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Motivation (cont.)

Let f be a function defined on the spectrum of A, so that f(.A) is well
defined.

Important examples include:

@ The (negative) exponential: f(z) =e ", ¢t >0
@ Negative fractional roots, e.g., f(2) = 23 (for A pos. def.)

e*—1

@ The v functions, e.g., ¥1(z2) =

-~
~

@ Combinations like f(z) = % t>0

See N. J. Higham, Functions of Matrices. Theory and Computation, SIAM, 2008.

We are interested in

@ Studying the decay properties of f(.A)
@ Efficiently computing the action f(.A)b for a given vector b




Motivation (cont.)

Figure: Three-dimensional decay plots for [f(.A)]i; where A is the 5-point finite
difference discretization of the negative Laplacian on the unit square on a 10 x 10
uniform grid with zero Dirichlet boundary conditions. Left: f(.A) = exp(—5.A).
Right: f(A) = A Y/2




Motivation (cont.)

The Kronecker sum of matrices has certain nice properties:

Mi:=M M o M>

@ e 2 —ge X e

@ If A € o(M;y) and p € (M), then A + p is an eigenvalue of
M = M5, Moreover, every eigenvalue of A & M5 is of this form.
@ If (A\.x) and (u.y) are eigenpairs of M; and M>, the eigenvector of
M, & M5 corresponding to A + i is given by vec(xr @ y).
@ o(My & M) = o(M, & M)

See R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge
University press, 1991.




Motivation (cont.)

These properties suggest that one should be able to reduce analytical and
computational problems for functions of Kronecker sums to analogous
problems for the (much smaller) summands.

Some works in this direction:

C. Canuto, V. Simoncini, and M. Verani, On the decay of the inverse of matrices
that are sum of Kronecker products, Linear Algebra Appl., 452 (2014), pp. 21-39.

|. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromomskij, H-matrix approximation
for the operator exponential with applications, Numer. Math., 92 (2002),
pp. 83—111.

|. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromomskij, Tensor-product

approximation to the inverse and related operators in high-dimensional elliptic
problems, Computing, 74 (2005), pp. 131-157.

D. Kressner and C. Tobler, Krylov subspace methods for linear systems with
tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688-1714.




Functions defined by integral transforms

Main idea: express the function f(.A), whenever possible, in terms of
functions, like the exponential or the resolvent, for which we know how to

exploit the Kronecker structure.

This leads naturally to two (related) classes of functions:

@ Laplace—Stieltjes functions

@ Cauchy-Stieltjes (or Markov-type) functions

The Laplace—Stieltjes functions are those functions that can be
represented as Laplace transforms of nonnegative measures:

Vi = /0 ’e_”da,(r)

where a(t) is nondecreasing and has at least one point of increase in
(0, ), and the integral converges for all = > 0.




Functions defined by integral transforms (cont.)

The Cauchy—5Stieltjes functions are those functions that can be written as

dv(w
f(:):/r:’_(j. :eC\T,

where v is a (complex) measure supported on a closed set I C C and the
integral is absolutely convergent.

Here we mostly consider Cauchy—Stieltjes functions of the form

0 dode
f(tr):/ il ) x € C\ (—o0c,0],

I
S A W

where 7 is now a (possibly signed) real measure.

We note that functions of the form

fay= [ 2= [ 2 ) =-u(-w) @>0)

Ftw J W

are both of Laplace—Stieltjies and Cauchy-5Stieltjes type, so the two classes
overlap.
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Functions defined by integral transforms (cont.)

Together, these two classes of functions cover many of the functions we
are interested in: exponential, resolvent, negative fractional roots, v’
functions, and so forth. Also, these functional classes are closed under
multiplication and linear combinations with positive coefficients.

For A/ Hermitian and positive definite and f in the Laplace—Stieltjes class,
we can write

f(M) = /0 e da(7).

In particular, the (i. j) entry of f(M) is given by

[f(MD)]i; = /Ox[e_"”]ij da(r)

an expression which can be used to prove decay bounds on the entries of
f(M) starting from known decay bounds for the entries of e 7™M
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Functions defined by integral transforms (cont.)

Similarly, for a given vector b we have

F(M)b = / e ™Mpda(r).
0

and from this we can derive convergence estimates for Krylov subspace
approximations to f(A)b from known error bounds for the action of the
matrix exponential on a vector.

When M = A = M; & M>, we can further exploit the identity

ei\h%}%;\[z My &

X) €
L

— Mo

to derive more precise bounds and estimates, and to design more efficient

algorithms that exploit the Kronecker structure.

