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Operational NWP 
• Data assimilation done every 6 hrs 
• EnKF with ensemble size 50—100 
• Reported to “work well” 
• Typical number of vars.: 650 million 
• Typical number of obs.: 2–10 million 
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Particle filters 
• Computational requirements scale exponentially with dimension*,** 
• Particle filters are not/not often used in NWP

* Snyder, Bengtsson, Morzfeld, Monthly Weather Review, 2015  
**Bickel et al., 2008, Bengtsson et al. 2008, Snyder et al. 2008, Snyder 2011
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Puzzle 
• EnKF can be interpreted as a particle filter 
• It should not work in theory, so why does it work in practice?

Particle filters 
• Computational requirements scale exponentially with dimension*,** 
• Particle filters are not/not often used in NWP

* Snyder, Bengtsson, Morzfeld, Monthly Weather Review, 2015  
**Bickel et al., 2008, Bengtsson et al. 2008, Snyder et al. 2008, Snyder 2011
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1. Problem formulation 

2. Background 
Ensemble Kalman filter 
Particle filters 
Limitations of particle filters 

3. Why can EnKF “work” when ensemble size is small
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Idea: Monte Carlo 
• Represent posterior distribution by an ensemble 

• Ensemble average ≈ posterior mean 
• Ensemble covariance ≈ posterior covariance
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Compute the expected value of x ~ p(x) by Monte Carlo:

E[x] =

Z
xp(x)dx ⇡ 1

Ne

NeX

i=1

xi, xi ⇠ p(x)

Importance sampling
• Convert averaging into weighted averaging by replacing target density p(x) 

with a simpler version (proposal distribution q(x))

x
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xi
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E[x] =

Z
xp(x)dx

Z
x
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q(x)
q(x)dx ⇡ 1

Ne
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Difficult unless p(x) 
is elementary

wi =
p(xi)

q(xi)
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Effective sample size 
• Weights describe differences between the 

target distribution and the proposal 
distribution 

• Effective number of samples
Proposal density
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Target density

MAP
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Effective sample size 
• Weights describe differences between the 

target distribution and the proposal 
distribution 

• Effective number of samples
Proposal density

Samples

Target density

MAP
Ne↵ =

Ne

G
, G =

E[w2]

E[w]2

Efficient importance sampling 
• An efficient sampling algorithm must have small G  
• Variance of the weights must be small

var[w]

E[w]2
=

E[w2]� E[w]2

E[w]2
= G� 1
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Proposal distribution:
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Posterior:

Proposal distribution:

p(x0:k|z1:k) / p(x0:k�1|z1:k�1) p(xk|xk�1)p(zk|xk)

Weights: w

k = w

k�1 p(x
k|xk�1)p(zk|xk)

qk(xk;x0:k�1
, z

1:k)

Optimal importance function minimizes variance of weights*

* Snyder, Bengtsson, Morzfeld, Monthly Weather Review, 2015  

q

opt

j (xj ;x0:j�1

, z

1:j) = p(xj |xj�1

, z

j)

q(x0:k; z1:k) / q0(x
0)

kY

j=1

qj(x
j ;x0:j�1

, z

1:j)



Agenda

10

1. Problem formulation 

2. Background 
Kalman filter and ensemble Kalman filter 
Particle filters 
Limitations of particle filters 

3. Why can EnKF “work” when ensemble size is small



Model 

Observations 

How good are particle filters

11

Standard example*

* Bickel et al., 2008, Bengtsson et al. 2008, Snyder et al. 2008, Snyder 2011
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Dimension n

• Variance of weights scales exponentially 
with the dimension* 

• Ensemble size scales exponentially with 
dimension (“collapse”)

• True for all particle filters**

Ne↵ =

Ne

G
, G = exp(n), Ne / exp(n)Ne↵

All particle filters collapse in  
high-dimensional problems

**   Snyder, Bengtsson, Morzfeld, Monthly Weather Review, 2015 
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Particle filters

• Particle filters fail unless effective 
dimension is “small”

EnKF

• Uses Monte Carlo step to 
approximate forecast covariance 

• “Works well”in high-dimensions

*   Papadakis et al., Tellus 2010

EnKF can be interpreted as a 
particle filter*

EnKF proposal distribution: qEnKF(x
0:k; z1:k) / q0(x

0)
kY

i=1

qi,EnKF(x
i;x0:i�1

, z

1:i)

µi
j = (I �KH)f(xi�1

j ) +Kyi, ⌃k = (I �KH)Q(I �KH)T +KRKT

qi,EnKF(x
i;x1:i�1
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i
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�
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approximate forecast covariance 

• “Works well”in high-dimensions
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Particle filters EnKF

Puzzle

• Unweighted EnKF ensemble is “good” 
• Weighted PF-EnKF ensemble is “bad” 
• Why?

Solutions

• Effective dimension is small?
What does “work” mean?• Typical investigations of PF are 

missing something?

• Particle filters fail unless effective 
dimension is “small”

• Uses Monte Carlo step to 
approximate forecast covariance 

• “Works well”in high-dimensions
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Mean square error

• Small MSE means “small errors at each grid point” 
• MSE is small if MSE is approximately equal to average variance 
• EnKF is tuned (localization & inflation) such that:
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Standard example

MSE can be small even if Ne is moderate and 
even if PF-EnKF collapses

Result: E (MSE) = 1 +O(N�1
e ) +O(N�3/2

e )
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EnKF “works” means “MSE is small”
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When is data assimilation useful? 

