A posteriori error estimates and stopping criteria for a two-phase flow with nonlinear complementarity constraints

Ibtihel Ben Gharbia, Jad Dabaghi, Vincent Martin, Martin Vohralík

Inria Paris \& Université Paris-Est

SIAM Conference on Mathematical \& Computational Issues in the Geosciences, March $13^{\text {th }} 2019$

École des Ponts
ParisTech

Outline

(2) Model problem and its discretization

(3) A posteriori analysis

4 Numerical experiments

Introduction

Storage of radioactive wastes

Model: System of PDE's with complementarity constraints

$$
\mathcal{K}(\boldsymbol{U}) \geq 0, \mathcal{G}(\boldsymbol{U}) \geq 0, \mathcal{K}(\boldsymbol{U}) \cdot \mathcal{G}(\boldsymbol{U})=0 . \mathcal{U}(\boldsymbol{U})=0 .
$$

Space/Time discretisation
$S^{n}\left(\boldsymbol{U}_{h}^{n}\right)=0$
$\mathcal{K}\left(\boldsymbol{U}_{h}^{n}\right) \geq 0 \mathcal{G}\left(\boldsymbol{U}_{h}^{n}\right) \geq 0 \mathcal{K}\left(\boldsymbol{U}_{h}^{n}\right) \cdot \mathcal{G}\left(\boldsymbol{U}_{h}^{n}\right)=0$
Resolution: semismooth Newton

$$
\mathbb{A}^{n, k-1} \boldsymbol{U}_{h}^{n, k, i}=\boldsymbol{B}^{n, k-1}-\boldsymbol{R}^{n, k, i}
$$

Introduction

Storage of radioactive wastes

Model: System of PDE's with complementarity constraints

$$
\begin{aligned}
\partial_{t} \boldsymbol{U}+\mathcal{A}(\boldsymbol{U}) & =0 \\
\mathcal{K}(\boldsymbol{U}) \geq 0, \mathcal{G}(\boldsymbol{U}) \geq 0, \mathcal{K}(\boldsymbol{U}) \cdot \mathcal{G}(\boldsymbol{U}) & =0 .
\end{aligned}
$$

Space/Time discretisation
$S^{n}\left(\boldsymbol{U}_{h}^{n}\right)=0$
$\mathcal{K}\left(\boldsymbol{U}_{h}^{n}\right) \geq 0 \mathcal{G}\left(\boldsymbol{U}_{h}^{n}\right) \geq 0 \mathcal{K}\left(\boldsymbol{U}_{h}^{n}\right) \cdot \mathcal{G}\left(\boldsymbol{U}_{h}^{n}\right)=0$
Resolution: semismooth Newton

$$
\mathbb{A}^{n, k-1} \boldsymbol{U}_{h}^{n, k, i}=\boldsymbol{B}^{n, k-1}-\boldsymbol{R}^{n, k, i}
$$

Can we estimate each error components (discretization, linearization, algebraic)?

$$
\Rightarrow \text { A posteriori error estimates }
$$

Can we reduce the computational cost?

Outline

(9) Introduction

(2) Model problem and its discretization
(3) A posteriori analysis

4 Numerical experiments
(5) Conclusion

Compositional two-phase flow with phase transition

$$
\begin{cases}\partial_{t} /_{\mathrm{w}}+\boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_{\mathrm{w}}=Q_{\mathrm{w}}, & \text { Unknowns: } S^{1}, P^{\mathrm{l}}, \chi_{\mathrm{h}}^{1} \\ \partial_{t} h_{\mathrm{h}}+\boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_{\mathrm{h}}=Q_{\mathrm{h}}, & \\ \mathcal{K}\left(S^{\mathrm{l}}\right) \geq 0, \mathcal{G}\left(S^{\mathrm{l}}, P^{\mathrm{l}}, \chi_{\mathrm{h}}^{1}\right) \geq 0, \mathcal{K}\left(S^{\mathrm{l}}\right) \cdot \mathcal{G}\left(S^{1}, P^{\mathrm{l}}, \chi_{\mathrm{h}}^{1}\right)=0\end{cases}
$$

Amount of components: $I_{\mathrm{w}}:=\phi \rho_{\mathrm{w}}^{1} S^{1}, \quad I_{\mathrm{h}}:=\phi \rho_{\mathrm{h}}^{1} S^{1}+\phi \rho_{\mathrm{h}}^{\mathrm{g}} S^{\mathrm{g}}$
Fluxes: $\boldsymbol{\Phi}_{\mathrm{w}}:=\rho_{\mathrm{w}}^{1} \mathbf{q}^{\mathbf{1}}-\mathbf{J}_{\mathrm{h}}^{\mathrm{l}}, \quad \boldsymbol{\Phi}_{\mathrm{h}}:=\rho_{\mathrm{h}}^{\mathrm{l}} \mathbf{q}^{\mathbf{1}}+\rho_{\mathrm{h}}^{\mathrm{g}} \mathbf{q}^{\mathbf{g}}+\mathbf{J}_{\mathrm{h}}^{\mathrm{l}}$
Capillary pressure: $P^{\mathrm{g}}:=P^{\mathrm{l}}+P_{\mathrm{cp}}\left(S^{\mathrm{l}}\right)$
Algebraic closure: $S^{1}+S^{g}=1, \quad \chi_{\mathrm{h}}^{1}+\chi_{\mathrm{w}}^{1}=1, \quad \chi_{\mathrm{h}}^{\mathrm{g}}=1$

Boundary conditions: $\boldsymbol{\Phi}_{\mathrm{w}} \cdot \boldsymbol{n}_{\Omega}=0, \quad \boldsymbol{\Phi}_{\mathrm{h}} \cdot \boldsymbol{n}_{\Omega}=0$.

Discretization by the finite volume method

Numerical solution:

$$
\boldsymbol{U}^{n}:=\left(\boldsymbol{U}_{K}^{n}\right)_{K \in \mathcal{T}_{n}}, \quad \boldsymbol{U}_{K}^{n}:=\left(S_{K}^{n}, P_{K}^{n}, \chi_{K}^{n}\right) \quad \text { one value per cell and time step }
$$

Time discretization: Consider: $t_{0}=0<t_{1}<\cdots<t_{N_{t}}=t_{\mathrm{F}}$.