The same approach can be used for Cauchy—Stieltjes functions, exploiting
known results for the resolvent (A — wI)™!.
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Decay results for matrix functions

It is known that if M = M* is a banded matrix and f(z) is an analytic
function defined on an open set Q2 C C containing (M), then there exist
explicitly computable constants & > 0 and a > 0 such that

[f(M))i;] < Ke™ =l 1<i,j<n

I.e., the entries of f(Al) are bounded in an exponentially decaying manner
away from the main diagonal.

Moreover, if {Al,,} is a sequence of n x n banded Hermitian matrices of
increasing size such that o(M,,) C Q for all n and the distance between
the spectra and the singularities of f remains bounded away from zero as
n — oc, then X and «a are independent of n.
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Decay results for matrix functions (cont.)

This result also holds for general sparse matrices, with |i — j| replaced by
the graph distance. Results for non-Hermitian matrices also exist.

Such decay bounds and estimates are useful in many settings, from
numerical analysis to quantum physics.

M. B. and G. H. Golub, Bounds for the entries of matrix functions with
applications to preconditioning, BIT, 39 (1999), pp. 417-418.

M. B. and N. Razouk, Decay bounds and O(n) algorithms for approximating
functions of sparse matrices, ETNA, 28 (2007), pp. 16-39.

M. B., P. Boito, and N. Razouk, Decay properties of spectral projectors with
applications to electronic structure, SIAM Review, 55 (2013), pp. 3-64.
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Decay results for matrix functions (cont.)

In the case of the matrix exponential, decay is actually superexponential,
and the bounds above are not sharp.

Better estimates can be obtained by exploiting the following well known
result by Hochbruck and Lubich (SINUM, 1997):

Theorem

Let M be a Hermitian positive semidefinite matrix with eigenvalues in the
interval [0.4p]. Then the error in the Arnoldi approximation of
exp(—7M)v with ||v|| = 1, namely

em = || exp(—TM)v — V,,, exp(—7H,,)e1]|.

is bounded in the following ways:
) em < 10exp(—m?/(5p7)), for pr > 1 and \/pT < m < 2pT
i) em < 10(p7) L exp(—p7) ()™ for m > 2pr.
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Decay results for matrix functions (cont.)

Applying this result with v = ¢; leads to the following estimates (B. and
Simoncini, SIMAX 2015):
T heorem

Let M be as in the previous Theorem. Assume in addition that M is

3-banded. Fori # j, let £ = [|i — j|/3]. Then
1) For pr > 1 and /4pT < £ < 2prT,

.8
[exp(—7M)]i;| < 10exp (—5/752> :
i) For & > 2pr,

=

[exp(—7M));;| < loexpi):m') (e/g)’r)* .
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Decay results for matrix functions (cont.)

Theorem

Let M = M~ be [3-banded and positive definite, and let M=M— Amint,
with the spectrum of M contained in [0,4p]. Assume f is a Laplace—
Stieltjes function. For & = [|i — j|/3] > 2, we have:

vonsl < [ " expl—Amin)|[ep(= 305 |dex(r)

< 10 [* exp(-Aan) 2L (7)) (1)
0 pPT S
£ 2
4p £
110 % oo o ()t
‘e bpT
2p
(2)

. /g exp(—AminT)|[exp(—m )i slda(r) = I + II + II1.

4p

—
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Decay results for matrix functions (cont.)
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Figure: Estimates for |[M —1/2] jl, 7 =127, using |+1l and the upper bound for

lIl. Size n = 200, Logarithmic scale. Left: M = tridiag(—1.4,—1). Right
\I = pentadiag(—0.5. —1.4, —1. —0.5). Note the exponential rate of decay




Decay results for matrix functions (cont.)

Similar results can be obtained for Cauchy—Stieltjes matrix functions,
combined with (classical) decay bounds for the inverse of a banded SPD
matrix due to Demko, Moss and Smith (Math. Comp., 1983).

These bounds can be extended to sparse (rather than banded) matrices
using the notion of graph distance.

However, for Kronecker sums of matrices, the oscillatory decay behavior in
f(A) is better captured if we exploit the Kronecker structure.

For the special case of A~ with A = M, @ I,,, + I,,, ® My, see

C. Canuto, V. Simoncini, and M. Verani, On the decay of the inverse of matrices
that are sum of Kronecker products, Linear Algebra Appl., 452 (2014), pp. 21-39.
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Decay results for matrix functions (cont.)

Recall that

exp(—TA) = exp(—7M;) @ exp(—7M>), TER
when A=M; @1+ 1® M.

