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CLINICAL PROBLEM 

Elderly subjects 
• showing ‘Mild Cognitive Impairment’ (MCI) 
• some evolve to Alzheimer’s Disease (AD) 
• some remain MCI 

 
Question: 

Can we predict which ones are “early AD”? 
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Segovia, 2014, PLoS ONE 



STUDY DATA 

Population (n=46) 
• all diagnosed with MCI 
• monitoring over 6 years 
• Groups: 

– 26 AD-converters (within 3 years),  
– 20 stable-MCI 

Data 
• 1 FDG-PET image at 1st visit 
• Age + MMSE + 5 neuropsychological scores 
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Folstein, 1975, JoPR 
Adam, 2007, JoCEN 
Artero, 2006, DGCD 



FDG-PET IMAGING 

18F-FDG : 
• glucose analogue  
• fixes itself in cells consuming glucose 
• radioactive decay with  ~110 min half-life 
 

FDG-PET image : 
 = resting state energy metabolism  
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FDG-PET IMAGING ISSUES 

Intensity scaling ? 
• (semi-)quantitative values, e.g. “Standard Uptake 

Value” (SUV)  no  scaling 
• otherwise  scaling by 

– whole brain global signal, or 
– ROI signal, e.g. cerebellum 

Partial volume effect correction? 
• need structural MRI 
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FDG-PET IMAGING ISSUES 

Spatial normalization based on: 
• structural MRI (after coregistration),  

→ need TPM matched for population age! 

• PET images 
→ need specific PET template for radiotracer, population 

age, scanner, reconstruction algorithm,… 

 
 

→ Try to have both PET and sMRI data! 
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TECHNICAL ISSUES 

 
Combination of imaging data and clinical 
scores 

aka. feature combination 
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Dimension reduction of imaging data 
aka. feature extraction from images 

 



DIMENSIONALITY REDUCTION 
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Principal Component Analysis (PCA) 
 Split images into orthogonal components 
 First components contains most of variance 
 
 
 
 
 
Scores: 
  = projection of the images on the components 
  Summarize the image 

Score 1 Score 2 

Jolliffe, 2002 



DIMENSIONALITY REDUCTION 
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Partial Least Square (PLS) 
→ “similar” to PCA but include label information 
 
 

 
 
Project images 𝑋 onto 𝑝 components of 𝑃 
→ 𝑇 summarizes images by 𝑝 components score 
 
 
 

 
 

𝑋 = 𝑇𝑃𝑡 + 𝐸
𝑌 = 𝑈𝑄𝑡 + 𝐹 

images→  

labels →  

with 𝑃 and 𝑄 
orthogonal 

Varmuza, 2009 



DIMENSIONALITY REDUCTION 
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Independent Component Analysis (ICA) 
• “Similar” to PCA but uses statistical independence 

criteria 

 
 
• ICA scores  Projection of the data on the 

independent components. 
• Looking at A, we can choose components with the 

highest weight. 

 

𝑋 = 𝐴𝐴 ⟹ 𝐴 = 𝑊𝑋 
and estimate 𝑊 = 𝐴−1 such that sources 𝐴 are independent. 

Illán, 2011, IS 



DIMENSIONALITY REDUCTION 

CYCLOTRON RESEARCH CENTRE 11 

 
Selection of 𝑁 components, e.g.: 
• for PCA, use % of explained variance 
• for PLS/ICA, use “Fisher Discriminant Ratio” 

 
  The fewer components  
  The fewer scores  
  The larger the dimensionality reduction 

 
Webb, 2002 



DIM. REDUCTION & CLASSIFICATION 
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Note: 
 here SVM used for classification Vapnik, 1998 



FEATURE COMBINATION 
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Classical approach 
 
 
 
• Image only & no ‘clinical score’. 
• (Usually image dimensionality reduction not required) 

 

Image 
data 

Dimensionality 
reduction 

Image 
features Classification Class 

prediction 



FEATURE COMBINATION 
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Early integration 
 

 
 
• straightforward solution 
• requires  

– image dimensionality reduction 
– feature scaling 

Image 
data 

Dimensionality 
reduction 

Image 
features 

Classification Class 
Psychological 

scores 

Feature 
combination 

Mixed 
features 



Intermediate integration 
 

 
 
• keeps feature sets separated 
• requires 

– Multi kernel learning 

FEATURE COMBINATION 
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Gönen, 2011, JMLR 



FEATURE COMBINATION 

CYCLOTRON RESEARCH CENTRE 16 

Late integration 
 

 
 
• keeps feature sets separated 
• requires 

– classification per feature set 
– class combination 
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FEATURE COMBINATION 
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RESULTS 
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Comping procedures based on accuracy, 
sensitivity/specificity, and AUC 
• Only images 
 PLS > PCA > ICA > ‘no reduction’ 

• With scores: 
 Ψ-scores + MMSE + age > Ψ-scores alone 

• Integration 
 intermediate ≈ late > early 



CONCLUSION & COMMENTS 
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Consider using 
– image dimensionality reduction 
– feature combination 

 

BUT 
– No “one size fit all” solution 
– Probabilistic classification and/or confidence 

measure  
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RESULTS 
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