Space discretization: \mathcal{T}_{h} a superadmissible family of conforming simplicial meshes of the space domain Ω. Number of cells : $N_{\text {sp }}$

$$
\left(\nabla v \cdot \boldsymbol{n}_{K, \sigma}, 1\right)_{\sigma}:=|\sigma| \frac{v_{L}-v_{K}}{d_{K L}} \sigma=\bar{K} \cap \bar{L},
$$

Discretization of the water equation

$$
S_{\mathrm{w}, K}^{n}\left(\boldsymbol{U}^{n}\right):=|K| \partial_{t}^{n} l_{\mathrm{w}, K}+\sum_{\sigma \in \mathcal{E}_{K}} F_{\mathrm{w}, K, \sigma}\left(\boldsymbol{U}^{n}\right)-|K| Q_{\mathrm{w}, \mathrm{~K}}^{n}=0,
$$

Total flux

$$
F_{\mathrm{w}, K, \sigma}\left(\boldsymbol{U}^{n}\right):=\rho_{\mathrm{w}}^{1}\left(\mathfrak{M}^{\mathrm{l}}\right)_{\sigma}^{n}\left(\psi^{1}\right)_{\sigma}^{n}-\left(\mathrm{j}_{\mathrm{h}}^{\mathrm{l}}\right)_{\sigma}^{n} \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \bar{\sigma}=\bar{K} \cap \bar{L} .
$$

Discretization of the hydrogen equation

Discretization of the water equation

$$
S_{\mathrm{w}, K}^{n}\left(\boldsymbol{U}^{n}\right):=|K| \partial_{t}^{n} l_{\mathrm{w}, K}+\sum_{\sigma \in \mathcal{E}_{K}} F_{\mathrm{w}, K, \sigma}\left(\boldsymbol{U}^{n}\right)-|K| Q_{\mathrm{w}, \mathrm{~K}}^{n}=0,
$$

Total flux

$$
F_{\mathrm{w}, K, \sigma}\left(\boldsymbol{U}^{n}\right):=\rho_{\mathrm{w}}^{1}\left(\mathfrak{M}^{\mathrm{l}}\right)_{\sigma}^{n}\left(\psi^{1}\right)_{\sigma}^{n}-\left(\mathrm{j}_{\mathrm{h}}^{\mathrm{l}}\right)_{\sigma}^{n} \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \bar{\sigma}=\bar{K} \cap \bar{L} .
$$

Discretization of the hydrogen equation

$$
S_{\mathrm{h}, K}^{n}\left(\boldsymbol{U}^{n}\right):=|K| \partial_{t}^{n} l_{\mathrm{h}, K}+\sum_{\sigma \in \mathcal{E}_{K}} F_{\mathrm{h}, K, \sigma}\left(\boldsymbol{U}^{n}\right)-|K| Q_{\mathrm{h}, \mathrm{~K}}^{n}=0,
$$

Total flux

$F_{\mathrm{h}, K, \sigma}\left(\boldsymbol{U}^{n}\right):=\beta^{\mathrm{l}} \chi_{\sigma}^{n}\left(\mathfrak{M}^{\mathrm{l}}\right)_{\sigma}^{n}\left(\psi^{\mathrm{l}}\right)_{\sigma}^{n}+\left(\psi^{\mathrm{g}}\right)_{\sigma}^{n}\left(\mathfrak{M}^{\mathrm{g}}\right)_{\sigma}^{n}\left(\rho^{\mathrm{g}}\right)_{\sigma}^{n}+\left(\mathrm{j}_{\mathrm{h}}^{\mathrm{l}}\right)_{\sigma}^{n}, \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \bar{\sigma}=\bar{K} \cap \bar{L}$.

Discretization of the water equation

$$
S_{\mathrm{w}, K}^{n}\left(\boldsymbol{U}^{n}\right):=\left.|K| \partial_{t}^{n}\right|_{\mathrm{w}, K}+\sum_{\sigma \in \mathcal{E}_{K}} F_{\mathrm{w}, K, \sigma}\left(\boldsymbol{U}^{n}\right)-|K| Q_{\mathrm{w}, \mathrm{~K}}^{n}=0,
$$

Total flux

$$
F_{\mathrm{w}, K, \sigma}\left(\boldsymbol{U}^{n}\right):=\rho_{\mathrm{w}}^{1}\left(\mathfrak{M}^{\mathrm{l}}\right)_{\sigma}^{n}\left(\psi^{1}\right)_{\sigma}^{n}-\left(\mathrm{j}_{\mathrm{h}}^{\mathrm{l}}\right)_{\sigma}^{n} \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \bar{\sigma}=\bar{K} \cap \bar{L} .
$$

Discretization of the hydrogen equation

$$
S_{\mathrm{h}, K}^{n}\left(\boldsymbol{U}^{n}\right):=|K| \partial_{t}^{n} l_{\mathrm{h}, K}+\sum_{\sigma \in \mathcal{E}_{K}} F_{\mathrm{h}, K, \sigma}\left(\boldsymbol{U}^{n}\right)-|K| Q_{\mathrm{h}, \mathrm{~K}}^{n}=0,
$$

Total flux

$F_{\mathrm{h}, K, \sigma}\left(\boldsymbol{U}^{n}\right):=\beta^{\mathrm{l}} \chi_{\sigma}^{n}\left(\mathfrak{M}^{\mathrm{l}}\right)_{\sigma}^{n}\left(\psi^{\mathrm{l}}\right)_{\sigma}^{n}+\left(\psi^{\mathrm{g}}\right)_{\sigma}^{n}\left(\mathfrak{M}^{\mathrm{g}}\right)_{\sigma}^{n}\left(\rho^{\mathrm{g}}\right)_{\sigma}^{n}+\left(\mathrm{j}_{\mathrm{h}}^{\mathrm{l}}\right)_{\sigma}^{n}, \quad \sigma \in \mathcal{E}_{K}^{\mathrm{int}} \quad \bar{\sigma}=\bar{K} \cap \bar{L}$.
At each time step, for each components, we obtain the nonlinear system of algebraic equations

$$
S_{c, K}^{n}\left(\boldsymbol{U}_{h}^{n}\right)=0
$$

Discrete complementarity problem

Discretization of the nonlinear complementarity constraints

$$
\mathcal{K}\left(\boldsymbol{U}_{K}^{n}\right):=1-S_{K}^{n} \quad \mathcal{G}\left(\boldsymbol{U}_{K}^{n}\right):=H\left(P_{K}^{n}+P_{\mathrm{cp}}\left(S_{K}^{n}\right)\right)-\beta^{1} \chi_{K}^{n}
$$

The discretization reads

Can we reformulate the complementarity constraints?

