A Quasi-Static Projection Method for 3-Dimensional Hypoelastoplasticity

Nicholas Boffi
February 27, 2017

SIAM CSE Conference.
Harvard University, Department of Applied Mathematics.
Rycroft Group.

Bulk Metallic Glasses

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Crystalline Structure

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.

Crystalline Structure

Bulk Metallic Glasses

- Solid metal with atoms "frozen" into liquid-like disorder.
- Amorphous structure gives unique properties.
- Catastrophic failure: shear banding.

Crystalline Structure

Shear Bands

Shear Bands

- Localization of stress due to localization of strain.

Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.

Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.

Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.

Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.

Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.

Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.
- Effective temperature χ quantifies localized "softness".

Continuum Theory

Linear Elasticity

Continuum Theory

Linear Elasticity

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}: \mathrm{D}^{\mathrm{Del}}
$$

Continuum Theory

Linear Elasticity

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}}_{\text {Jaumann derivative }}=\mathrm{C}: \mathrm{D}^{\mathrm{el}}
$$

Shear Transformation Zone Theory

Continuum Theory

Linear Elasticity

Shear Transformation Zone Theory

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}}_{\text {Jaumann derivative }}=\widetilde{\mathrm{C}}: \mathrm{D}^{\mathrm{el}}
$$

Continuum Theory

Linear Elasticity

Shear Transformation Zone Theory

[^0]
Continuum Theory

Linear Elasticity

$$
\begin{gathered}
\underbrace{\underset{\mathrm{C}}{\mathrm{Cel}}}_{\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}}_{\text {Jaumn derivative }}=\stackrel{\text { Elastic Part }}{\text { Stiffness }}} \\
\mathrm{D}=\frac{1}{2}\left(\nabla \mathrm{u}+(\nabla \mathrm{u})^{T}\right)
\end{gathered}
$$

Continuum Theory

Linear Elasticity

Shear Transformation Zone Theory

$$
\begin{gathered}
\qquad \underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}}_{\text {Jaumann derivative }}=\stackrel{\sim}{\mathrm{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
\text { Rate of deformation } \\
\mathrm{D}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }}
\end{gathered}
$$

Continuum Theory

Linear Elasticity

$$
\begin{gathered}
\begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\stackrel{\text { Stiffness }}{\mathrm{C}}: \underbrace{\mathrm{D}^{\mathrm{el}}}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
\begin{aligned}
& \mathrm{D}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& \text { Rate of deformation }
\end{aligned} \\
\\
=\mathrm{D}^{e l}+\mathrm{D}^{p l}
\end{gathered}
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\widetilde{\mathrm{C}} \underbrace{\text { Stifness }}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
& \begin{aligned}
\mathrm{D}^{\mathrm{Del}}
\end{aligned}=\underbrace{\frac{1}{2}\left(\nabla \mathrm{u}+(\nabla \mathrm{u})^{T}\right)}_{\text {Definition }} \\
&=\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Refe of deformation }} \\
& \text { Hypoelastoplastic assumption }
\end{aligned}
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
\begin{array}{l}
\frac{\mathcal{D} \sigma}{\mathcal{D} t}
\end{array}=\widetilde{\widetilde{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
\text { Jaumann derivative }
\end{aligned} \underbrace{\mathrm{D}}_{\text {Rate of deformation }}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} .
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \underbrace{\mathcal{D} \sigma} \stackrel{\text { Stiffness }}{\mathcal{D} t}=\underbrace{\underset{\mathrm{C}}{\mathrm{D}}}_{\text {Elastic Part }} \\
& \text { Jaumann derivative } \\
& \begin{aligned}
\text { Rate of deformation } & =\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& =\underbrace{\mathbf{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }}
\end{aligned} \\
& \underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a}=\nabla \cdot \sigma
\end{aligned}
$$

Shear Transformation Zone Theory

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \underbrace{\mathcal{D} \sigma} \stackrel{\text { Stiffness }}{\mathcal{D} t}=\underbrace{\hat{\mathrm{C}}: \underbrace{\mathrm{Del}}}_{\text {Elastic Part }} \\
& \text { Jaumann derivative } \\
& \begin{aligned}
\text { Rate of deformation } & =\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& =\underbrace{\mathbf{D}^{e l}+\mathbf{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
\underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a} & =\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
\end{aligned}
$$

