

PET based classification for clinical diagnosis

Christophe Phillips

Cyclotron Research Centre, University of Liège, Belgium

c.phillips@ulg.ac.be

http://www.cyclotron.ulg.ac.be

CLINICAL PROBLEM

Elderly subjects

- showing 'Mild Cognitive Impairment' (MCI)
- some evolve to Alzheimer's Disease (AD)
- some remain MCI

Question:

Can we predict which ones are "early AD"?

Segovia, 2014, PLoS ONE

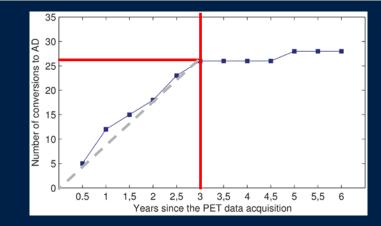
STUDY DATA

Population (n=46)

- all diagnosed with MCI
- monitoring over 6 years
- Groups:
 - 26 AD-converters (within 3 years),
 - 20 stable-MCI

Data

- 1 FDG-PET image at 1st visit
- Age + MMSE + 5 neuropsychological scores



Folstein, 1975, JoPR Adam, 2007, JoCEN Artero, 2006, DGCD

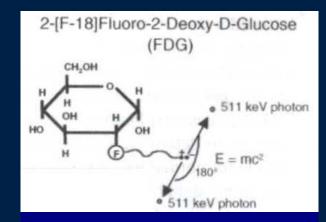
FDG-PET IMAGING

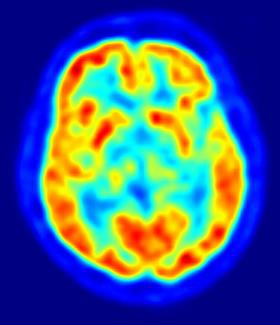
¹⁸F-FDG :

- glucose analogue
- fixes itself in cells consuming glucose
- radioactive decay with ~110 min half-life

FDG-PET image :

= resting state energy metabolism

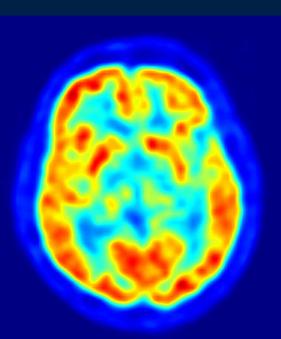




FDG-PET IMAGING ISSUES

Intensity scaling ?

- (semi-)quantitative values, e.g. "Standard Uptake Value" (SUV) → no scaling
- otherwise \rightarrow scaling by
 - whole brain global signal, or
 - ROI signal, e.g. cerebellum
- Partial volume effect correction?
- need structural MRI



FDG-PET IMAGING ISSUES

Spatial normalization based on:

- structural MRI (after coregistration),
 - \rightarrow need TPM matched for population age!
- PET images
 - → need specific PET template for radiotracer, population age, scanner, reconstruction algorithm,...

\rightarrow Try to have both PET and sMRI data!

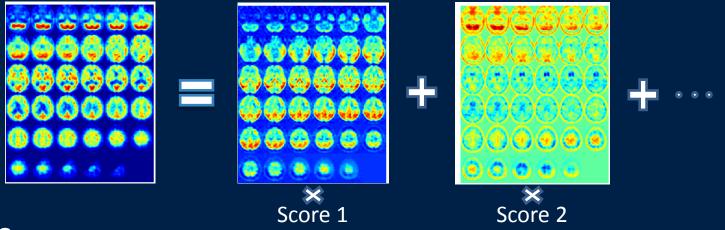
TECHNICAL ISSUES

Combination of imaging data and clinical scores

aka. feature combination

Dimension reduction of imaging data aka. feature extraction from images

Principal Component Analysis (PCA)
→ Split images into orthogonal components
→ First components contains most of variance



Scores:

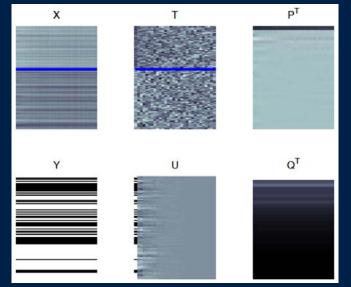
- \rightarrow = projection of the images on the components
- \rightarrow Summarize the image

Jolliffe, 2002

Partial Least Square (PLS)

 \rightarrow "similar" to PCA but include label information

images $\rightarrow X = TP^t + E$ with P and Q labels $\rightarrow Y = UQ^t + F$ orthogonal



Project images X onto p components of P $\rightarrow T$ summarizes images by p components score

Varmuza, 2009

Independent Component Analysis (ICA)

 "Similar" to PCA but uses statistical independence criteria

$$X = AS \implies S = WX$$

and estimate $W = A^{-1}$ such that sources S are independent.