Discrete complementarity problem

Discretization of the nonlinear complementarity constraints

$$
\mathcal{K}\left(\boldsymbol{U}_{K}^{n}\right):=1-S_{K}^{n} \quad \mathcal{G}\left(\boldsymbol{U}_{K}^{n}\right):=H\left(P_{K}^{n}+P_{\mathrm{cp}}\left(S_{K}^{n}\right)\right)-\beta^{1} \chi_{K}^{n}
$$

The discretization reads

$$
\begin{aligned}
& S_{c, K}^{n}\left(\boldsymbol{U}_{h}^{n}\right)=0 \\
& \mathcal{K}\left(\boldsymbol{U}_{K}^{n}\right) \geq 0, \quad \mathcal{G}\left(\boldsymbol{U}_{K}^{n}\right) \geq 0, \quad \mathcal{K}\left(\boldsymbol{U}_{K}^{n}\right) \cdot \mathcal{G}\left(\boldsymbol{U}_{K}^{n}\right)=0
\end{aligned}
$$

Can we reformulate the complementarity constraints?

Semismoothness

To reformulate the discrete constraints:

Definition (C-function)

$$
\forall(\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{N_{\mathrm{sp}}} \times \mathbb{R}^{N_{\mathrm{sp}}}, f(\boldsymbol{a}, \boldsymbol{b})=0 \Longleftrightarrow \boldsymbol{a} \geq 0, \boldsymbol{b} \geq 0, \boldsymbol{a} \cdot \boldsymbol{b}=0
$$

min-function: $\min (\boldsymbol{a}, \boldsymbol{b})=0 \Longleftrightarrow \boldsymbol{a} \geq 0, \boldsymbol{b} \geq 0, \boldsymbol{a} \cdot \boldsymbol{b}=0$.
Application: complementarity constraints for the two-phase model

The discretization reads
\square

Semismoothness

To reformulate the discrete constraints:

Definition (C-function)

$$
\forall(\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{N_{\text {sp }}} \times \mathbb{R}^{N_{\text {sp }}}, f(\boldsymbol{a}, \boldsymbol{b})=0 \Longleftrightarrow \boldsymbol{a} \geq 0, \boldsymbol{b} \geq 0, \boldsymbol{a} \cdot \boldsymbol{b}=0
$$

min-function: $\min (\boldsymbol{a}, \boldsymbol{b})=0 \Longleftrightarrow \boldsymbol{a} \geq 0, \boldsymbol{b} \geq 0, \boldsymbol{a} \cdot \boldsymbol{b}=0$.
Application: complementarity constraints for the two-phase model

$$
\underbrace{1-S_{K}^{n}}_{\mathcal{K}\left(S_{K}^{n}\right)} \geq 0 \underbrace{H\left(P_{K}^{n}+P_{\mathrm{cp}}\left(S_{K}^{n}\right)\right)-\beta^{1} \chi_{K}^{n}}_{\mathcal{G}\left(P_{K}^{n}, S_{K}^{n}, \chi_{K}^{n}\right)} \geq 0
$$

The discretization reads

Semismoothness

To reformulate the discrete constraints:

Definition (C-function)

$$
\forall(\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{N_{\text {sp }}} \times \mathbb{R}^{N_{\text {sp }}}, f(\boldsymbol{a}, \boldsymbol{b})=0 \Longleftrightarrow \boldsymbol{a} \geq 0, \boldsymbol{b} \geq 0, \boldsymbol{a} \cdot \boldsymbol{b}=0
$$

min-function: $\min (\boldsymbol{a}, \boldsymbol{b})=0 \Longleftrightarrow \boldsymbol{a} \geq 0, \boldsymbol{b} \geq 0, \boldsymbol{a} \cdot \boldsymbol{b}=0$.
Application: complementarity constraints for the two-phase model

$$
\underbrace{1-S_{K}^{n}}_{\mathcal{K}\left(S_{K}^{n}\right)} \geq 0 \underbrace{H\left(P_{K}^{n}+P_{\mathrm{cp}}\left(S_{K}^{n}\right)\right)-\beta^{\mathrm{l}} \chi_{K}^{n}}_{\mathcal{G}\left(P_{K}^{n}, S_{K}^{n}, \chi_{K}^{n}\right)} \geq 0
$$

The discretization reads

$$
\begin{aligned}
& S_{c, K}^{n}\left(\boldsymbol{U}_{h}^{n}\right)=0 \\
& \min \left(1-S_{K}^{n}, H\left(P_{K}^{n}+P_{\mathrm{cp}}\left(S_{K}^{n}\right)\right)-\beta^{1} \chi_{K}^{n}\right)=0
\end{aligned}
$$

Inexact semismooth Newton method

Semismooth Newton linearization: Given an initial guess $\boldsymbol{U}^{n, 0} \in \mathbb{R}^{3 N_{s p}}$, consider:

$$
\mathbb{A}^{n, k-1} \boldsymbol{U}^{n, k}=\boldsymbol{B}^{n, k-1}
$$

Inexact Semismooth Newton linearization: We use an iterative algebraic solver at the semismooth Newton step $k \geq 1$, starting from an initial guess $\boldsymbol{U}^{n, k, 0}$ generating a sequence $\left(\boldsymbol{U}^{n, k, i}\right)_{i \geq 1}$ satisfying

$$
\mathbb{A}^{n, k-1} \boldsymbol{U}^{n, k, i}=\boldsymbol{B}^{n, k-1}-\boldsymbol{R}^{n, k, i}
$$

Can we estimate the discretization error?