Global vs. local assessment of errors/weights 
• Small MSE is local assessment of error: data assimilation is 

useful if errors in each dimension are small 
Example: If one makes small errors in a weather forecast in 
various locations around the globe, then one would declare 
success, not failure
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When is data assimilation useful? 

Global vs. local assessment of errors/weights 
• Small MSE is local assessment of error: data assimilation is 

useful if errors in each dimension are small 
Example: If one makes small errors in a weather forecast in 
various locations around the globe, then one would declare 
success, not failure

• During weight calculation, small errors in each dimension 
add up and cause the collapse of all particle filters

• Weights may turn a useful ensemble into one that is not 
useful (collapse)
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So far

• Unweighted unlocalized EnKF ensemble is “bad” 
• Unweighted localized EnKF ensemble is “good” 
• Weighted localized EnKF ensemble is “bad”

• Localization exploits banded problem structure 
• Similar to numerical linear algebra:

• Matrix computations in high dimension are difficult in general 
• Feasible if matrix is low-rank -> small effective dimension 
• Feasible if matrix is banded -> localization

Solution of puzzle: weight localization

• Weights of PF-EnKF are not localized, but ensemble is localized 
• PF-EnKF, and other PF, fails because weights are not localized
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Standard example

Localization

• Problem can be decoupled into n independent scalar sub-problems 
• Apply scalar particle filter to each sub-problem independently 
• Exponential scaling with (effective) dimension disappears 
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Standard example

Localization

• Problem can be decoupled into n independent scalar sub-problems 
• Apply scalar particle filter to each sub-problem independently 
• Exponential scaling with (effective) dimension disappears 

• “Easy” for diagonal or linear problems 
• Difficult for non-diagonal and nonlinear problems (complex, 

multivariate relationships, or “balance”) 
• Weights/importance sampling only useful in NWP, probably many 

other problems, if localized 
• Localization of PF in nonlinear problems is “hot topic”

Model 

Observations 
x

k = x

k�1 + "

k
, " ⇠ N (0, I)

z

k = x

k + ⌘

k
, ⌘ ⇠ N (0, I)
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Summary

• Localization is key to make EnKF feasible in large dimensions 
• Localization is key to make importance sampling/particle 

filters feasible in large dimension 
• Same as numerical linear algebra in large dimensions: 

problems must be sparse (low effective dimension) or sparse/
banded (localization)
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Thank you.
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Dimension n

• In simple examples, variance of weights 
scales exponentially with the dimension* 

• Ensemble size scales exponentially with 
dimension (“collapse”)

Where on this map 
is meteorology?

What if the effective dimension 
of NWP is not small?

Ne↵ =

Ne

G
, G = exp(n), Ne / exp(n)Ne↵
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• Particle filters usually applies to 
this distribution 

p(xk|z1:k) / p(zk|xk)p(xk|z1:k�1)

• Probability distribution of 
trajectories conditioned on data

Filtering distributionSmoothing distribution

p

k / p
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p(xk|xk�1)p(zk|xk)

• Probability distribution of state 
conditioned on data

• EnKF usually applies to this 
distribution
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• Particle filters usually applies to 
this distribution 

p(xk|z1:k) / p(zk|xk)p(xk|z1:k�1)

• Probability distribution of 
trajectories conditioned on data

Filtering distributionSmoothing distribution

p

k / p

k�1
p(xk|xk�1)p(zk|xk)

• Probability distribution of state 
conditioned on data

• EnKF usually applies to this 
distribution

• Weights are computed with respect to smoothing distribution? 
• What happens when we compute weights with respect to filtering 

distribution?

Question
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EnKF as importance sampler for p(xk|z1:k) / p(zk|xk)p(xk|z1:k�1)

Standard example

Target density: p(xk|z1:k) = N (0, I)

Proposal distribution: qEnKF(x
k) = N (0,�2

I), �

2 = 1 + �, � / 1/
p
Ne

sampling error

z

k = x

k + v

k
, v

k ⇠ N (0, I)

x

k = x

k�1 + w

k
, w

k ⇠ N (0, I)
Model 

Data (observations) 
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EnKF as importance sampler for p(xk|z1:k) / p(zk|xk)p(xk|z1:k�1)

Standard example

Target density: p(xk|z1:k) = N (0, I)

Proposal distribution: qEnKF(x
k) = N (0,�2

I), �

2 = 1 + �, � / 1/
p
Ne

Result: Effective sample size scales linearly with dimension
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EnKF as importance sampler for p(xk|z1:k) / p(zk|xk)p(xk|z1:k�1)

Standard example

Target density: p(xk|z1:k) = N (0, I)

Proposal distribution: qEnKF(x
k) = N (0,�2

I), �

2 = 1 + �, � / 1/
p
Ne

Result: Effective sample size scales linearly with dimension

Idea: Effective dimension ≈ EnKF ensemble size ≈ 50 - 100

z
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k + v

k
, v

k ⇠ N (0, I)

x

k = x

k�1 + w

k
, w

k ⇠ N (0, I)
Model 

Data (observations) 
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Unlocalized EnKF, filtering density, Ne = 50 
PF-EnKF,  Ne = 50 

Optimal PF, smoothing density, Ne = 50 
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