Shear Transformation Zone Theory

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\widetilde{\mathrm{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
& \text { Rate of deformation } \\
& \mathbf{D}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
&=\underbrace{\mathbf{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
& \underbrace{\frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\frac{d \chi}{d t} \quad=\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\widetilde{\mathrm{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
& \text { Rate of deformation } \\
& \mathrm{D}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
&=\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
& \underbrace{\frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\frac{d \chi}{d t} \quad=\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)
$$

Advective derivative

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\widetilde{\mathrm{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
& \text { Rate of deformation } \\
& \mathrm{D}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
&=\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
& \underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {ive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

Continuum Theory

Linear Elasticity

$$
\begin{gathered}
\begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\widetilde{\mathrm{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
\begin{aligned}
& \text { deformation } \\
& \text { D }=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
&=\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
& \underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
\end{gathered}
$$

Shear Transformation Zone Theory

$$
\begin{aligned}
\frac{d \chi}{\frac{d t}{d t}} & =\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}} \\
\bar{s}^{2} & =\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}
\end{aligned}
$$

Continuum Theory

Linear Elasticity

$$
\begin{gathered}
\begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\widetilde{\mathrm{C}}: \underbrace{\text { Stiffness }}_{\text {Elastic Part }} \\
& \text { Jaumann derivative }
\end{aligned} \\
\begin{aligned}
& \text { deformation } \\
& \text { D }=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
&=\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
& \underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
\end{gathered}
$$

Shear Transformation Zone Theory

$$
\begin{aligned}
& \frac{d \chi}{\frac{d t}{d t}}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}} \\
&{\underset{\text { ive derivative }}{2}}_{\bar{s}^{2}}=\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}
\end{aligned}
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
\begin{aligned}
& \frac{\mathcal{D} \sigma}{\mathcal{D} t}=\underbrace{\text { Stiffness }}_{\text {Jaumann derivative }}: \underbrace{\mathrm{D}^{\mathrm{Cel}}}_{\text {Elastic Part }} \\
& \text { Rate of deformation }
\end{aligned} \\
\begin{aligned}
\mathrm{D} & =\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& =\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
\underbrace{\frac{d \mathbf{u}}{d t}}_{m \times a} & =\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
{\underset{\sim}{s}}_{\bar{s}^{2}}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}} \stackrel{\text { Stiffness }}{=} \overbrace{\text { Elastic Part }}^{\mathrm{C}}: \underbrace{\mathrm{el}}_{\text {Del }} \\
& \text { Jaumann derivative } \\
& \begin{aligned}
\text { Rate of deformation } & =\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& =\underbrace{\mathbf{D}^{e l}+\mathbf{D}^{p l}}_{\text {Hypoelastoplastic assumption }} \\
\underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a} & =\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
{\underset{\sim}{2}}_{\bar{s}^{2}}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

$$
\sigma_{0}=\sigma-\frac{1}{3} \operatorname{Tr}(\sigma)
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
\begin{aligned}
\frac{\mathcal{D} \sigma}{\mathcal{D} t} & =\underbrace{\mathrm{C}}_{\text {Stiffness }}: \underbrace{\mathrm{D}^{\mathrm{del}}}_{\text {Elastic Part }}
\end{aligned} \\
\text { Jaumann derivative }
\end{aligned} \underbrace{}_{\underbrace{\mathrm{D}}_{\text {Rate of deformation }}}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} .
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
\underset{\text { ess }}{\stackrel{\rightharpoonup}{\sim}^{2}}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

$$
\left.\underbrace{\sigma_{0}}=\sigma-\frac{1}{3} \operatorname{Tr}(\sigma) \right\rvert\,
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}} \stackrel{\text { Stiffness }}{=} \overbrace{\text { Elastic Part }}^{\mathrm{C}}: \underbrace{\mathrm{el}}_{\text {Del }} \\
& \text { Jaumann derivative } \\
& \begin{aligned}
\text { Rate of deformation } & =\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& =\underbrace{\mathrm{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }}
\end{aligned} \\
& \underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
{\underset{\sim}{2}}_{\bar{s}^{2}}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