Can we estimate the semismooth linearization error?

Inexact semismooth Newton method

Semismooth Newton linearization: Given an initial guess $\boldsymbol{U}^{n, 0} \in \mathbb{R}^{3 N_{\mathrm{sp}}}$, consider:

$$
\mathbb{A}^{n, k-1} \boldsymbol{U}^{n, k}=\boldsymbol{B}^{n, k-1}
$$

Inexact Semismooth Newton linearization: We use an iterative algebraic solver at the semismooth Newton step $k \geq 1$, starting from an initial guess $\boldsymbol{U}^{n, k, 0}$ generating a sequence $\left(\boldsymbol{U}^{n, k, i}\right)_{i \geq 1}$ satisfying

$$
\mathbb{A}^{n, k-1} \boldsymbol{U}^{n, k, i}=\boldsymbol{B}^{n, k-1}-\boldsymbol{R}^{n, k, i}
$$

Can we estimate the discretization error?
Can we estimate the semismooth linearization error?
Can we estimate the iterative algebraic error?

Outline

(9) Introduction

(2) Model problem and its discretization

(3) A posteriori analysis

(4) Numerical experiments

Weak solution

$$
\begin{aligned}
& X:=L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; H^{1}(\Omega)\right), \\
& Y:=H^{1}\left(\left(0, t_{\mathrm{F}}\right) ; L^{2}(\Omega)\right), \quad \hat{Y}:=H^{1}\left(\left(0, t_{\mathrm{F}}\right) ; L^{\infty}(\Omega)\right), \\
& Z:=\left\{v \in L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; L^{\infty}(\Omega)\right), \quad v \geq 0 \text { on } \Omega \times\left(0, t_{\mathrm{F}}\right)\right\} .
\end{aligned}
$$

Assumption (Weak formulation)

the initial condition holds.

Weak solution

$$
\begin{aligned}
& X:=L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; H^{1}(\Omega)\right), \\
& Y:=H^{1}\left(\left(0, t_{\mathrm{F}}\right) ; L^{2}(\Omega)\right), \quad \hat{Y}:=H^{1}\left(\left(0, t_{\mathrm{F}}\right) ; L^{\infty}(\Omega)\right), \\
& Z:=\left\{v \in L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; L^{\infty}(\Omega)\right), \quad v \geq 0 \text { on } \Omega \times\left(0, t_{\mathrm{F}}\right)\right\} .
\end{aligned}
$$

Assumption (Weak formulation)

$$
\begin{aligned}
& S^{1} \in \widehat{Y}, \quad 1-S^{1} \in Z, \quad I_{\mathrm{w}} \in Y, \quad I_{\mathrm{h}} \in Y, \quad P^{\mathrm{l}} \in X, \quad \chi_{\mathrm{h}}^{1} \in X, \\
& \left(\Phi_{\mathrm{w}}, \Phi_{\mathrm{h}}\right) \in\left[L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; \mathbf{H}(\operatorname{div}, \Omega)\right)\right]^{2}, \\
& \int_{0}^{t_{\mathrm{F}}}\left(\partial_{\mathrm{t}} l_{c}, \varphi\right)_{\Omega}(t) \mathrm{dt}-\int_{0}^{t_{\mathrm{F}}}\left(\Phi_{c}, \nabla \varphi\right)_{\Omega}(t) \mathrm{dt}=\int_{0}^{t_{\mathrm{F}}}\left(Q_{c}, \varphi\right)_{\Omega}(t) \mathrm{dt} \quad \forall \varphi \in X, \\
& \int_{0}^{t_{\mathrm{F}}}\left(\lambda-\left(1-S^{1}\right), H\left[P^{\mathrm{l}}+P_{\mathrm{cp}}\left(S^{1}\right)\right]-\beta^{1} \chi_{\mathrm{h}}^{1}\right)_{\Omega}(t) \mathrm{dt} \geq 0 \quad \forall \lambda \in Z,
\end{aligned}
$$

the initial condition holds.

Weak solution

$$
\begin{aligned}
& X:=L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; H^{1}(\Omega)\right), \\
& Y:=H^{1}\left(\left(0, t_{\mathrm{F}}\right) ; L^{2}(\Omega)\right), \quad \widehat{Y}:=H^{1}\left(\left(0, t_{\mathrm{F}}\right) ; L^{\infty}(\Omega)\right), \\
& Z:=\left\{v \in L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; L^{\infty}(\Omega)\right), \quad v \geq 0 \text { on } \Omega \times\left(0, t_{\mathrm{F}}\right)\right\} .
\end{aligned}
$$

Assumption (Weak formulation)

$$
\begin{aligned}
& S^{1} \in \widehat{Y}, \quad 1-S^{1} \in Z, \quad I_{\mathrm{w}} \in Y, \quad I_{\mathrm{h}} \in Y, \quad P^{\mathrm{l}} \in X, \quad \chi_{\mathrm{h}}^{1} \in X, \\
& \left(\Phi_{\mathrm{w}}, \Phi_{\mathrm{h}}\right) \in\left[L^{2}\left(\left(0, t_{\mathrm{F}}\right) ; \mathbf{H}(\operatorname{div}, \Omega)\right)\right]^{2}, \\
& \int_{0}^{t_{\mathrm{F}}}\left(\partial_{t} l_{c}, \varphi\right)_{\Omega}(t) \mathrm{dt}-\int_{0}^{t_{\mathrm{F}}}\left(\Phi_{c}, \nabla \varphi\right)_{\Omega}(t) \mathrm{dt}=\int_{0}^{t_{\mathrm{F}}}\left(Q_{c}, \varphi\right)_{\Omega}(t) \mathrm{dt} \quad \forall \varphi \in X, \\
& \int_{0}^{t_{\mathrm{F}}}\left(\lambda-\left(1-S^{1}\right), H\left[P^{\mathrm{l}}+P_{\mathrm{cp}}\left(S^{1}\right)\right]-\beta^{1} \chi_{\mathrm{h}}^{1}\right)_{\Omega}(t) \mathrm{dt} \geq 0 \quad \forall \lambda \in Z,
\end{aligned}
$$

the initial condition holds.

