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What is PN?

In numerical analysis, intractable problems (integrals, ODEs,
PDEs…) are discretised, to be solved numerically.

In Probabilistic Numerics we phrase such problems as
inference problems and construct a probabilistic description
of the discretisation error.
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What is PN?

Joseph Kadane Persi Diaconis Tony O’Hagan John Skilling
Kadane [1985] Diaconis [1988] O’Hagan [1992] Skilling [1991]

This is not a new idea!
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PN for PDEs



PN for PDEs

Darcy’s law: given g, θ, b find u

−∇ · (θ(x)∇u(x)) = g(x) in D
u(x) = b(x) on ∂D

For general D, θ(x) this cannot be solved analytically.

The majority of PDE solvers produce an approximation like:

û(x) =
N∑
i=1

wiϕi(x)

We want to quantify the error from finite N probabilistically.
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PN for PDEs

Inverse Problem: Given partial information of g,b,u find θ

−∇ · (θ(x)∇u(x)) = g(x) in D
u(x) = b(x) on ∂D

Bayesian Inverse Problem:

θ ∼ Πθ Data u(xi) = yi θ|y ∼ Πyθ

We want to account for an inaccurate forward solver in the
inverse problem.
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Why do this?

Using an inaccurate forward solver in an inverse problem can
produce biased and overconfident posteriors.
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Forward Problem



Abstract Formulation

Au(x) = g(x) in D

Forward inference procedure:

u ∼ Πu “Data” Au(xi) = g(xi) u|g ∼ Πgu
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Posterior for the forward problem

Use a Gaussian Process prior u ∼ Πu = GP(0, k). Assuming
linearity, the posterior Πgu is available in closed-form1.

Πgu ∼ GP(m1,Σ1)

m1(x) = ĀK(x, X)
[
AĀK(X, X)

]−1 g
Σ1(x, x′) = k(x, x′)− ĀK(x, X)

[
AĀK(X, X)

]−1AK(X, x′)
Ā the adjoint of A

Observation: The mean function is the same as in symmetric
collocation!

1[Cockayne et al., 2016, Särkkä, 2011, Cialenco et al., 2012, Owhadi, 2014]
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[
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Theoretical Results

Theorem (Forward Contraction)
For a ball Bϵ(u0) of radius ϵ centered on the true solution u0
of the PDE, we have

1− Πgu[Bϵ(u0)] = O

(
h2β−2ρ−d

ϵ

)

• h the fill distance
• β the smoothness of the prior
• ρ < β − d/2 the order of the PDE
• d the input dimension
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Toy Example

Poisson’s Equation:

−∇2u(x) = sin(2πx) x ∈ (0, 1)
u(x) = 0 x = 0, 1
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Inverse Problem



Recap

−∇ · (θ(x)∇u(x)) = g(x) in D
u(x) = b(x) on ∂D

Now we need to incorporate the forward posterior measure Πgu
into the posterior measure for the inverse problem, θ
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Incorporation of Forward Measure

Assuming the data in the inverse problem is:

yi = u(xi) + ξi i = 1, . . . ,n
ξ ∼ N(0, Γ)

implies the standard likelihood:

p(y|θ,u) ∼ N(y;u, Γ)

But we don’t know u

Marginalise the forward posterior Πgu to obtain a “PN”
likelihood:

pPN(y|θ) ∝
∫
p(y|θ,u)dΠgu

∼ N(y;m1, Γ + Σ1)
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Back to the Toy Example

−∇ · (θ∇u(x)) = sin(2πx) x ∈ (0, 1)
u(x) = 0 x = 0, 1

Infer θ ∈ R+; data generated for θ = 1 at x = 0.25, 0.75.

Corrupted with independent Gaussian noise ξ ∼ N(0, 0.012)
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Posteriors for θ
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Nonlinear Example: Steady-State
Allen–Cahn



Allen–Cahn

A prototypical nonlinear model.

−θ∇2u(x) + θ−1(u(x)3 − u(x)) = 0 x ∈ (0, 1)2

u(x) = 1 x1 ∈ {0, 1} ; 0 < x2 < 1
u(x) = −1 x2 ∈ {0, 1} ; 0 < x1 < 1

Goal: infer θ from 16 equally spaced observations of u(x) in
the interior of the domain.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Negative Stable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Unstable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Positive Stable

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

16



Allen–Cahn

A prototypical nonlinear model.

−θ∇2u(x) + θ−1(u(x)3 − u(x)) = 0 x ∈ (0, 1)2

u(x) = 1 x1 ∈ {0, 1} ; 0 < x2 < 1
u(x) = −1 x2 ∈ {0, 1} ; 0 < x1 < 1

Goal: infer θ from 16 equally spaced observations of u(x) in
the interior of the domain.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Negative Stable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Unstable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Positive Stable

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

16



Allen–Cahn: Inverse Problem

0.02 0.03 0.04 0.05 0.06 0.07 0.08

θ

0

20

40

60

80

100

120

140

PMM `= 5

PMM `= 10

PMM `= 20

PMM `= 40

PMM `= 80

(a) PMM

0.02 0.03 0.04 0.05 0.06 0.07 0.08

θ

0

200

400

600

800

1000

1200

FEM 5x5

FEM 10x10

FEM 25x25

FEM 50x50

(b) FEA

Comparison of posteriors for θ with different solver
resolutions, when using the PMM forward solver with PN
likelihood, vs. FEA forward solver with Gaussian likelihood.

17



Conclusions



Conclusions

We have shown...

• How to build probability measures for the forward
solution of PDEs.

• How to use this to make rhobust inferences in PDE inverse
problems, even with inaccurate forward solvers.
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“Bayesian Probabilistic Numerical Methods”
http://www.joncockayne.com/papers/pn_foundations
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Questions?
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