$$
\underbrace{\sigma_{0}}_{\text {Deviatoric stress }}=\underbrace{\sigma-\frac{1}{3} \operatorname{Tr}(\sigma) \boldsymbol{I}}_{\text {Subtract hydrostatic }}
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
\begin{aligned}
\frac{\mathcal{D} \sigma}{\mathcal{D} t} & =\stackrel{\text { Stiffness }}{\mathrm{C}}: \underbrace{\mathrm{D}^{\mathrm{del}}}_{\text {Elastic Part }}
\end{aligned} \\
\text { Jaumann derivative }
\end{aligned} \underbrace{\mathrm{D}}_{\text {Rate of deformation }}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} .
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
\underbrace{\bar{s}^{2}}_{\sim}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

$$
\begin{aligned}
\underbrace{\sigma_{0}}_{\text {Deviatoric stress }} & =\underbrace{\sigma-\frac{1}{3} \operatorname{Tr}(\sigma) \mathrm{I}}_{\text {Subtract hydrostatic }} \\
\mathbf{D}^{p l} & =D^{p l} \frac{\sigma_{0}}{\bar{s}}
\end{aligned}
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
\begin{aligned}
\frac{\mathcal{D} \sigma}{\mathcal{D} t} & =\underbrace{\mathrm{C}}_{\text {Stiffness }}: \underbrace{\mathrm{D}^{\mathrm{del}}}_{\text {Elastic Part }}
\end{aligned} \\
\text { Jaumann derivative }
\end{aligned} \underbrace{}_{\underbrace{\mathrm{D}}_{\text {Rate of deformation }}}=\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} .
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
\underbrace{\bar{s}^{2}}_{\sim_{2}^{2}}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

$$
\underbrace{\sigma_{0}}_{\text {Oviatoric strocs }}=\underbrace{\sigma-\frac{1}{3} \operatorname{Tr}(\sigma) ।}
$$

$$
\text { Deviatoric stress } \underbrace{0}_{\text {subtract hydrostatic }}
$$

$$
\underbrace{\mathrm{D}^{p l}}_{\text {ate }}=D^{p l} \frac{\sigma_{0}}{\bar{s}}
$$

Continuum Theory

Linear Elasticity

$$
\begin{aligned}
& \underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}} \stackrel{\text { Stiffness }}{=} \overbrace{\text { Elastic Part }}^{\mathrm{C}}: \underbrace{\mathrm{el}}_{\text {Del }} \\
& \text { Jaumann derivative } \\
& \begin{aligned}
\text { Rate of deformation } & =\underbrace{\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)}_{\text {Definition }} \\
& =\underbrace{\mathbf{D}^{e l}+\mathrm{D}^{p l}}_{\text {Hypoelastoplastic assumption }}
\end{aligned} \\
& \underbrace{\rho \frac{d \mathbf{u}}{d t}}_{m \times a}=\underbrace{\nabla \cdot \sigma}_{\text {Net force }}
\end{aligned}
$$

Shear Transformation Zone Theory

$$
\underbrace{\frac{d \chi}{d t}}_{\text {tive derivative }}=\underbrace{\frac{D^{p l} \bar{s}}{s_{y} c_{0}}\left(\chi_{\infty}-\chi\right)}_{\text {Relaxation to } \chi_{\infty}}
$$

$$
\underbrace{\bar{s}^{2}}_{\sim}=\underbrace{\frac{1}{2} \sigma_{0, i j} \sigma_{0, i j}}
$$

Frobenius norm

$$
\underbrace{\sigma_{0}}_{\text {Oviatoric strocs }}=\underbrace{\sigma-\frac{1}{3} \operatorname{Tr}(\sigma) ।}
$$

$$
\text { Deviatoric stress } \underbrace{0}_{\text {subtract hydrostatic }}
$$

$$
\underbrace{\mathrm{D}^{p l}}_{\text {Plastic rate }}=\underbrace{D^{p l} \frac{\sigma_{0}}{\bar{s}}}_{\text {deviatoric }}
$$

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit
Incompressible Navier-Stokes

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit
Incompressible Navier-Stokes

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)
$$

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit
Incompressible Navier-Stokes
$\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}_{\text {Hypoelastoplastic equation }}$
Hypoelastoplastic equation

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation

Incompressible Navier-Stokes

$$
\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}
$$

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}_{\text {Hypoelastoplastic equation }}
$$

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathrm{T}}_{\text {Navier-Stokes equation }}
$$