Approximate solution

$$
S_{K}^{n, k, i} \in \mathbb{P}_{0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \quad P_{K}^{n, k, i} \in \mathbb{P}_{0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \quad \chi_{K}^{n, k, i} \in \mathbb{P}_{0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)
$$

The discrete liquid pressure and discrete molar fraction do not belong to $H^{1}(\Omega)$ We construct a conforming solution:

$$
\begin{aligned}
& \mathbb{P}_{0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \quad \mathbb{P}_{2}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \quad \mathbb{P}_{2}^{\mathrm{C}}\left(\mathcal{T}_{h}\right) \\
& \text { solving local problems } \\
& \text { in each cell } \\
& \text { Oswald interpolation } \\
& \text { operator }
\end{aligned}
$$

Space-time functions:

$$
\begin{gathered}
S_{h \tau}^{n, k, i} \in Y, \quad P_{h \tau}^{n, k, i} \in \mathbb{P}_{2}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \notin X, \quad \chi_{h \tau}^{n, k, i} \in \mathbb{P}_{2}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \notin X \\
\tilde{P}_{h \tau}^{n, k, i} \in \mathbb{P}_{2}^{\mathrm{c}}\left(\mathcal{T}_{h}\right) \in X, \\
\tilde{\chi}_{h \tau}^{n, k, i} \in \mathbb{P}_{2}^{\mathrm{c}}\left(\mathcal{T}_{h}\right) \in X .
\end{gathered}
$$

Error measure

Dual norm of the residual for the components

$$
\left\|\mathcal{R}_{c}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right)\right\|_{X_{n}^{\prime}}:=\sup _{\substack{\varphi \in X_{n} \\\|\varphi\|_{X_{n}}=1}} \int_{l_{n}}\left(Q_{c}-\partial_{t} t_{c, h \tau}^{n, k, i}, \varphi\right)_{\Omega}(t)+\left(\Phi_{c, h \tau}^{n, k, i}, \nabla \varphi\right)_{\Omega}(t) \mathrm{dt}
$$

Residual for the constraints

$\mathcal{R}_{\mathrm{e}}\left(S_{h \tau}^{n, \ldots}\right.$

Error measure for the nonconformity of the pressure

Error measure for nonconformity of the molar fraction

Error measure

Dual norm of the residual for the components

$$
\left\|\mathcal{R}_{c}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right)\right\|_{X_{n}^{\prime}}:=\sup _{\substack{\varphi \in X_{n} \\\|\varphi\|_{X_{n}}=1}} \int_{I_{n}}\left(Q_{c}-\left.\partial_{t}\right|_{c, h \tau} ^{n, k, i}, \varphi\right)_{\Omega}(t)+\left(\Phi_{c, h \tau}^{n, k, i}, \nabla \varphi\right)_{\Omega}(t) \mathrm{dt}
$$

Residual for the constraints

$\mathcal{R}_{\mathrm{e}}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right):=\int_{I_{n}}\left(1-S_{h \tau}^{n, k, i}, H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right)_{\Omega}(t) \mathrm{dt}$
Error measure for the nonconformity of the pressure

Error measure for nonconformity of the molar fraction

Error measure

Dual norm of the residual for the components

$$
\left\|\mathcal{R}_{c}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right)\right\|_{X_{n}^{\prime}}:=\sup _{\substack{\varphi \in X_{n} \\\|\varphi\|_{X_{n}}=1}} \int_{l_{n}}\left(Q_{c}-\partial_{t} \eta_{c, h \tau}^{n, k, i}, \varphi\right)_{\Omega}(t)+\left(\Phi_{c, h \tau}^{n, k, i}, \nabla \varphi\right)_{\Omega}(t) \mathrm{dt}
$$

Residual for the constraints
$\mathcal{R}_{\mathrm{e}}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right):=\int_{I_{n}}\left(1-S_{h \tau}^{n, k, i}, H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right)_{\Omega}(t) \mathrm{dt}$
Error measure for the nonconformity of the pressure

$$
\mathcal{N}_{P}\left(P_{h \tau}^{n, k, i}\right):=\inf _{\delta_{1} \in X_{n}}\left\{\sum_{c \in\{\mathrm{w}, \mathrm{~h}\}} \int_{I_{n}}\left\|\frac{\mathbf{K}_{\mathrm{r}}^{1}\left(S_{h \tau}^{n, k, i}\right)}{\mu^{1}} \rho_{c}^{1} \boldsymbol{\nabla}\left(P_{h \tau}^{n, k, i}-\delta_{1}\right)(t)\right\|^{2} \mathrm{dt}\right\}^{\frac{1}{2}}
$$

Error measure for nonconformity of the molar fraction

Error measure

Dual norm of the residual for the components

$$
\left\|\mathcal{R}_{c}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right)\right\|_{X_{n}^{\prime}}:=\sup _{\substack{\varphi \in X_{n} \\\|\varphi\|_{X_{n}}=1}} \int_{l_{n}}\left(Q_{c}-\left.\partial_{t}\right|_{c, h \tau} ^{n, k, i}, \varphi\right)_{\Omega}(t)+\left(\Phi_{c, h \tau}^{n, k, i}, \nabla \varphi\right)_{\Omega}(t) \mathrm{dt}
$$

Residual for the constraints
$\mathcal{R}_{\mathrm{e}}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right):=\int_{I_{n}}\left(1-S_{h \tau}^{n, k, i}, H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right)_{\Omega}(t) \mathrm{dt}$
Error measure for the nonconformity of the pressure

$$
\mathcal{N}_{P}\left(P_{h \tau}^{n, k, i}\right):=\inf _{\delta_{1} \in X_{n}}\left\{\sum_{c \in\{\mathrm{w}, \mathrm{~h}\}} \int_{I_{n}} \| \frac{\left.\mathbf{K} \frac{k_{\mathrm{r}}^{1}\left(S_{h \tau}^{n, k, i}\right)}{\mu^{1}} \rho_{c}^{1} \boldsymbol{\nabla}\left(P_{h \tau}^{n, k, i}-\delta_{1}\right)(t) \|^{2} \mathrm{dt}\right\}^{\frac{1}{2}}{ }^{\frac{1}{2}} .{ }^{2} .}{}\right.
$$

