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Motivation and main points

Finite element approximation: −div(κ(u)∇u)− f = 0. κ(u)⇒

Nonmonotone problems with steep gradients and internal layers in the
solution-dependent coefficients:

I The coarse mesh problem is *wrong*.
I Standard methods: (Damped) Newton, Picard iterations may not converge.
I Fully solving on a coarse mesh is not useful.

The coarse mesh problem may not satisfy coercivity or discrete inf-sup conditions.
From a coarse mesh, adaptively refining for local features can be sufficient!

I If the problem features can be uncovered from the unstable coarse mesh problem.
I Which can be done!
I Method: auto-regulated strategy using partial solves of regularized problems and

adaptive mesh refinement.

The regularized iteration can be derived from the original PDE in terms of
minimizing an appropriate energy functional.
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Introduction: Quasilinear Elliptic PDE and Applications
Quasilinear Diffusion Problem

−div(κ(x,u,∇u)∇u) = f , in Ω⊂ Rd , d = 2,3 + Boundary Conditions (BC)

Applications and Examples
Engineering, Materials science, Mathematics

Concentration-dependent diffusion

−div(κ(u)∇u) = f

Steady state solutions of:

Heat conduction∗

Groundwater flow

Diffusion of contaminants∗

Flow in porous media, e.g.,

κ(u) = c0 + c1
u2(1−u2)

(u3+c2(1−u3))

Diffusion in polymers∗

Hydration of legumes(!!)

Gradient-dependent diffusion

−div(κ(|∇u|)∇u) = f

P-Laplacian κ(|∇u|) = ‖∇u‖p−2

Prescribed mean curvature
κ(|∇u|) = (1+‖∇u‖2)−1/2

Stationary conservation laws

Perona-Malik equation,
∂tu = div(κ∇u) (image deblurring):
e.g., κ(s2) = (1+ s2/λ2)−1, λ > 0

∗ Convection-diffusion Problem: −div(κ(u)∇u)+b ·∇u = f
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Weak solutions for F(u) =−div(κ∇u)− f , F : U→ V ∗.
Quasilinear stationary diffusion with solution-dependent κ(u).

−div(κ(u)∇u) = f (x) in Ω, u = 0 on ∂Ω =⇒
∫

Ω

−div(κ(u)∇u)v =
∫

Ω

f v

and integrate by parts to obtain the weak form: Find u ∈U such that

B(u;u,v) :=
∫

Ω

κ(u)∇u ·∇v =
∫

f v, for all v ∈ V .

Usually, we think of U = V = H1
0 (Ω).

Technicality: for this problem U =W 1,p
0 , V =W 1,q

0 , p > 2 and 1
p +

1
q = 1, for

F(u) =−div(κ(u)∇u)− f (x) to be a C1 map (Caloz, Rappaz, 1994).

Under the assumptions that κ(s) is sufficiently smooth bounded and bounded away
from zero, the PDE has a unique solution.

Under the assuption of a sufficiently small meshsize the linear Lagrange finite
elment solution uh→ u (Caloz, Rappaz, 1994); and Holst, Tsogterel, Zhu, 2008)

Problem 1: The theory does not suggest how to compute the finite element
solution, only that it exists.
Problem 2: Assuming the initial maximum meshsize is sufficiently small
potentially makes the method totally impractical!
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F(u) :=−div(κ(x,u, |∇u|)∇u)− f = 0

Newton Iterations: Do not always converge.
They may massively fail, if κ contains thin layers and steep
gradients, e.g., κ(u) = 1+1/(ε+(u−0.5)2).

Newton iterations are only guaranteed to converge locally: near
the solution, and under Lipschitz assumptions on the Jacobian.

I A Damped or globalized Newton method: un+1 = un +αw
α = 2− j chosen to reduce the residual, also fails ∼ ε = 10−3.

Existence and (local) uniqueness of F(u) = 0 does not
necessarily carry over to the coarse mesh problem.

The coarse mesh problem may be considered a noisy
(inaccurate) representation of the PDE.

It may be ill-posed: unstable, with multiple or no solutions.

Coarse mesh Jacobians are ill-conditioned and sometimes
indefinite.

I Picard iterations: Solve A(U ;U) = F by iterating
A(Un;Un+1) = F . Fails ∼ ε = 10−2.

The diffusion term is not resolved!
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Visualization of κ(u) = 1+1/(ε+(u−0.5)2), u = sin(πx)sin(πy)

⇑⇑ finer mesh ⇑⇑ (log scale)

h = 1/48

h = 1/12 Quadrature error is high even for exact u!