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}_{\text {Hypoelastoplastic equation }}
$$

$$
\nabla \cdot \sigma \approx 0
$$

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }}
$$

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\begin{gathered}
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}_{\text {Hypoelastoplastic equation }} \\
\underbrace{\nabla \cdot \sigma \approx 0}_{\text {Quasi-static constraint }}
\end{gathered}
$$

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }}
$$

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\begin{gathered}
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}_{\text {Hypoelastoplastic equation }} \\
\underbrace{\nabla \cdot \sigma \approx 0}_{\text {Quasi-static constraint }}
\end{gathered}
$$

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathrm{T}}_{\text {Navier-Stokes equation }}
$$

$$
\nabla \cdot \mathbf{u} \approx 0
$$

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\begin{gathered}
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}_{\text {Hypoelastoplastic equation }} \\
\underbrace{\nabla \cdot \sigma \approx 0}_{\text {Quasi-static constraint }}
\end{gathered}
$$

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }}
$$

$$
\nabla \cdot \mathbf{u} \approx 0
$$

Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation
$\underbrace{\nabla \cdot \sigma \approx 0}_{\text {Quasi-static constraint }}$

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }}
$$

$$
\nabla \cdot \mathbf{u} \approx 0
$$

Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

$$
\sigma_{\text {H.E.P. }} \Longleftrightarrow \mathbf{u}_{\text {N.S. }}
$$

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation

Quasi-static constraint

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathrm{T}}_{\text {Navier-Stokes equation }}
$$

$$
\underbrace{\nabla \cdot \mathbf{u} \approx 0}
$$

Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

$$
\begin{aligned}
\sigma_{\text {H.E.P. }} & \Longleftrightarrow \mathrm{u}_{\text {N.S. }} \\
& \mathrm{u}_{\text {H.E.P. }}
\end{aligned} \Longleftrightarrow p_{\text {N.S. }} .
$$

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation

$$
\nabla \cdot \sigma \approx 0
$$

Quasi-static constraint

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }}
$$

$$
\underbrace{\nabla \cdot \mathrm{u} \approx 0}
$$

Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

$$
\begin{aligned}
\sigma_{\text {H.E.P. }} & \Longleftrightarrow \mathrm{u}_{\text {N.S. }} \\
& \mathrm{u}_{\text {H.E.P. }}
\end{aligned} \Longleftrightarrow p_{\text {N.S. }} .
$$

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation

$$
\underbrace{\nabla \cdot \sigma \approx 0}
$$

Quasi-static constraint

Incompressible Navier-Stokes

$$
\begin{gathered}
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }} \\
\underbrace{\nabla \cdot \mathbf{u} \approx 0}_{\text {Incompressibility constraint }}
\end{gathered}
$$

From Navier-Stokes to Hypoelastoplasticity

$$
\begin{aligned}
\sigma_{\text {H.E.P. }} & \Longleftrightarrow \mathbf{u}_{\text {N.S. }} \\
\mathbf{u}_{\text {H.E.P. }} & \Longleftrightarrow p_{\text {N.S. }}
\end{aligned}
$$

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathbf{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation

$$
\underbrace{\nabla \cdot \sigma \approx 0}
$$

Quasi-static constraint

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathbf{T}}_{\text {Navier-Stokes equation }}
$$

$$
\nabla \cdot \mathbf{u} \approx 0
$$

Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

$$
\begin{aligned}
\sigma_{\text {H.E.P. }} & \Longleftrightarrow \mathrm{u}_{\text {N.S. }} \\
\mathrm{u}_{\text {H.E.P. }} & \Longleftrightarrow p_{\text {N.S. }}
\end{aligned}
$$

- Any algorithm for Navier-Stokes should work for hypoelastoplasticity.

A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

$$
\underbrace{\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right)}
$$

Hypoelastoplastic equation

$$
\underbrace{\nabla \cdot \sigma \approx 0}
$$

Quasi-static constraint

Incompressible Navier-Stokes

$$
\underbrace{\rho \frac{d \mathbf{u}}{d t}=-\nabla p+\nabla \cdot \mathrm{T}}_{\text {Navier-Stokes equation }}
$$

$$
\nabla \cdot \mathbf{u} \approx 0
$$

Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

$$
\begin{aligned}
\sigma_{\text {H.E.P. }} & \Longleftrightarrow \mathrm{u}_{\text {N.S. }} \\
\mathrm{u}_{\text {H.E.P. }} & \Longleftrightarrow p_{\text {N.S. }}
\end{aligned}
$$

- Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
- This analogy is independent of the plasticity model.