Error measure for nonconformity of the molar fraction
$\mathcal{N}_{\chi}\left(\chi_{h \tau}^{n, k, i}\right):=\inf _{\theta \in X_{n}}\left\{\int_{I_{n}}\left\|-\phi M_{\mathrm{h}} S_{h \tau}^{n, k, i}\left(\frac{\rho_{\mathrm{w}}^{1}}{M_{\mathrm{w}}}+\frac{\beta^{1}}{M_{\mathrm{h}}} \chi_{h \tau}^{n, k, i}\right) D_{\mathrm{h}}^{\mathrm{l}} \nabla\left(\chi_{h \tau}^{n, k, i}-\theta\right)(t)\right\|^{2} \mathrm{dt}\right\}^{\frac{1}{2}}$

Definition (Error measure)

$$
\begin{aligned}
\mathcal{N}^{n, k, i} & :=\left\{\sum_{c \in \mathcal{C}}\left\|\mathcal{R}_{c}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right)\right\|_{X_{n}^{\prime}}^{2}\right\}^{\frac{1}{2}}+\left\{\sum_{p \in \mathcal{P}} \mathcal{N}_{p}^{2}+\mathcal{N}_{\chi}^{2}\right\}^{\frac{1}{2}} \\
& +\mathcal{R}_{\mathrm{e}}\left(S_{h \tau}^{n, k, i}, P_{h \tau}^{n, k, i}, \chi_{h \tau}^{n, k, i}\right)
\end{aligned}
$$

Theorem

$$
\mathcal{N}^{n, k, i} \leq \eta_{\mathrm{disc}}^{n, k, i}+\eta_{\mathrm{lin}}^{n, k, i}+\eta_{\mathrm{alg}}^{n, k, i}
$$

How do we construct each error estimators?

Component flux reconstructions

The finite volume scheme provides

$$
\left.|K| \partial_{t}^{n}\right|_{c, K}+\sum_{\sigma \in \mathcal{E}_{K}} F_{c, K, \sigma}\left(\boldsymbol{U}^{n}\right)=|K| Q_{c, K}^{n}
$$

Inexact semismooth linearization

$$
\frac{|K|}{\Delta t}\left[I_{c, K}\left(\boldsymbol{U}^{n, k-1}\right)-I_{c, K}^{n-1}+\mathcal{L}_{c, K}^{n, k, i}\right]+\sum_{\sigma \in \mathcal{E}_{k}^{\text {int }}} \mathcal{F}_{c, K, \sigma}^{n, k, i}-|K| Q_{c, K}^{n}+\boldsymbol{R}_{c, K}^{n, k, i}=0
$$

Linear perturbation in the accumulation

$$
\mathcal{L}_{c, K}^{n, k, i}:=\sum_{K^{\prime} \in \mathcal{T}_{h}} \frac{|K|}{\Delta t} \frac{\partial l_{c, K}^{n}}{\partial \boldsymbol{U}_{K^{\prime}}^{n}}\left(\boldsymbol{U}_{K^{\prime}}^{n, k-1}\right)\left[\boldsymbol{U}_{K^{\prime}}^{n, k, i}-\boldsymbol{U}_{K^{\prime}}^{n, k-1}\right]
$$

Linearized component flux

$$
\mathcal{F}_{c, K, \sigma}^{n, k,,}:=\sum_{K^{\prime} \in \mathcal{T}_{h}} \frac{\partial F_{c, K, \sigma}}{\partial \boldsymbol{U}_{K^{\prime}}^{n}}\left(\boldsymbol{U}^{n, k-1}\right)\left[\boldsymbol{U}_{K^{\prime}}^{n, k, i}-\boldsymbol{U}_{K^{\prime}}^{n, k-1}\right]+F_{c, K, \sigma}\left(\boldsymbol{U}^{n, k-1}\right)
$$

Discretization error flux reconstruction:

$$
\left(\boldsymbol{\Theta}_{c, h, \text { disc }}^{n, k, i} \cdot \boldsymbol{n}_{K}, \boldsymbol{1}\right)_{\sigma}:=F_{c, K, \sigma}\left(\boldsymbol{U}^{n, k, i}\right) \quad \forall K \in \mathcal{T}_{h}
$$

Linearization error flux reconstruction:

$$
\left(\mathbf{\Theta}_{c, h, \text { lin }}^{n, k, i} \cdot \boldsymbol{n}_{K}, 1\right)_{\sigma}:=\mathcal{F}_{c, K, \sigma}^{n, k, i}-F_{c, K, \sigma}\left(\boldsymbol{U}^{n, k, i}\right) \quad \forall K \in \mathcal{T}_{h}
$$

Algebraic error flux reconstruction:

$$
\Theta_{c, h, \text { alg }}^{n, k, i, \nu}:=\Theta_{c, h, \text { disc }}^{n, k, i+\nu}+\Theta_{c, h, \text { lin }}^{n, k, l^{2}}-\left(\Theta_{c, h, \text { disc }}^{n, k, i}+\Theta_{c, h, \text { lin }}^{n, k, i}\right) \quad \forall K \in \mathcal{T}_{h}
$$

Total flux reconstruction:

$$
\boldsymbol{\Theta}_{c, h}^{n, k, i, \nu}:=\boldsymbol{\Theta}_{c, h, \text { disc }}^{n, k,}+\boldsymbol{\Theta}_{c, h, \text { lin }}^{n, k, i}+\Theta_{c, h, \text { alg }}^{n, k, i, \nu} \in \mathbf{H}(\operatorname{div}, \Omega)
$$

