ C∑
k=1

(∫
Ω

√∫
Ω
(uk(y)− uk(x))2 ω(x, y) dy dx

)2

`2,1,2(der, pix, col)

Anisotropic
coupled

∫
Ω

∫
Ω

√√√√ C∑
k=1

(uk(y)− uk(x))2 ω(x, y) dy dx `2,1,1(col, der, pix)

Isotropic
coupled

∫
Ω

√√√√∫
Ω

C∑
k=1

(uk(y)− uk(x))2 ω(x, y) dy dx `2,2,1(col, der, pix)

Strong
coupling

∫
Ω

∫
Ω

max
k

(
(uk(y)− uk(x))2 ω(x, y)

)
dy dx `∞,1,1(col, der, pix)
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Local versus Nonlocal Color Total Variation

Clean image
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Local versus Nonlocal Color Total Variation

Noisy image with noise s.d. 12.75. PSNR = 26.10.
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Local versus Nonlocal Color Total Variation

`1,1,1−TV regularization. PSNR = 33.60.
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Local versus Nonlocal Color Total Variation

`1,1,1−NLTV regularization. PSNR = 35.41.
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Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Local versus Nonlocal Color Total Variation

`∞,1,1−TV regularization. PSNR = 34.88.
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Local versus Nonlocal Color Total Variation

`∞,1,1−NLTV regularization. PSNR = 35.65.
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Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonlocal Vectorial TV using Mixed Matrix Norms
Experimental Evaluation

Quantitative Evaluation on Kodak Database

Kodak Noisy `1,1,1 `2,1,1 `2,2,1 `∞,1,1

1 26.15 31.01 31.14 31.07 31.20
2 26.14 31.23 31.36 31.21 31.44
3 26.17 31.78 31.88 31.76 31.99
4 26.08 34.38 35.06 34.66 35.03
5 26.10 35.02 35.69 35.35 35.73
6 26.11 29.28 29.37 29.30 29.60
7 26.08 31.64 31.70 31.58 31.77
8 26.31 33.88 34.24 34.02 34.29
9 26.98 34.40 34.74 34.67 34.78
10 26.06 32.21 32.50 32.36 32.61
11 26.06 32.31 32.39 32.27 32.45
12 26.09 35.17 35.93 35.33 35.94

∅ 26.19 32.69 33.00 32.80 33.07
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Versions of Vectorial TGV

Nonconvex Extension

The statistics of natural images [Huang, Mumford ’99] suggest the
use of nonconvex regularizers.
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Empirical

The nuclear norm is a convex relaxation of rank minimization.
Respective non-convex formulations should more directly penalize
the rank of the Jacobian thereby favoring parallel color gradients
(rank 1) and piecewise constant regions (rank 0).
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Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Versions of Vectorial TGV

Nonconvex Extension

We propose the following generalizations:

Vectorial TVq based on Frobenius norm:

TV q
F (u) =

∫
Ω
‖∇u‖qF dx, q ≥ 0.

Schatten-q TV:

TV q
Sq(u) =

∫
Ω
‖∇u‖qSq dx, q ≥ 0,

where the Schatten-q norm is defined as

‖A‖Sq = (σq1 + ...+ σqn)1/q.
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Vectorial Total Variation
Nonlocal Vectorial Total Variation

Nonconvex Extensions of V-TV ang V-TGV

Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Versions of Vectorial TGV

Nonsmooth and nonconvex optimization

Majorization-minimization methods for non-convex problems

Iteratively reweighted L1 minimization [Ochs et al. ’12]

Iteratively reweighted nuclear norm min. [Gu et al. ’14]

Extend primal-dual algorithms to the nonconvex setting

Proposition

Let F (g) = |g|q and 0 ≤ q < 1. The Fenchel conjugate is given by

F ∗(ξ) =

{
0, |ξ| = 0,

∞, |ξ| 6= 0,

and the biconjugate/convex envelope (F ∗)∗ is zero everywhere.

Direct application of the PDHG doesn’t impose any regularization!
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A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers ’14], we consider the problem

min
u,g

G(u) + F (g) s.t. g = Ku, with nonconvex F.

Introducing a Lagrange multiplier y leads to

max
y

min
u,g

G(u) + F (g) + 〈y,Ku− g〉,

which is solved with primal-dual algorithm

gn+1 = arg min
g

σ

2
‖g −Kūn‖2 − 〈g, yn〉+ F (g),

yn+1 = yn + σ(Kūn − gn+1),

un+1 = arg min
u

1

2τ
‖u− un‖2 + 〈Ku, yn+1〉+G(u),

ūn+1 = un+1 + θ(un+1 − un).
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A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV ’14)

For convex problems, the above algorithm is equivalent to the
primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof ’09].

Proposition (Strekalovskiy, Cremers ECCV ’14)

For nonconvex regularizers F , the above algorithm still
incorporates the regularizer in a non-trivial manner.

Proposition (Möllenhoff, Strekalovskiy, Möller, Cremers SIIMS ’15)

Let G− c
2‖ · ‖22 and F + ω

2 ‖ · ‖22 be convex with c > ω‖K‖22. Then
the latter algorithm converges to the (unique) minimizer of

G(u) + F (Ku)

for 0 < σ = 2ω, τσ‖K‖22 ≤ 1, and any θ ∈ [0, 1] with rate 1/N .
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Numerical results - convergence
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Numerical results - natural image denoising (q = 0.75)

Extending the Total Generalized Variation (TGV) [Bredies,
Kunisch, Pock ’10] and the multichannel version TGVF [Bredies
’14], we proposed a nuclear-norm vectorial version TGVS1 and
respective non-convex formulations TGV q

F and TGV q
Sq .

Noisy,
σ = 0.1

TGVF ,
PSNR=28.5

TGV
q
F
,

PSNR=28.9
TGV

S1 ,
PSNR=29.0

TGV
q
Sq ,

PSNR=29.4
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Conclusion

We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms `p,q,r and (Sp, `q).

Depending on the amount of inter-channel correlation,
different matrix norms are suited.

`∞,1,1 and (S1, `1) best exploit color-channel correlations.

We proposed respective Nonlocal Vectorial Total Variations.

We proposed non-convex formulations of respective Vectorial
TV and Vectorial TGV. In particular, TGV q

Sq enables a more
direct rank penalization enforcing color channel alignment.

We proposed two primal-dual algorithms for convex and
non-convex regularizers F which coincide for convex F .
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