A Quasi-Static Projection Method

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):

$$
\frac{\sigma^{*}-\sigma^{n}}{\Delta t}=-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}-\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}-\mathbf{C}:\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\frac{\sigma^{*}-\sigma^{n}}{\Delta t}=-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}-\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}-\mathbf{C}: \overbrace{\left[\mathbf{D}^{p l}\right]^{n}}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}=-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}-\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}-\mathbf{C}: \overbrace{\left[\mathbf{D l}^{\mathrm{pl}}\right]^{n}}
$$

Forward-Euler intermediate step

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}-\mathrm{C}: \overbrace{[\mathrm{D} \mathrm{pl}]^{n}}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathrm{C}: \overbrace{[\mathrm{Dpl}}{ }^{n}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathrm{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}
$$

- Correction term (projection step):

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{[\mathrm{Dpl}]^{n}}
$$

- Correction term (projection step):

$$
\frac{\sigma^{n+1}-\sigma^{*}}{\Delta t}=\mathrm{C}: \mathrm{D}^{n+1}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{[\mathrm{Dpl}]^{n}}
$$

- Correction term (projection step):

$$
\frac{\sigma^{n+1}-\sigma^{*}}{\Delta t}=\underbrace{\mathrm{C}: \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}^{\text {superscript indicates timestep }}
$$

Forward-Euler intermediate step

- Correction term (projection step):

$$
\frac{\sigma^{n+1}-\sigma^{*}}{\Delta t}=\underbrace{\mathrm{C}: \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

- Take divergence and enforce $\nabla \cdot \sigma^{n+1}=0$:

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}
$$

Forward-Euler intermediate step

- Correction term (projection step):

$$
\frac{\sigma^{n+1}-\sigma^{*}}{\Delta t}=\underbrace{\mathrm{C}: \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

- Take divergence and enforce $\nabla \cdot \sigma^{n+1}=0$:

$$
\nabla \cdot \sigma^{*}=-\Delta t \nabla \cdot\left(\mathrm{C}: \mathrm{D}^{n+1}\right)
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}
$$

Forward-Euler intermediate step

- Correction term (projection step):

$$
\frac{\sigma^{n+1}-\sigma^{*}}{\Delta t}=\underbrace{\mathrm{C}: \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

- Take divergence and enforce $\nabla \cdot \sigma^{n+1}=0$:

$$
\underbrace{\nabla \cdot \sigma^{*}}_{\text {on } \sigma^{*}}=-\Delta t \nabla \cdot\left(\mathrm{C}: \mathrm{D}^{n+1}\right)
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}
$$

- Correction term (projection step):

$$
\frac{\sigma^{n+1}-\sigma^{*}}{\Delta t}=\underbrace{\mathrm{C}: \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

- Take divergence and enforce $\nabla \cdot \sigma^{n+1}=0$:

$$
\underbrace{\nabla \cdot \sigma^{*}}_{\text {source term based on } \sigma^{*}}=\underbrace{-\Delta t \nabla \cdot\left(\mathrm{C}: \mathrm{D}^{n+1}\right)}_{\text {linear system for } \mathrm{u}^{n+1}}
$$

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}
$$

- Correction term (projection step):

$$
\underbrace{\sigma^{n+1}-\sigma^{*}}_{\Delta t}=\underbrace{\mathrm{C} \cdot \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

- Take divergence and enforce $\nabla \cdot \sigma^{n+1}=0$:

$$
\underbrace{\nabla \cdot \sigma^{*}}_{\text {source term based on } \sigma^{*}}=\underbrace{-\Delta t \nabla \cdot\left(\mathrm{C}: \mathrm{D}^{n+1}\right)}_{\text {linear system for } \mathrm{u}^{n+1}}
$$

- Solve the above equation using the multigrid method for the velocities \mathbf{u}^{n+1}.