Error estimators

- $\partial_{t} I_{c}+\boldsymbol{\nabla} \cdot \boldsymbol{\Theta}_{c, h}^{n, k, i, \nu} \neq Q_{c} \quad \boldsymbol{\Theta}_{c, h}^{n, k, i, \nu} \neq \boldsymbol{\Phi}_{c, h \tau}^{n, k, i}\left(t^{n}\right)$
- $1-S_{h \tau}^{n, k, i} \nsupseteq 0 \quad H\left[P_{h \tau}^{n, k, i}+P_{\text {cp }}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i} \nsupseteq 0$
- $P_{h \tau}^{n, k, i} \notin X \quad \chi_{h \tau}^{n, k, i} \notin X$

Discretization estimator

Error estimators

- $\partial_{t} I_{c}+\boldsymbol{\nabla} \cdot \boldsymbol{\Theta}_{c, h}^{n, k, i, \nu} \neq Q_{c} \quad \boldsymbol{\Theta}_{c, h}^{n, k, i, \nu} \neq \boldsymbol{\Phi}_{c, h \tau}^{n, k, i}\left(t^{n}\right)$
- $1-S_{h \tau}^{n, k, i} \nsupseteq 0 \quad H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i} \nsupseteq 0$
- $P_{h \tau}^{n, k, i} \notin X \quad \chi_{h \tau}^{n, k, i} \notin X$

Discretization estimator

$\eta_{\mathrm{R}, K, c}^{n, k, i, \nu}:=\min \left\{C_{\mathrm{PW}}, \varepsilon^{-\frac{1}{2}}\right\} h_{K}\left\|Q_{c, h}^{n}-\frac{I_{c, K}\left(\boldsymbol{U}^{n, k-1}\right)-I_{c, K}^{n-1}+\mathcal{L}_{c, K}^{n, k, i}}{\tau_{n}}-\nabla \cdot \boldsymbol{\Theta}_{c, h}^{n, k, i}\right\|_{K}$
$\eta_{\mathrm{F}, K, c}^{n, k, i, \nu}(t):=\left\|\boldsymbol{\Theta}_{c, h}^{n, k, i, \nu}-\boldsymbol{\Phi}_{c, h \tau}^{n, k, i}(t)\right\|_{K}$
$\eta_{\mathrm{P}, K, \mathrm{pos}}^{n, k, i}(t):=\left(\left\{1-S_{h \tau}^{n, k, i}\right\}^{+},\left\{H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right\}^{+}\right)_{K}$
$\eta_{\mathrm{NC}, K, 1, c}^{n, k, i}(t):=\left\|\underline{\mathbf{K}_{\mathrm{r}}^{1}\left(S_{h \tau}^{n, k, i}\right)} \rho^{1} \rho_{c}^{1} \boldsymbol{\nabla}\left(P_{h \tau}^{n, k, i}-\tilde{P}_{h \tau}^{n, k, i}\right)(t)\right\|_{K}$
$\eta_{\mathrm{NC}, K, \chi}^{n, k, i}(t):=\left\|-\phi M_{\mathrm{h}} S_{h \tau}^{n, k, i}\left(\frac{\rho_{\mathrm{w}}^{1}}{M_{\mathrm{w}}}+\frac{\beta^{1}}{M_{\mathrm{h}}} \chi_{h \tau}^{n, k, i}\right) D_{\mathrm{h}}^{1} \boldsymbol{\nabla}\left(\chi_{h \tau}^{n, k, i}-\tilde{\chi}_{h \tau}^{n, k, i}\right)(t)\right\|_{K}$

Error estimators

Linearization estimator

$$
\begin{align*}
& \eta_{\operatorname{lin}, K, c}^{n, k, i}:=\left\|\Theta_{c, h, \operatorname{lin}}^{n, k, i}\right\|_{K} \\
& \eta_{\mathrm{NA}, K, c}^{n, k, i}:=\varepsilon^{-\frac{1}{2}} h_{K}\left(\tau_{n}\right)^{-1}\left\|I_{c, K}\left(\boldsymbol{U}^{n, k, i}\right)-I_{c, K}\left(\boldsymbol{U}^{n, k-1}\right)-\mathcal{L}_{c, K}^{n, k, i}\right\|_{K} \\
& \eta_{\mathrm{P}, K, \text { neg }}^{n, k, i}(t):=\left(\left\{1-S_{h \tau}^{n, k, i}\right\}^{-},\left\{H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right\}^{-}\right)_{K} \tag{t}
\end{align*}
$$

Algebraic estimator

Error estimators

Linearization estimator

$$
\begin{align*}
& \eta_{\text {lin }, k, c}^{n, k, i}:=\left\|\Theta_{c, h, l i n}^{n, k}\right\|_{K} \\
& \eta_{\mathrm{NA}, K, c}^{n, k,}:=\varepsilon^{-\frac{1}{2}} h_{K}\left(\tau_{n}\right)^{-1}\left\|I_{c, K}\left(\boldsymbol{U}^{n, k, i}\right)-I_{c, K}\left(\boldsymbol{U}^{n, k-1}\right)-\mathcal{L}_{c, k}^{n, k, i}\right\|_{K} \\
& \eta_{p, k, n \mathrm{eg}}^{n, k, i}(t):=\left(\left\{1-S_{h \tau}^{n, k, i}\right\}^{-},\left\{H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right\}^{-}\right)_{K} \tag{t}
\end{align*}
$$

Algebraic estimator

$$
\begin{aligned}
\eta_{\mathrm{alg}, K, c}^{n, k, i} & :=\left\|\boldsymbol{\Theta}_{c, h, \mathrm{alg}}^{n, k, i, \nu}\right\|_{K} \\
\eta_{\mathrm{rem}, K, c}^{n, k, i, \nu} & :=h_{K}|K|^{-1} \varepsilon^{-\frac{1}{2}}\left\|\boldsymbol{R}_{c, K}^{n, k, i+\nu}\right\|_{K}
\end{aligned}
$$