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

Profile of u = sin(πx)
vs. κ(u)⇒

ǫ
1/2

   

Solution u must be
accurate to within√

ε to resolve
diffusion coefficient

near peak!
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How do we solve the discrete problem?
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Related methods

Pseudo-transient continuation (Kelley, Keyes, et al.,). Addresses convergence of
the pseudo-time stabilization of the Jacobian for nonlinear elliptic problems using
a scaled identity preconditioner, on a given mesh. (Coffey, Kelley, Keyes) for
differential-algebraic problems with positive pseudo-time stabilization applied to
part of the system.

Adaptive framework for balancing linearization and discretization errors for
quasilinear problems (El Alaoui, Ern, Vohralík) and (Ern, Vohralík). Assumes
discrete problem is well-posed, and solve does not fail. Coarse mesh and
preasymptotic regimes are not considered.

Standard technique: Kirchhoff transform θ =
∫ u

κ(s)ds transforms
−div(κ(u)∇u) = f , to −div(∇θ) = f . Problem 1: nonlinear inverse transform is
nontrivial for κ(s) other than exponential or linear or quadratic polynomial.
Problem 2: Does not generalize to handle κ = κ(x,u) or lower order terms, e.g.,
convection or reaction. Boundary terms are also difficult. Recent discussion:
(Vadasz).
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Main idea: inexact solves of regularized problems

Coarse mesh (ill-posed)−→ Preasymptotic −→ Asymptotic(well-posed)

Coarse mesh regime: Solve minimally, and refine mesh adaptively.
I Extract information from inexact regularized problem for mesh refinement.
I Goal of regularization: stability not accuracy
I Even regularized problem may be ill-posed.

Preasymptotic regime: reduce regularization, and refine mesh adaptively.
I Increase the accuracy of each solve: construct a better initial guess for the next

refinement.
I Update the regularization parameters adaptively to increase both accuracy and

efficiency.
For convergence of the method:

I Stopping criteria for inexact nonlinear solves.
I Update criteria for regularization parameters.

Asymptotic regime: Solve to tolerance, and refine mesh adaptively.
I Reduction to a standard Newton method.
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Recent publications: −div(κ(u, |∇u|)∇u)+b(u) ·∇u = f

SP, A regularized Newton-like method for nonlinear PDE.
Numer. Func. Anal. Opt., 36 (11), p 1493-1511, 2015.

SP, An improved method for solving quasilinear convection
diffusion problems on a coarse mesh.
SIAM J. Sci. Comput., 32 (2), p A1121-A1145, 2016.

SP, Stabilized and inexact adaptive methods for capturing internal
layers in quasilinear PDE.
J. Comput. Appl. Math., 302, p 243-262, 2016.

Right: Adaptive meshes for −div(κ(u)∇u) = f ,

κ(u) = 1+{ε+(u−0.5)2}−1, ε = 10−5,

using inexact regularized iteration:{
αR+ γ10A′1(u

n;un)+ γ01A′2(u
n)
}

w =−A(un;un)+δ( f +ψ).

Regularization term: R.
Parameters from pseudo-time integrator: α,γ10,γ01,δ.

Pictured: Solution with 10706 dof. Runtime to residual convergence: < 3 min
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Main ideas developed

Jacobian stabilization via Tikhonov regularization and related pseudo-time
stepping.

I Pseudo-time stepping (pseudo-transient continuation)
F(x,u) = 0 =⇒ Ru̇+F(x,u) = 0

I Tikhonov regularization: minimize Gα(w) = ‖F ′(x,un)w+F(x,un)‖2
L2
+αn‖Rw‖2

L2
for positive semidefinite R.

I Example: Replace positive definite R by χR, to regularize degrees of freedom
selectively.

Pseudo-time integrator: replace standard backward Euler discretization with
Newmark update for increased numerical dissipation

un+1−un = ∆tn{(1− γ)Ru̇n + γRu̇n+1}, Ru̇ = ∂(Ru)/∂t.

Stopping criteria for partial solves.
Definition and analysis of regularization parameters.

I Convergence of the inexact iteration to the exact iteration with asymptotically
quadratic convergence.

Next: Generalize the pseudo-time stepping by seeking a solution with an
approximate time-derivative of minimum energy, E(u̇) = min! rather than u̇ = 0.
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Pseudo-time regularization
PDE with homogeneous Dirichlet or mixed BC

Strong form: −div(κ(u)∇u) = f in Ω, u = 0 on ΓD,

κ(u)∇u ·n = ψ on ΓN = ∂Ω\ΓD.

