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Motivation: Study transport and mixing of scalar quantities

Hypotheses:

I In purely advective flows, stretching is irrelevant, because advection is reversible.

I Caring about stretching implies that we care about advection–diffusion.

Fokker–Planck equation (FPE) (Eulerian/spatial evolution equation):

∂tu + div(u · v) = ε∆gu

I transport/advection along velocity field v

I mixing/diffusion according to spatial geometry/distances modeled by metric g
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Changing perspectives: looking from the material
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Pullback geometry: stretching and diffusivity

I length measurement via
Cauchy–Green strain tensor C

I directional diffusivity via
inverse CG strain tensor C−1

I strong stretching ⇐⇒ weak
Lagrangian diffusion

I strong compression ⇐⇒
strong Lagrangian diffusion

I diffusion in Lagrangian
coordinates is anisotropic
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Black hole vortex approach Haller & Beron-Vera 2012, 2013

Seek closed curves γ, parametrized by r , that stationarize averaged tangential strain

δQ(γ)
!

= 0, Q(γ) =
1

|γ|

∫
γ

√
〈r ′,Cr ′〉
〈r ′, r ′〉

=
1

|γ|

∫
γ

‖DF · r ′‖
‖r ′‖

〈r ′,Cr ′〉 = 〈r ′,Ω>C−1Ωr ′〉 = 〈Ωr ′,C−1Ωr ′〉︸ ︷︷ ︸
diffusive flux through γ

, Ω =
(

0 −1
1 0

)
, det(C ) = 1

specific solution: r ′ =
1√

1 + λmin(C )
vmin(C )± 1√

1 + λmax(C )
vmax(C )

If, as often observed “around” vortices, λmax(C )� 1, then λmin(C )� 1 and

r ′ oo vmin(C ), or equivalently γ⊥ oo vmax(C )

Black hole vortices admit very small (Lagrangian) cross-diffusivity.
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Lagrangian model of advection–diffusion

Eulerian: ∂tu + div(u · v) = ε∆gu

Equivalent Lagrangian FPE (material evolution equation) [Thiffeault 2003]

∂tw = ε∆g(t)w

g(t) := Φ(t)∗g = C —pullback metric, CG strain tensor,
∆g(t)—Laplace–Beltrami operator.

}
⇒ evolving (material) manifold

Definition (Lagrangian Coherent Structures)

maximal material sets with minimal diffusive flux, or, metastable/almost-invariant sets
under Lagrangian FPE
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The dynamic Laplacian as a proxy for ∆g(t)

Lagrangian FPE: time-dependent & anisotropic diffusion(-only) equation

∂tw = ε∆g(t)w

Possible simplification: Autonomize t 7→ ∆g(t) by time-averaging

∆ = 1
T

∫ T
0 ∆g(t) dt — dynamic Laplacian [Froyland2015]

Lemma ( Froyland 2015, DK & Keller 2016, Froyland & Kwok 2016 )

∆ is an elliptic, nonpositive, selfajoint, 2nd-order differential operator.

Theorem (spectral convergence to probabilistic transfer operator Lε, DK & Keller 2016)

L∗εLε = I + cε2∆ +O
(
ε4
)
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Small example: transient double gyre [Mosovsky & Meiss, 2011], figure courtesy of [Froyland, Nonlinearity, 2015]
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solid: level set of 2nd eigenfunction of dynamic Laplacian, minimizing hD(Γ) = 8.2
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solid: level set of 2nd eigenfunction of dynamic Laplacian, minimizing hD(Γ) = 8.2
dashed: outermost closed λ-line hD(Γ) = 6.7
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Lagrangian heat flow, initialized within coherent structure
Cylinder flow [Froyland et al., 2010]
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Lagrangian heat flow, initialized within mixing region
Animation 1000 times slower than previous one!
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Conclusions

I math. advection-diffusion-based relation b/w BH vortices and probabilistic TO

I within this framework strongly related objectives: minimizing Lagr. cross-diffusion

I discretization and implementation details may matter

Variational
geometric
methods

Geometric heat flow

Dynamic Laplacian
Probabilistic

transfer
operator

Effective diffusivity

D. Karrasch and J. Keller, preprint, 2016, available on ResearchGate & arXiv.
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