We introduce a lexicographic ordering of the entries, so that each row or
column index k of A corresponds to the ordered pair k = (k1,ks) in a
two-dimensional Cartesian grid. In other words, the generic entry of A has
row index (ky — 1)n + 1 and column index (ky — 1)n + t».

Furthermore, for |i — j| > \/4p7/3 define the function

10 exp (—5557) : for Apr <& < 2pr,
10expf;m) (e’ZT)S. for & > 2pr.

S

®(i,j) =

where again £ = [|i — j|/3].
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Decay results for matrix functions (cont.)

Theorem

Llet A=1& M; + M, @ I with My and M, Hermitian and positive
semidefinite with bandwidth 31, /3, and spectrum contained in [0, p1] and
0. p2], respectively. Denote with ®; the function described above, with
p=peand 3=03y (£ =1,2). Then fort = (t1.t2) and k = (k1, k»), with
ite — k¢l > VBpeT B, £ = 1.2, we have

(exp(—7A))kt| < P1(k1,t1) Pa(k2, t2).

For f a Laplace—Stieltjies function, we can use this result to bound the

entries of f(.A).

Note: A similar approach also works for Cauchy—Stieltjies functions (see
our paper).
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Figure: True decay and estimates for |[¢)1(A)].¢|, t = 94, with

1(x) = (e —1)/x and A

I + 1% M of size n = 400. Left:

M = tridiag(—1.4,—1). Right: M = pentadiag(—0.5.—1.4,—1, —0.5).
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Approximating f(.A)b, with A = M; & M> (cont.)

In particular, (P,, ® Q)b = vec((QL bl)(b‘QTPm)).

m

Advantages of the structure-aware approximation:

@ Memory requirements reduced from mn? to 2mn

@ Accurate approximation obtained with subspace of much smaller
dimension

@ f(7,,) can be computed without forming 7,,, using the
eigendecomposition of 17, 15

@ Applicable to non-Hermitian case as well

Limitation: right-hand side must have special structure.

There are, however, several applications where this structure is present.
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example (n = 50)

m f(A—zml [f(Ap—af) Lmtmetl [T el
- 4.2422e-01 3.9723e-01 1.0000e+00 1.0000e-+00
8 2.6959e-01 2.1025e-01  2.2710e-01  2.5313e-01
12 1.7072e-01 1.0365e-01  1.3066e-01  1.2971e-01
16 1.0324e-01 4.2407e-02  8.3444e-02  6.9960e-02
20 5.7342e-02 1.1176e-02  5.4224e-02  3.3969e-02
24 2.7550e-02 4.8230e-04  3.4054e-02  1.0935e-02
28 1.0351e-02 2.8883e-12  1.9296e-02  4.8230e-04
32 3.4273e-03 2.8496e-12  8.3585e-03  1.1366e-13
36 2.2906e-03 2.9006e-12  1.7514e-03  1.4799e-13
40 9.4368e-04 2.8119e-12  1.6283e-03  2.7323e-13
— 4.3935e-04 2.7593e-12  6.2797e-04  2.1786e-13
48 1.8744e-04 2.8235e-12  3.0332e-04  2.5965e-13

Table: Results for f(x) =

Here n = 50.

(eVZ —1)/z with s = 103, Rank-1 right-hand side.
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An example (n = 100)

m

i|I7n._Im.old||

[Zm ||

[E2A]

4

8
12
16
20
24
28
32
36
40
44
48
52
56
60

1.0000e+00

2.3942e-01
1.5010e-01
1.0716e-01
8.1062e-02
6.3308e-02
5.0347e-02
4.0409e-02
3.2507e-02
2.6052e-02
2.0667e-02
1.6104e-02
1.2194e-02
8.8234e-03
5.9194e-03

1.0000e+-00

2.7720e-01
1.6289e-01
1.0966e-01
7.8150e-02
5.7003e-02
4.1674e-02
2.9992e-02
2.0802e-02
1.3446e-02
7.5529e-03
2.9970e-03
3.1470e-04
1.1354e-12
3.4639e-13

Table: Same matrix function as before, case n = 100.
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Convergence estimates for structured approximations

Let A =AM = I+ I M (Hermitian), Amin, Amax €xtreme eigenvalues of M, and
o Amin+Amax
= Amin“")\min )

Then the following holds:

@ If f is a Laplace—Stieltjes function,

174) = el = 0 (o0 (2% ) )

for m and & sufficiently large.

@ If f is a Cauchy-Stieltjes function,

Hf(-A) — “l'mH L6 <\/f— 1)

VR +1
where ("' is computable and depends on f and M.

@ For & large, the two estimates are equivalent.

Proofs based on similar techniques as those used for decay bounds.
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