Error estimators

Linearization estimator

$$
\begin{align*}
& \eta_{\text {lin }, K, c}^{n, k, i}:=\left\|\boldsymbol{\Theta}_{c, h, \text { in }}^{n, k, i}\right\|_{K} \\
& \eta_{\mathrm{NA}, K, c}^{n, k, i}:=\varepsilon^{-\frac{1}{2}} h_{K}\left(\tau_{n}\right)^{-1}\left\|I_{c, K}\left(\boldsymbol{U}^{n, k, i}\right)-I_{c, K}\left(\boldsymbol{U}^{n, k-1}\right)-\mathcal{L}_{c, K}^{n, k, i}\right\|_{K} \\
& \eta_{\mathrm{P}, K, \text { neg }}^{n, k, i}(t):=\left(\left\{1-S_{h \tau}^{n, k, i}\right\}^{-},\left\{H\left[P_{h \tau}^{n, k, i}+P_{\mathrm{cp}}\left(S_{h \tau}^{n, k, i}\right)\right]-\beta^{1} \chi_{h \tau}^{n, k, i}\right\}^{-}\right)_{K} \tag{t}
\end{align*}
$$

Algebraic estimator

$$
\begin{aligned}
\eta_{\mathrm{als}, K, c}^{n, k, i} & :=\left\|\mathbf{\Theta}_{c, h, h, \mathrm{alg}}^{n, k, i, \nu}\right\|_{K} \\
\eta_{\mathrm{rem}, K, c}^{n, k, \nu} & =h_{K}|K|^{-1} \varepsilon^{-\frac{1}{2}}\left\|\boldsymbol{R}_{c, K}^{n, k, i+\nu}\right\|_{K}
\end{aligned}
$$

Remark

$$
\eta_{\mathrm{lin}}^{n, k, i} \rightarrow 0 \quad \eta_{\mathrm{alg}}^{n, k, i} \rightarrow 0 \quad \text { when } \quad k, i \rightarrow \infty
$$

Adaptivity

Algorithm 1 Adaptive inexact semismooth Newton algorithm
Initialization (semismooth Newton): Choose an initial vector $\boldsymbol{U}^{n, 0}:=$ $\mathbf{U}^{n-1} \in \mathbb{R}^{3 N_{\text {sp }}},(k=0)$
Do
$k=k+1$
Compute $\mathbb{A}^{n, k-1} \in \mathbb{R}^{3 N_{\mathrm{sp}}, 3 N_{\mathrm{sp}}}, \quad \boldsymbol{B}^{n, k-1} \in \mathbb{R}^{3 N_{\mathrm{sp}}}$
Consider the system of linear algebraic equations $\mathbb{A}^{n, k-1} \boldsymbol{U}^{n, k}=\boldsymbol{B}^{n, k-1}$
Initialization (linear solver): Define $\boldsymbol{U}^{n, k, 0}=\boldsymbol{U}^{n, k-1},(i=0)$ as
initial guess for the linear solver
Do
$i=i+1$
Compute Residual: $\boldsymbol{R}^{n, k, i}=\boldsymbol{B}^{n, k-1}-\mathbb{A}^{n, k-1} \boldsymbol{U}^{n, k, i}$
Compute estimators
While $\eta_{\text {alg }}^{n, k, i} \geq \gamma_{\text {alg }} \max \left\{\eta_{\text {disc }}^{n, k, i}, \eta_{\text {lin }}^{n, k, i}\right\}$
While $\eta_{\text {lin }}^{n, k, i} \geq \gamma_{\text {lin }} \eta_{\text {disc }}^{n, k, i}$
End

Outline

Introduction

(2) Model problem and its discretization

(3) A posteriori analysis

4 Numerical experiments

(5) Conclusion

Numerical experiments

Ω : one-dimensional core with length $L=200 \mathrm{~m}$.
Semismooth solver: Newton-min
Iterative algebraic solver: GMRES.
Time step: $\Delta t=5000$ years,
Number of cells: $N_{\text {sp }}=1000$,
Final simulation time: $t_{\mathrm{F}}=5 \times 10^{5}$ years.

(3)
(4)

Gas injection

Numerical solution $t=1.05 \times 10^{5}$ years

Violation of the complementarity constraints

Phase transition estimator

Remark

This estimator detects the error caused by the appearance of the gas phase whenever the gas spreads throughout the domain.

Overall performance $\gamma_{\text {in }}=\gamma_{\mathrm{alg}}=10^{-3}$

Accuracy $\gamma_{\text {lin }}=\gamma_{\text {alg }}=10^{-3}$

$t=1.05 \times 10^{5}$ years

Complements: Newton-Fischer-Burmeister

$$
\left[f_{\mathrm{FB}}(\boldsymbol{a}, \boldsymbol{b})\right]_{l}=\sqrt{\boldsymbol{a}_{l}^{2}+\boldsymbol{b}_{l}^{2}}-\left(\boldsymbol{a}_{l}+\boldsymbol{b}_{l}\right) \quad I=1, \ldots, N_{\mathrm{sp}} .
$$

$\left(\gamma_{\text {alg }}, \gamma_{\text {lin }}\right)$	Cumulated Newton-Fischer-Burmeister iterations	number of Cumulated number of GMRES iterations
$\left(10^{-1}, 10^{-1}\right)$	100	428
$\left(10^{-3}, 10^{-3}\right)$	119	751
$\left(10^{-3}, 10^{-6}\right)$	482	2074
$\left(10^{-6}, 10^{-3}\right)$	117	1694
Exact resolution	757	$\mathbf{1 0 0 8 9}$

- Adaptive inexact Newton-Fischer-Burmeister is faster than exact Newton-Fischer-Burmeister. It saves roughly 90% of the iterations
- Adaptive inexact Newton-min is faster than Adaptive inexact Newton-Fischer-Burmeister. It saves roughly 40\% of the iterations.

Outline

(9) Introduction

(2) Model problem and its discretization

(3) A posteriori analysis
(4) Numerical experiments
(5) Conclusion

Conclusion

- We devised for a two-phase flow problem with phase appearance and disappearance an a posteriori error estimate between the exact and approximate solution
- We treat a wide class of semismooth Newton methods
- This estimate distinguishes the error components

Ongoing work:

- Devise space-time adaptivity
- extension to multiphase compositional flow with several phase transitions
I. Ben Gharbia, J. Dabaghi, V. Martin, and M. Vohralík, A posteriori error estimates and adaptive stopping criteria for a compositional two-phase flow with nonlinear complementarity constraints. HAL Preprint 01919067, submitted for publication, 2018

Thank you for your attention!