A Quasi-Static Projection Method

- Hypoelastoplastic equation:

$$
\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\mathrm{C}:\left(\mathrm{D}-\mathrm{D}^{\mathrm{pl}}\right) .
$$

- Neglect D term (advection step):
superscript indicates timestep

$$
\underbrace{\frac{\sigma^{*}-\sigma^{n}}{\Delta t}}_{\text {intermediate step }}=\underbrace{-\sigma^{n} \cdot \omega^{n}+\omega^{n} \cdot \sigma^{n}}_{\text {Jaumann spin terms }}-\underbrace{\left(\mathbf{u}^{n} \cdot \nabla\right) \sigma^{n}}_{\text {advective derivative }}-\mathbf{C}: \overbrace{\left[\mathrm{D}^{\mathrm{pl}}\right]^{n}}
$$

- Correction term (projection step):

$$
\underbrace{\sigma^{n+1}-\sigma^{*}}_{\Delta t}=\underbrace{\mathrm{C} \cdot \mathrm{D}^{n+1}}_{\text {complete the Euler step }}
$$

- Take divergence and enforce $\nabla \cdot \sigma^{n+1}=0$:

$$
\underbrace{\nabla \cdot \sigma^{*}}_{\text {source term based on } \sigma^{*}}=\underbrace{-\Delta t \nabla \cdot\left(\mathrm{C}: \mathrm{D}^{n+1}\right)}_{\text {linear system for } \mathrm{u}^{n+1}}
$$

- Solve the above equation using the multigrid method for the velocities \mathbf{u}^{n+1}.
- Apply the projection step to compute σ^{n+1}.

stzpp

- Same software for both quasi-static and explicit method.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.
- Parallelized using domain decomposition and MPI.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.
- Parallelized using domain decomposition and MPI.

stzpp

- Same software for both quasi-static and explicit method.
- Staggered grid: σ, χ at cell centers. u at cell corners.
- Parallelized using domain decomposition and MPI.
- Ghost-regions pad processor subdomains with two points.

Projection Step

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.

$$
\mathbf{x}=\left(\begin{array}{c}
\vdots \\
\left(\begin{array}{c}
u_{i-1, j, k}^{n+1} \\
v_{i-1, j, k}^{n+1} \\
w_{i-1, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i, j, k}^{n+1} \\
v_{i, j, k}^{n+1} \\
w_{i, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i+1, j, k}^{n+1} \\
v_{i+1, j, k}^{n+1} \\
w_{i+1, j, k}^{n+1}
\end{array}\right) \\
\vdots
\end{array}\right)
$$

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:

$$
\mathbf{x}=\left(\begin{array}{c}
\vdots \\
\left(\begin{array}{c}
u_{i-1, j, k}^{n+1} \\
v_{i-1, j, k}^{n+1} \\
w_{i-1, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i, j, k}^{n+1} \\
v_{i, j}^{n+1} \\
w_{i, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i+1, j, k}^{n+1} \\
v_{i+1, j, k}^{n+1} \\
w_{i+1, j, k}^{n+1}
\end{array}\right) \\
\vdots
\end{array}\right)
$$

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:

$$
x_{i}^{k+1}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)
$$

$$
\mathbf{x}=\left(\begin{array}{c}
\vdots \\
\left(\begin{array}{c}
u_{i-1, j, k}^{n+1} \\
v_{i-1, j, k}^{n+1} \\
w_{i-1, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i, j, k}^{n+1} \\
v_{i, j, k}^{n+1} \\
w_{i, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i+1, j, k}^{n+1} \\
v_{i+1, j, k}^{n+1} \\
w_{i+1, j, k}^{n+1}
\end{array}\right) \\
\vdots
\end{array}\right)
$$

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

$$
\mathbf{x}=\left(\begin{array}{c}
\vdots \\
\left(\begin{array}{c}
u_{i-1, j, k}^{n+1} \\
v_{i-1, j, k}^{n+1} \\
w_{i-1, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i, j, k}^{n+1} \\
v_{i, j, k}^{n+1} \\
w_{i, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i+1, j, k}^{n+1} \\
v_{i+1, j, k}^{n+1} \\
w_{i+1, j, k}^{n+1}
\end{array}\right) \\
\vdots
\end{array}\right)
$$

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

$$
\mathbf{x}=\left(\begin{array}{c}
\vdots \\
\left(\begin{array}{c}
u_{i-1, j, k}^{n+1} \\
v_{i-1, j, k}^{n+1} \\
w_{i-1, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i, j, k}^{n+1} \\
v_{i, j, k}^{n+1} \\
w_{i, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i+1, j, k}^{n+1} \\
v_{i+1, j, k}^{n+1} \\
w_{i+1, j, k}^{n+1}
\end{array}\right) \\
\vdots
\end{array}\right)
$$

