Lots of recent progress: computational theorems in dynamics

Jan Bouwe van den Berg VU Amsterdam

Collaborators

Andréa Deschênes
Chris Groothedde Christian Reinhardt Elena Queirolo Jay Mirelen an as Jan-Ph ppe Lessard Villiam
Jone han Jaquette
hunstantin Mischaikow
Lennaert van Veen
Maxime Breden
Maxime Murray
Ray Sheombarsing
Wouter Hetebrij

Can you trust a computer?

Possible reponses:

- Can you trust a human brain?
- Quantitatively: solve $A x=b$ trustworthiness of x depends on condition number of A
- Need to make sure our problem is well-conditioned prove! quantify!

Interval arithmetic

- Computation with floating point numbers have rounding errors
- These errors can be dealt with rigorously by interval arithmetic
- Product of intervals I_{1} and I_{2}

$$
I_{1} \cdot I_{2} \supset\left\{x_{1} x_{2} \mid x_{1} \in I_{1}, x_{2} \in I_{2}\right\}
$$

Intlab by Rump

Rigorous validation of numerical computations

Goal: prove rigorously what we see in simulations of nonlinear dynamics "important solutions"

$$
\begin{aligned}
& \frac{d x}{d t}=\sigma(y-x) \\
& \frac{d y}{d t}=x(\rho-z)-y \\
& \frac{d z}{d t}=x y-\beta z
\end{aligned}
$$

Computer proofs in dynamics

Feigenbaum constant is universal (Lanford, 1982)

Chaotic attractor in Lorenz equations (Tucker, 2002)

Some acknowledgments

- Piotr Zgliczynski CAPD library; rigorous integrator for ODEs
- Konstantin Mischaikow, Bill Kalies, MT1 CHOMP; Morse-Conley database
- Hans Koch
- Gianni Arioli
- Michael Plum
- Mitsuhiro Nakao
- Nobito Yamamoto

$$
u^{\prime}=f(u)
$$

$$
F(x)=0
$$

Functional analytic setup

Example: IVP $\left\{\begin{array}{l}u^{\prime}=f(u) \\ u(0)=u_{0}\end{array}\right.$

$$
F(u)=\left[\begin{array}{c}
u^{\prime}-f(u) \\
u(0)-u_{0}
\end{array}\right]=0
$$

$$
F: C^{1} \rightarrow C^{0} \times \mathbb{R}
$$

or

$$
\widetilde{F}(u)=u(t)-u_{0}-\int_{0}^{t} f(u(s)) d s=0
$$

$$
\widetilde{F}: C^{0} \rightarrow C^{0}
$$

Newton's method

finite dimensional nonlinear problem

$$
F(x)=0
$$

$$
\begin{aligned}
x_{n+1} & =\widetilde{T}\left(x_{n}\right) \\
& =x_{n}-D F\left(x_{n}\right)^{-1} \cdot F\left(x_{n}\right) \\
F(\hat{x})= & 0 \Longleftrightarrow \widetilde{T}(\hat{x})=\hat{x} \\
& D F(\hat{x})^{-1} \text { injective }
\end{aligned}
$$

$D \widetilde{T}(\hat{x})=0 \longrightarrow\|D \widetilde{T}(x)\|$ small near \hat{x} \widetilde{T} is a (strong) contraction

Infinite dimensions

infinite dimensional nonlinear problem

$$
\begin{array}{ll}
& F(x)=0 \\
F: X \rightarrow X^{\prime} & X, X^{\prime} \text { Banach spaces }
\end{array}
$$

Finite dimensional reduction
N-dimensional subspaces

$$
X_{N} \subset X \quad X_{N}^{\prime} \subset X^{\prime}
$$

- truncated problem $\quad F_{N}: X_{N} \rightarrow X_{N}^{\prime}$
- solve numerically $F_{N}\left(\bar{x}_{N}\right) \approx 0$
- numerical "solution" $\bar{x}_{N}=\bar{x} \in X_{N} \subset X$

