Mixing and Pumping by Pairs of Helices in a Viscous Fluid

Amy Buchmann and Lisa J. Fauci, Tulane University Karin Leiderman, Colorado School of Mines Eva M. Strawbridge, James Madison University Longhua Zhao, Case Western Reserve University

SIAM Conference on the Life Sciences (LS18) Minneapolis,August 6-9, 2018

Examples of Low Re swimmers

Reynolds number

Dimensionless parameter - ratio of inertial forces to viscous forces:

Re $=$ Density*Length*Velocity $/$ Viscosity

Man swimming: 10,000
Goldfish: 100 Nematode: 1 Sperm cell: . 01 Bacteria: . 0001

Life at low Reynolds number

Bacterial Carpets

Biophysical Joumal Volume 86 March 2004 1863-1870

Moving Fluid with Bacterial Carpets

Nicholas Darnton, ${ }^{*}$ Linda Turner, ${ }^{*}$ Kenneth Breuer, ${ }^{\dagger}$ and Howard C. Berg*
${ }^{*}$ Rowland Institute at Harvard, Cambridge, Massachusetts 02142 ; and ${ }^{\dagger}$ Division of Engineering, Brown University,
Providence, Rhode Island 02192

Flow structure

Fundamental questions

These bacterial carpets bring up fundamental questions in fluid mechanics regarding the interaction of a collection of helices and finitevolume particles with a Newtonian Stokes fluid.
-How does alignment of helices affect transport?
-How does spatial distribution affect transport?
-How does the presence of the planar wall affect axial thrust and flow features?
-How are finite volume particles transported by bacterial carpet?

Governing equations

Navier-Stokes Equation

$$
\begin{aligned}
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u} \phi\right. & =-\nabla p+\mu \nabla^{2} \mathbf{u} \\
\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

+ boundary conditions
ρ : fluid density, $\quad p$: fluid pressure, μ :dynamic viscosity
The condition for Stokes regime to hold SrRe $=\rho \omega \ell^{2} / \mu \ll 1 \quad R e=\rho \omega \ell^{2} \sin (\kappa) / \mu \ll 1 \quad$ (Typically, $10^{-4}-10^{-3}$)

Fundamental solution: Stokeslet

$$
\begin{aligned}
\mu \nabla^{2} \mathbf{u}+f_{S} & =\nabla p \\
\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

where $f_{S}=8 \pi \mu \boldsymbol{\alpha} \delta(\mathbf{x})$
$\delta(\mathbf{x})$: the 3D Dirac delta-function
$\boldsymbol{\alpha}$: the strength of Stokeslet

$$
\begin{aligned}
& \mathbf{u}_{S}(\mathbf{x} ; \boldsymbol{\alpha})=\frac{\boldsymbol{\alpha}}{|\mathbf{x}|}+\frac{(\boldsymbol{\alpha} \cdot \mathbf{x}) \mathbf{x}}{|\mathbf{x}|^{3}} \\
& p_{S}(\mathbf{x} ; \boldsymbol{\alpha})=-2 \mu \frac{(\boldsymbol{\alpha} \cdot \mathbf{x})}{|\mathbf{x}|^{3}}
\end{aligned}
$$

More singular solutions can be derived from the Stokeslet by differentiation.

Many important models have been created with the fundamental solutions.

Examples:

Analyses of flagellar motions
Beating motion of cilia
Flows between plates and inside cylinders
Flows in periodic geometries
Slender body theories
Difficulties:

- Shapes
- Interaction between objects
- Instabilities near the singularities

Regularized Stokeslet

$$
\begin{aligned}
& \begin{array}{r}
\mu \nabla^{2} \mathbf{u}+\mathbf{f}=\nabla \mathbf{p}, \quad \nabla \cdot \mathbf{u}=\mathbf{0} \\
\qquad \mathbf{f}=\mathbf{f}_{\mathbf{0}} \phi_{\epsilon}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right) \text { the external force } \\
\mathbf{u}=\frac{\mathbf{1}}{\mu}\left[\left(\mathbf{f}_{\mathbf{0}} \cdot \nabla\right) \nabla \mathbf{B}_{\epsilon}-\mathbf{f}_{\mathbf{0}} \mathbf{G}_{\epsilon}\right] \\
\nabla^{2} G_{\epsilon}=\phi_{\epsilon} \text { and } \nabla^{2} B_{\epsilon}=G_{\epsilon}
\end{array}
\end{aligned}
$$

Forces are spread over a small ball -- in the case $\mathrm{x}_{0}=0$

Velocity field

For the choice:

$$
\phi_{e}(\mathbf{x})=\frac{15 \epsilon^{4}}{8 \pi\left(r^{2}+\epsilon^{2}\right)^{7 / 2}}
$$

the resulting velocity field is:

$$
\mathbf{u}(\mathbf{x})=\frac{1}{8 \pi \mu}\left\{\mathbf{f}_{0} \frac{2 \epsilon^{2}+r^{2}}{\left(r^{2}+\epsilon^{2}\right)^{3 / 2}}+\frac{\left(\mathbf{f}_{0} \cdot \mathbf{x}\right) \mathbf{x}}{\left(r^{2}+\epsilon^{2}\right)^{3 / 2}}\right\}
$$

Note:

- $u(x)$ is defined everywhere
$\cdot u(x)$ is an exact solution to the Stokes equations, and is incompressible
-Grid-free numerical method

Superposition of singularity and image system

Modeling Helical Flagellum

$$
U=A F
$$

-Solve for the forces on the points of the helix that will give the prescribed velocity.
-Use these forces to find the fluid velocity at any point

Experiment

Simulation

Normalized thrust as functions of pitch angle

Resistive-force theory black: Lighthill
Regularized Stokeslet Method: purple: with wall green: no wall effect

Fluid particle

No wall

Flux through a filter window

Particle Mixing

Mixing Measure

M. Robinson, P. Cleary, and J. Monaghan, AIChE journal 54, 1987 (2008)

Particle Mixing

$$
\therefore x
$$

Mixing Measure

Line style denotes helical spacing $d=3 a(-), 4 a(--), 5 a(-\cdot), 6 a(\cdots)$
A Buchmann, L Fauci, K Leiderman, E Strawbridge, L Zhao PRE, 2018

Summary and future work

- Develop a model of a collection of (rotating) helical flagella emanating from a planar wall
- Couple the flagella with elastic particles

We examined:

- Mixing and pumping ability of fluid near flagella
- Flow structure around the rotating flagella
- Interesting dynamics induced by multiple rotating helices

Are two helices twice as effective as one helix?
Future work

- Biologically calibrate parameters
- Flow through channels of bacterial carpets
- Lagrangian coherent structure

Acknowledge

IMA supported program, WhAM!
A Research CollaboraTipralnlkryobed for Women in
Applied Mathematics, Dynamical Systems with
Applications to Biology and Medicine,
where discussions of this work first began.