Weak form: find u ∈ V :

B(u;u,v) :=
∫

Ω

κ(u)∇u∇v =
∫

Ω

f v+
∫

ΓN

ψv, for all v ∈ V .

Pseudo-time regularization: u = u(t), u̇ = FD(∂u/∂t). E(w) = 1
2 φ(w,w), w ∈V

Seek a minimum energy solution: E(u̇) = min!, =⇒ E ′(u̇)v = 0 for all v ∈ V .

Energy. For V ⊆ H1
0,ΓD

(Ω).

For u = 0 on ∂Ω, minimize in H1
0

E(u̇) =
1
2

∫
Ω

|∇u̇|2.

For u = 0 on ΓD, κ(u)∇u ·n = ψ on ΓN , minimize in H1
0,ΓD

E(u̇) =
1
2

{
cD

∫
Ω

|∇u̇|2 +(1− cD)
∫

ΓN

u̇2
}
, 0 < cD ≤ 1.

(Auchmuty, 2004) on
∫

∂Ω
v2 rather than

∫
Ω

v2 in norm ‖ · ‖H1 .
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Pseudo-time regularized equation
Discrete regularized problem: find uk ∈ Vk ⊂ V such that

E ′(u̇k,v) =−Bk(uk;uk,v)+( f ,v)+(ψ,v)∂Ω, for all v ∈ Vk.

Discretize in time: (generalized) Newmark time integration strategy (un := un
k , B := Bk)

E ′
(

1
∆tn (u

n+1−un),v
)
=− γ̃00B(un;un,v)− γ̃10B(un+1;un,v)− γ̃01B(un;un+1,v)

+( f ,v)+(ψ,v)Γ.

Linearized equation for w = un+1−un, αn = 1/(∆tn · (γ00 + γ01 + γ10))

α
nE ′(w,v)+ γ10B′(un;un,v)(w)+ γ01B(un;w,v) = B(un;un,v)+δ(( f ,v)+(ψ,v)Γ).

Assembled linearized matrix equation (with some abuse of notation):{
αR+ γ10A′1(u

n;un)+ γ01A′2(u
n)
}

w =−A(un;un)+δ( f +ψ).

Rw = ASSEMBLE
{

E ′(w,v)= (∇w,∇v)+(w,v)Γ

}
A′1(u

n;un)w = ASSEMBLE
{

B′1(u
n;un,v)(w) = (κ′(un)w∇un,v)

}
A′2(u

n)w = ASSEMBLE
{

B′2(u
n;un,v)(w) = B(un;w,v)= (κ(un)∇w,∇v)

}
Quadrature error introduced in assembly may be nontrivial!
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Error representation and conditions for convergence
Linear convergence rate: For rn =−A(un;un)+δ( f +ψ)

rn+1 =

(
1− 1

γ10

)
rn+

1
γ10

α
nRwn +

σn(︷ ︸︸ ︷
γ01

γ10
−1

)
A(un;wn)−A′1(u

n;wn,wn)+O(‖rn‖2).

Linear residual convergence rate: 1−1/γ10 used to predict stability, and send γ10→ 1
to recover quadratic convergence rate.

γ01 = γ10: Newmark-type time integration. γ01 = γ10 = 1: Backward-Euler.
δ = 1: Consistent!
σn ≥ 0 adds additional diffusion to balance out error from linearization, adding a
Picard-like term to a Newton iteration!

Updated every iteration: αn,σn. Conditions for convergence
αn ≤ ‖rn‖. Example: αn = γ10

‖Rwn−1‖ ·min{‖A′1(un;w)w‖ , c‖rn‖}

σn :=
(

γ01
γ10
−1
)

satisfies: σn‖A(un;wn)‖ ≤ ‖A′1(un,wn)wn‖

Example: σ
n =
〈A(un;wn−1),A′1(u

n,wn−1)wn−1)〉
‖A(un,wn−1)‖2

Efficiency: Parameter computations are Euclidean products in Rn.
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Update criteria for γ10 and δ

Update γ10 on sufficiently stable rate of residual reduction near predicted rate.∣∣∣∣‖rn+1‖
‖rn‖

−
(

1− 1
γn

10

)∣∣∣∣< εT , and

∣∣∣∣‖rn+1‖
‖rn‖

− ‖rn‖
‖rn−1‖

∣∣∣∣< εT .

By:

γ̃
n+1
10 = q · 〈rn,rn〉

〈rn,A(un+1,un+1)−A(un,un)〉
, γ

n+1
10 = max

{
1 , γ̃n+1

10
}
.