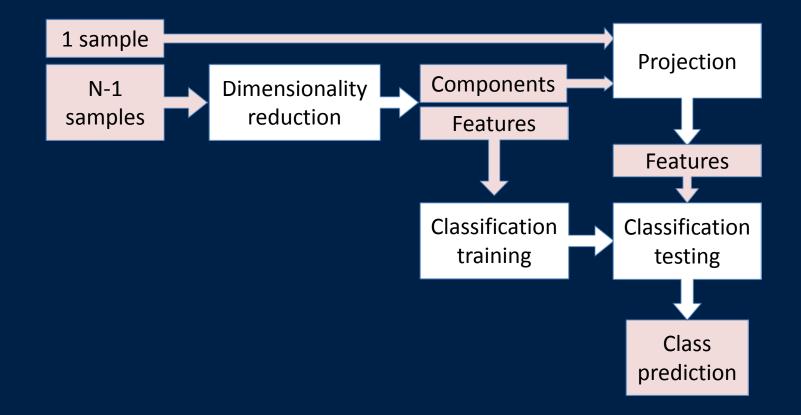
- ICA scores → Projection of the data on the independent components.
- Looking at A, we can choose components with the highest weight.

Illán, 2011, IS

Selection of *N* components, e.g.:

- for PCA, use % of explained variance
- for PLS/ICA, use "Fisher Discriminant Ratio"
 - → The fewer components
 → The fewer scores
 → The larger the dimensionality reduction

DIM. REDUCTION & CLASSIFICATION



Note: here SVM used for classification

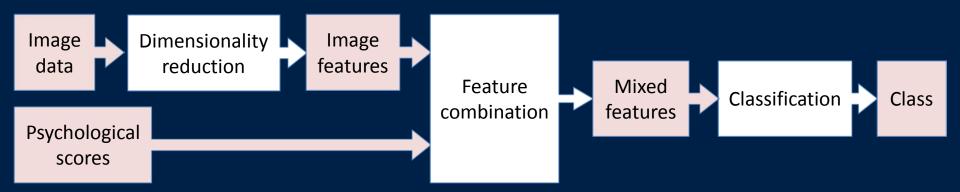
CYCLOTRON RESEARCH CENTRE

Vapnik, 1998

Classical approach

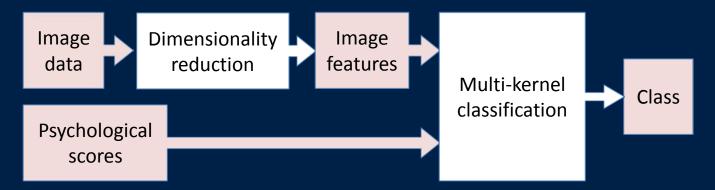
- Image only & no 'clinical score'.
- (Usually image dimensionality reduction not required)

Early integration



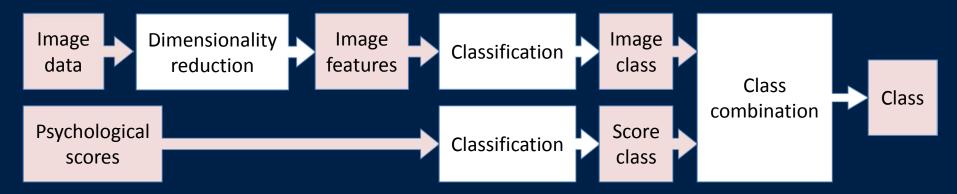
- straightforward solution
- requires
 - image dimensionality reduction
 - feature scaling