Fixed point operator
 $$
F(x)=0 \quad F: X \rightarrow X^{\prime}
$$
 $$
T(x)=x \quad T: X \rightarrow X
$$

$$
\begin{aligned}
& T(x)=x-D F(x)^{-1} F(x) \\
& T(x)=x-D F(\bar{x})^{-1} F(x) \\
& T(x)=x-A F(x)
\end{aligned}
$$

$A: X^{\prime} \rightarrow X$ injective

$$
A \approx A_{N}=D F_{N}\left(\bar{x}_{N}\right)^{-1}
$$

$$
A \text { "easy" (for estimates) }
$$

Contraction mapping

- T maps $B_{r}(\bar{x}) \subset X$ into itself
- $\|T(x)-T(\tilde{x})\|_{X} \leq \kappa\|x-\tilde{x}\|_{X} \quad \kappa<1$

Analytic estimates

$$
\begin{aligned}
\|T(\bar{x})-\bar{x}\|_{X} & \leq Y \\
\|D T(x)\|_{B(X)} & \leq Z(r) \quad \forall x \in B_{r}(\bar{x})
\end{aligned}
$$

Inequality $Y+\hat{r} Z(\hat{r})<\hat{r}$

Choices

Choices to be made:

- formulation $F(x)=0$
- X and the norm on X
- X_{N} and X_{N}^{\prime}
- A : an "accurate" and "simple" approximation of $D F(\bar{x})^{-1}$

Estimates and check $Y+\hat{r} Z(\hat{r})-\hat{r}<0$

What is A ?

$$
T(x)=x-A F(x)
$$

What is A ?

$$
\begin{aligned}
& T(x)=x-A F(x) \\
& D F_{N}\left(\bar{x}_{N}\right)
\end{aligned}
$$

Periodic solutions in ODEs

$$
\begin{array}{r}
-u_{x x x x}-2 u_{x x}+(\lambda-1) u-u^{3}=0 \\
\lambda=3.5 \times 10^{8}
\end{array}
$$

2103 Fourier modes

Hungria-Lessard-Mireles

- any polynomial vector field Queirolo MS25
- non-polynomial:

- reformulation Lessard-Mireles-Ransford
- interpolation estimates Kalies-Day
- less regularity

Figueras-Haro-Luque

Non-periodic solutions in ODEs

- Chebyshev series - domain decomposition
- IVPs
-BVPs
- a priori bootstrap

$$
\begin{aligned}
u^{\prime} & =f(u) \\
u^{\prime \prime} & =D f(u) \cdot f(u)
\end{aligned}
$$

Breden-Lessard

More ODEs

fast-slow systems phase space methods

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =\gamma(\theta v-u(u-a)(1-u)+w) \\
w^{\prime} & =\frac{\epsilon}{\theta}(u-w)
\end{aligned}
$$

$$
\epsilon \in\left(0,1.5 \times 10^{-4}\right]
$$

Czechowski-Zgliczynski Matsue

higher dimensional slow manifolds

Connecting orbits

local stable/unstable manifolds Parametrization method

Mireles
Haro-Canadell-Figueras-Luque-Mondelo

Deschênes-Lessard-Mireles-JB Mireles-Reinhardt-JB
continuation through eigenvalue resonances

Local (un)stable manifolds

- of periodic orbits Castelli-Mireles-Lessard

- unstable manifolds in parabolic PDEs Mireles-Reinhardt
- stable manifolds maps in infinite dimensions
 de la Llave-Mireles
Kot-Schaffer $\tilde{\delta}\left[\|(x)=\frac{1}{\pi} \int_{0}^{\pi} \pi(x-y) N[\|](y) d y\right.$
infinite dimensional stable manifolds in PDEs

Continuation

- continuation of general periodic orbits
- continuation in 2D parameter space

Gameiro-Lessard-Pugliese

- continuation of connecting orbits

Breden-Lessard-Murray-JB Sheombarsing-Reinhardt-JB

$$
\begin{aligned}
& u^{\prime \prime \prime \prime}+c^{2} u^{\prime \prime}+e^{u}-1=0 \\
& c^{2} \in[0.5,1.9]
\end{aligned}
$$