Update δ and Exit iteration on sufficient decrease and convergence rate.
By:

δ̃k+1 =
〈 f ,γ10(A(un+1;un+1)−A(un;un))+

{
(γ01− γ10)A′2(u

n+1)+αR
}

wn +A(un;un)〉
qk‖ f +ψ‖2 ,

δk+1 = min{1 , δ̃k+1},

Convergence of γ10→ 1 from above and δ→ 1 from below are established.
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Adaptive algorithm for nonlinear diffusion

Set the parameters qγ, γMAX. Start with initial u0(= 0), γ0
10. On partition

Tk, k = 0,1,2, . . .

1 Compute Rk and r0 =−A(un;un)+δk( fk +ψk).
2 Set α0 = ‖r0‖ and σ0 = 0.
3 While the Exit Criteria are not met on iteration n−1 :

(a) Solve {αnRk + γ10A′1(u
n;un)+ γ01A′2(u

n)}wn = rn, for wn.
(b) Update un+1 = un +wn, and rn+1 =−A(un;un)+δk( fk +ψk).
(c) If Criteria to update γ are satisfied, update γ

n+1
10 .

(d) Update αn and σn.

4 If Criteria to update δ are satisfied, update δk+1 for partition Tk+1, with
qδ = max{qγ,(qγ)

P}, P = { Number of times γ10 is updated on refinement k}.
5 Compute the error indicators to determine the next mesh refinement.

Take-home message: The algorithm adjusts the mesh and the regularization
parameters: The user is not involved once the computation starts.
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Model problem with steep layers
Quasilinear diffusion problem on Ω = (0,1)2.

−div(κ(u)∇u) = f in Ω , u = 0 on ∂Ω.

κ(s) = k+
1

((ε+(s−a)2)
ε = 4×10−5, a = 0.5, and k = 1.

f (x,y) and ψ(x,y) chosen so the exact solution
u(x,y) = sin(πx)sin(πy).

Regularization: E(u̇) =
∫

Ω
|∇u̇|2.

The initial mesh has 144 elements. γMAX = 180, q = 0.8.
5 10 15 20 25 30

Refinements
10-3

10-2

10-1

100

101

102

103

γ10
γ01
δ

Figure: Three phases of the solution process: Level 5 with 166 dof; Level 15 with 827 dof; Level
25 with 3802 dof. Runtime to residual convergence: < 1min.
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Model problem with steep layers and mixed BC
Quasilinear diffusion problem on Ω = (0,1)2.

−div(κ(u)∇u) = f in Ω , u = 0 on ΓD = {(x,y) ∈ ∂Ω |y = 1},
κ(u)∇u ·n = ψ on ΓN = ∂Ω\ΓD.

κ(s) = k+
1

((ε+(s−a)2)
ε = 4×10−5, a = 0.5, and k = 1.

f (x,y) and ψ(x,y) chosen so the exact solution
u(x,y) = sin(πx)sin(πy).

Regularization: E(u̇) = 1
4 ·

∫
Ω
|∇u̇|2 + 3

4 ·
∫

ΓN
u̇2.

The initial mesh has 144 elements. γMAX = 180, q = 0.8.
5 10 15 20 25 30 35

Refinements
10-3

10-2

10-1

100

101

102

103

γ10
γ01
δ

Figure: Three phases of the solution process: Level 12 with 498 dof; Level 20 with 1771 dof;
Level 27 with 7266 dof. Runtime to residual convergence: ≈ 1.5 min.
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Model problem with steep layers and mixed BC
Quasilinear diffusion problem on Ω = (0,1)2.

−div(κ(u)∇u) = f in Ω , u = 0 on ΓD = {(x,y) ∈ ∂Ω |y = 1},
κ(u)∇u ·n = ψ on ΓN = ∂Ω\ΓD.

κ(s) = k+
1

((ε+(s−a)2)
ε = 4×10−5, a = 0.5, and k = 1.

f (x,y) and ψ(x,y) chosen so the exact solution
u(x,y) = sin(πx)sin(πy).

Regularization: E(u̇) = 1
4 ·

∫
Ω
|∇u̇|2 + 3

4 ·
∫

ΓN
u̇2.

The initial mesh has 144 elements. γMAX = 180, q = 0.8.
103 104

Degrees of freedom, n
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

|u−uk |1
|u−uk |0

ηk
n−1/2

Figure: Three phases of the solution process: Level 12 with 498 dof; Level 20 with 1771 dof;
Level 27 with 7266 dof. Runtime to residual convergence: ≈ 1.5 min.
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