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

$$
\mathbf{x}=\left(\begin{array}{c}
\vdots \\
\left(\begin{array}{c}
u_{i-1, j, k}^{n+1} \\
v_{i-1, j, k}^{n+1} \\
w_{i-1, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i, j, k}^{n+1} \\
v_{i, j, k}^{n+1} \\
w_{i, j, k}^{n+1}
\end{array}\right) \\
\left(\begin{array}{c}
u_{i+1, j, k}^{n+1} \\
v_{i+1, j, k}^{n+1} \\
w_{i+1, j, k}^{n+1}
\end{array}\right) \\
\vdots
\end{array}\right)
$$

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\underbrace{}_{i}}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index
- mg3d: custom parallel geometric multigrid solver written in C^{++}and MPI.

Projection Step

- Need to solve complex linear system with mixed spatial derivatives for velocity update.
- Linear system: $\mathrm{Ax}=\mathrm{b}$.
- Gauss-Seidel:
superscript: iteration count
$\overbrace{x_{i}^{k+1}}^{\frac{1}{a_{i i}}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right)$
subscript: element index
- mg3d: custom parallel geometric multigrid solver written in C^{++}and MPI.
- C^{++}templates to solve for arbitrary datatypes (n-dimensional vectors, complex numbers, etc.) at each point.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.

mg3d

- Restriction and interpolation
operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad \underbrace{}_{\text {grid } i+1}$

mg3d

- Restriction and interpolation
operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1$
grid i

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad$ grid $i+1$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T , define restriction $\mathrm{R}=\mathrm{T}^{T}$.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation
T, define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation

T , define restriction
$\mathrm{R}=\mathrm{T}^{T}$.

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation

T , define restriction
$\mathrm{R}=\mathrm{T}^{T}$.

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.
- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T , define restriction $\mathrm{R}=\mathrm{T}^{T}$.
- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.
- Optimal domain decomposition changes in the hierarchy.

1D Example

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid $i \quad$ grid $i+1$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T , define restriction $\mathrm{R}=\mathrm{T}^{T}$.
- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT
computation.
- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad$ grid $i+1$
- $\mathrm{T}_{i} \underbrace{}_{\mathrm{x}_{i-1}}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T , define restriction $\mathrm{R}=\mathrm{T}^{T}$.
- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT

1D Example
computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad$ grid $i+1$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T, define restriction $\mathrm{R}=\mathrm{T}^{T}$.
- RAT Equation:
$\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}$
- Communication needed for RAT computation.
- Optimal domain decomposition changes in the hierarchy.

1D Example
\qquad

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad$ grid $i+1$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T, define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:
$\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}$
- Communication needed for RAT

1D Example
computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \quad$ grid $i+1$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad \operatorname{grid} i$
- Specify interpolation T, define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathbf{T}_{n+1}
$$

- Communication needed for RAT

1D Example

Processor boundary
Grid computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $i \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

1D Example

Processor boundary
Grid
\times Grid point

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{\mathrm{X}_{i-1}}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid ${ }_{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{\mathrm{X}_{i-1}}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid ${ }_{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{\mathrm{X}_{i-1}}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid ${ }_{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{\mathrm{X}_{i-1}}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid ${ }_{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid ${ }_{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid ${ }_{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

1D Example

T_{1} | 2 |
| :---: |
| $\mathrm{~T}_{3}$ |
| |

Communication

Processor boundary \times No communication
Grid
\times Grid point

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

1D Example

T_{1} ${ }_{2}$
Communication

Processor boundary \times No communication
Grid
\times Grid point

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\underbrace{\mathrm{x}_{i+1}}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \mathrm{x}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.

- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.
- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.
- Optimal domain decomposition changes in the hierarchy.

mg3d

- Restriction and interpolation operators: $\mathrm{R}_{i}, \mathrm{~T}_{i}$.
- $\mathrm{R}_{i} \mathrm{x}_{i}=\mathrm{x}_{i+1}$.
grid $\check{i} \underbrace{}_{\text {grid } i+1}$
- $\mathrm{T}_{i} \underbrace{}_{i-1}=\mathrm{x}_{i}$.
grid $i-1 \quad$ grid i
- Specify interpolation T , define restriction

$$
\mathrm{R}=\mathrm{T}^{T}
$$

- RAT Equation:

$$
\mathrm{A}_{n+1}=\mathrm{R}_{n} \mathrm{~A}_{n} \mathrm{~T}_{n+1}
$$

- Communication needed for RAT computation.
- Optimal domain decomposition changes in the hierarchy.