Intermediate integration

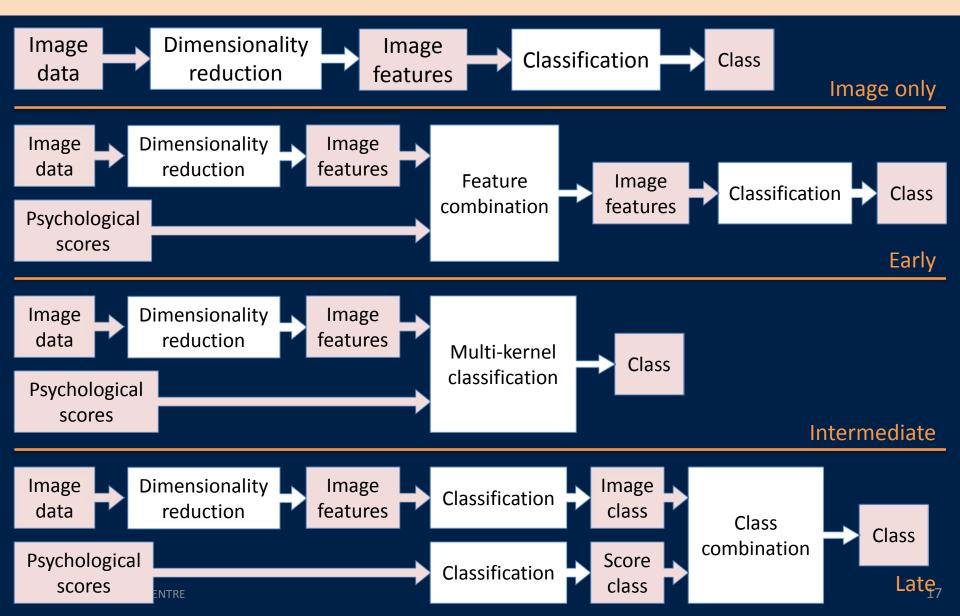


- keeps feature sets separated
- requires
 - Multi kernel learning

Late integration



- keeps feature sets separated
- requires
 - classification per feature set
 - class combination



RESULTS

Comping procedures based on accuracy, sensitivity/specificity, and AUC

• Only images

PLS > PCA > ICA > 'no reduction'

• With scores:

 Ψ -scores + MMSE + age > Ψ -scores alone

Integration
 intermediate ≈ late > early

CONCLUSION & COMMENTS

Consider using

- image dimensionality reduction
- feature combination

BUT

- No "one size fit all" solution
- Probabilistic classification and/or confidence measure

References

- Adam S, et al. (2007) Optimization of encoding specificity for the diagnosis of early AD: the RI-48 task. Journal of clinical and experimental neuropsychology, 29: 477–487.
- Artero S, et al. (2006) Revised criteria for mild cognitive impairment: validation within a longitudinal population study. Dementia and geriatric cognitive disorders. 22: 465–470.
- Dukart J, et al. (2010) Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage. 49: 1490–1495.
- Folstein MF, et al. (1975) "Mini-mental state": A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12: 189–198.
- Gönen M & Alpaydın E (2011) Multiple kernel learning algorithms. J Mach Learn Res. 12: 2211–2268.
- Illán I, et al. (2011) 18F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis. Information Sciences, 181: 903–916.
- Jolliffe IT (2002) Principal Component Analysis. Springer, 2nd ed. 2002 edition.
- Segovia F, et al. (2014) Combining PET Images and Neuropsychological Test data for Automatic diagnosis of Alzheimer's disease. PLoS One, 9: e88687.
- Vapnik VN (1998) Statistical Learning Theory. John Wiley and Sons, Inc., New York.
- Varmuza K & Filzmoser P (2009) Introduction to Multivariate Statistical Analysis in Chemometrics. Taylor and Francis CRC Press.
- Webb AR (2002) Statistical Pattern Recognition. Wiley, 2 edition.

ACKNOWLEDGEMENTS

Fermin Segovia, Eric Salmon, Christine Bastin & the CRC team

Sponsors:

- University of Liège,
- the FRS-FNRS,
- the SAO-FRA
- the Inter University Attraction Pole P7/11

CYCLOTRON RESEARCH CENTRE

RESULTS