- continuation in PDE

$$
-\Delta\left(\varepsilon^{2} \Delta u+u-u^{3}\right)-\sigma(u-\mu)=0
$$

Otha-Kawasaki
Williams-JB

Bifurcation

- saddle-node Sander-Wanner Sander MS25
- pitchfork

Lessard-Sander-Wanner

- continuation of bifurcation points
- Hopf Lessard-Queirolo-JB Queirolo MS25
- KAM Kapela-Simo

center manifolds PP1: Hetebrij
bifurcations with many symmetries

Delay equations

- periodic orbits Mackey-Glass Szczelina-Zgliczynski $\quad \dot{z}(t)=\beta \cdot \frac{x(t-r)}{1+x^{p}(t-r)}-\gamma \cdot x(t)$
Groothedde-Lessard-JB
- unstable manifold

Groothedde-Mireles Ikeda

$$
u^{\prime}(t)=u(t-\tau)-u(t-\tau)^{3}
$$

Groothedde MS102

- structure of global attractor

$$
\begin{array}{cl}
\text { Wright } & \text { Jaquette-Lessard-Mischaikow } \\
y^{\prime}(t)=-\alpha y(t-1)\{1+y(t)\} & \text { Jaquette-JB } \\
& \text { Jaquette MS25 }
\end{array}
$$

state dependent delay $y^{\prime}(t)=-\operatorname{cog}\left(t-\left[1+\cos _{y}(t)\{1+y(t)\}\right.\right.$

PDEs

- time-periodic solutions Kuramoto-Sivashinsky

$$
u_{t}=-\nu u_{y y y y}-u_{y y}+2 u u_{y}
$$

Arioli-Koch
Zgliczynski
Gameiro-Lessard
Figueras-de la Llave

Boussinesq

$$
u_{t t}=\lambda u_{y y y y}+u_{y y}+\left(u^{2}\right)_{y y}
$$

Castelli-Gameiro-Lessard

PDEs

- IVP/BVP

Arioli-Koch
Cyranka
Breden-Lessard-Sheombarsing-JB

- connecting orbits

$$
\begin{aligned}
& u_{t}=-\left(u_{x x}+\lambda u^{3}\right)_{x x}-\lambda \sigma(u-\mu) \\
& \text { Ohta-Kawasaki Cyranka-Wanner }
\end{aligned}
$$

- finite element methods Gonzalez PP1
general connecting orbits in PDEs wave equations (Arioli-Koch)
- short connections for periodic solutions

Mireles-Murray

- hyperchaos Wilczak-Serrano-Barrio
- symbolic dynamics in PDE

$$
u_{t}=-\nu u_{x x x x}-u_{x x}+2 u u_{x} \quad \text { Wilczak-Zgliczynski }
$$

- near resonant inclination-flip bifurcation

Fontaine-Kalies-Naudot

- general Conley index techniques

Day MS78

- estimating topological entropy

Frongillo MS25
Stability (PDEs)

- variational problems (gradient systems) including strongly indefinite

Gameiro-Lessard-Vandervorst-JB

- instability of periodic orbits Gameiro-Lessard
- stability of periodic orbit
- Evans function techniques Barker MS116 Arioli-Koch Barker-Zumbrun
- Lagrangian coherent structures \& finite time Lyapunov exponents
stability in non-variational PDEs

More dimensions

Ohta-Kawasaki

$$
-\Delta\left(\epsilon^{2} \Delta u+u-u^{3}\right)-\sigma(u-m)=0
$$

3D space
Williams-JB
Navier-Stokes

$$
\begin{aligned}
\frac{\partial \overrightarrow{\mathbf{u}}}{\partial t}+\overrightarrow{\mathbf{u}} \cdot \nabla \overrightarrow{\mathbf{u}}-\nu \nabla^{2} \overrightarrow{\mathbf{u}}+\nabla p & =\vec{f} \\
\nabla \cdot \overrightarrow{\mathbf{u}} & =0
\end{aligned}
$$

2D space $\times 1 \mathrm{D}$ time
Breden-Lessard-van Veen-JB

Thanks!

Thank

OOOT