Shear Simulations

Shear Simulations

- $512 \times 512 \times 256$ grid.

Shear Simulations

- $512 \times 512 \times 256$ grid.
- $\approx 67,000,000$ grid points in the bulk.

Shear Simulations

- $512 \times 512 \times 256$ grid.
- $\approx 67,000,000$ grid points in the bulk.
- $\approx 309,000,000$ nonzero matrix entries in the linear system.

Shear Simulations

- $512 \times 512 \times 256$ grid.
- $\approx 67,000,000$ grid points in the bulk.
- $\approx 309,000,000$ nonzero matrix entries in the linear system.
- Normally distributed initial χ field at each grid point $\chi_{0}(i, j, k) \sim N(\mu, \sigma)$.

Shear Simulations

- $512 \times 512 \times 256$ grid.
- $\approx 67,000,000$ grid points in the bulk.
- $\approx 309,000,000$ nonzero matrix entries in the linear system.
- Normally distributed initial χ field at each grid point $\chi_{0}(i, j, k) \sim N(\mu, \sigma)$.
- ≈ 4 day simulation time with 32 threads.

Shear Simulations

- $512 \times 512 \times 256$ grid.
- $\approx 67,000,000$ grid points in the bulk.
- $\approx 309,000,000$ nonzero matrix entries in the linear system.
- Normally distributed initial χ field at each grid point $\chi_{0}(i, j, k) \sim N(\mu, \sigma)$.
- ≈ 4 day simulation time with 32 threads.

Shear Simulations

- $512 \times 512 \times 256$ grid.
- $\approx 67,000,000$ grid points in the bulk.
$\cdot \approx 309,000,000$ nonzero matrix entries in the linear system.
- Normally distributed initial χ field at each grid point $\chi_{0}(i, j, k) \sim N(\mu, \sigma)$.
- ≈ 4 day simulation time with 32 threads.

Quasi-Static Results

Conclusions, Future Directions, and Acknowledgments

Conclusions, Future Directions, and Acknowledgments

- Metallic glasses: a promising new class of materials with diverse technological and structural applications and interesting physics.

Conclusions, Future Directions, and Acknowledgments

- Metallic glasses: a promising new class of materials with diverse technological and structural applications and interesting physics.
- Shear banding, a poorly understood failure mechanism, limits their applications.

Conclusions, Future Directions, and Acknowledgments

- Metallic glasses: a promising new class of materials with diverse technological and structural applications and interesting physics.
- Shear banding, a poorly understood failure mechanism, limits their applications.
- Quasi-static projection algorithm enables simulation of large systems at long timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

Conclusions, Future Directions, and Acknowledgments

- Metallic glasses: a promising new class of materials with diverse technological and structural applications and interesting physics.
- Shear banding, a poorly understood failure mechanism, limits their applications.
- Quasi-static projection algorithm enables simulation of large systems at long timescales by exploiting an analogy to the incompresible Navier-Stokes equations.
- Numerical extensions to the QS algorithm can be made by considering work in computational fluid dynamics (e.g. gauge methods).

Conclusions, Future Directions, and Acknowledgments

- Metallic glasses: a promising new class of materials with diverse technological and structural applications and interesting physics.
- Shear banding, a poorly understood failure mechanism, limits their applications.
- Quasi-static projection algorithm enables simulation of large systems at long timescales by exploiting an analogy to the incompresible Navier-Stokes equations.
- Numerical extensions to the QS algorithm can be made by considering work in computational fluid dynamics (e.g. gauge methods).
- Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael Shields, and the Department of Energy Computational Science Graduate Fellowship for funding.

[^0]: $\frac{\mathcal{D} \sigma}{\mathcal{D} t}=\stackrel{\text { Stiffness }}{\widetilde{\mathrm{C}}}: \underbrace{\mathrm{Del}}_{\text {Elastic Part }}$
 Jaumann derivative

