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Visually similar patterns result from a variety of mathematical models that describe a
number of different physical mechanisms. 2
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Visually similar patterns result from a variety of mathematical models that describe a

number of different physical mechanisms.
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How can one characterize, quantify and compare spatio-temporally complex
patterns?

How can defects in pattern-forming systems be detected and tracked?

How can changes in geometric and topological structure tell us something about
the mechanisms driving the dynamics in the system or the partial differential
equation (PDE) model?

How can models and data be qualitatively compared?




lon Bombardment of a Binary Compound

e A nominally flat binary solid composed of two species, A and B is subjected to
normal incidence ion bombardment

e B is preferentially sputtered

e Coupling between topography and surface composition leads to the formation of

near-hexagonal arrays of nanodots

e Curvature dependent sputter yield causes peaks to grow and troughs to deepen




Bradley-Shipman Equations - Linear Stability Analysis
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Varying Linear Parameter b
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> If b — by is small, a well-ordered hexagonal array of nanodots form

> As b < bt is decreased, the rate at which the amplitude of the Fourier mode
attenuates and the width of the annulus of linearly unstable wave numbers grows

> |t is reasonable to expect hexagonal order will diminish as b is decreased and the

band of active modes broadens




Defects
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| attice Defects:

e Grain boundaries

e Penta-hepta defects

e Perturbed or missing peaks




Some Measurements of Order

> Spectral: Full-width-at-half-max (FWHM) of the first-order Fourier peak

Radial Awsrags of Fou

may not be able to distinguish types of defects

> Geometric: Correlation Length : the region of exponential decay in the
autocorrelation function
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measure has been shown to be stable as order increases

R. Bottger, L. Bischoff, 5. Facsko, and B. Schmidt. Quantitative analysis of the order of bi ion induced dot
patterns on ge. (2012)




Persistent Homology

Persistence Diagram
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Summarizing Persistence Diagrams

For a near hexagonal lattice, the persistence diagram detects defects in the lattice

structure and can be summarized as

> Variance of Hgp bars:
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A Note on Boundaries and Normalization

Challenge:

The most linearly unstable wave number k+ does not depend b, however as the
surface evolves nonlinear effects influence the characteristic wavelength of the
observed pattern (and therefore the spacing of neighboring nanodots)




A Note on Boundaries and Normalization

Challenge:

The most linearly unstable wave number k+ does not depend b, however as the
surface evolves nonlinear effects influence the characteristic wavelength of the
observed pattern (and therefore the spacing of neighboring nanodots)

Strategy:

Retain a fixed number of nanodots in a square and rescale to fit the square
-1,1] x [—1, 1]

This is an essential step for

> tracking order statistics over time

> comparing simulated and experimental data




Dependence of Order on Bifurcation Parameter
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Comparison of Measures over Time
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> Surprisingly, hexagonal order during the initial transient dynamics is much better
for b = 0.90b+ than b= 0.99b

> FWHM does not capture the observation that rapid commitment to a pattern
may hinder long term order




Dependence of Order on Bifurcation Parameter
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Soft Mode

Approximate solution to the nonlinear BS-equations (for b — br < €)

u(x,t) = > (Ajtf) kx4 . c) + G(t)
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> Ap, Az, and A3z are amplitudes of wave vectors that resonate with 0 (the zero

mode) through nonlinearities

> These low frequency modes are called Soft modes (Goldstone modes) and effect

long range order

> Soft modes change net sputter yield, impact defect formation, and play a role in
whether defects resolve over time
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> at long time, this leads to an increase in the average height disparity between
defects and defect-free regions

> 1 has very little influence on the configuration of nanodots until a critical value is

> Increasing 1 increases the effect of the zero mode
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A Few Conclusions

Big Picture:

> Summaries of persistence diagrams characterize order in the evolution of a pattern
> This technique is a practical way of quantifying order and detecting defects
> Studying dynamics through this lens can lead to novel observations

> Summaries for persistence diagrams contained discriminating information

regarding parameter values
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Switching Gears— Checkerboard Patterns

e Elemental Ge is bombarded with noble
gas ions above the recrystalization
temperature

e [ he surface is amorphized by ion
bombardment

e Surface diffusion and mass distribution
cause smoothing

e Ehrlich-Schwoebel (ES) barrier creates
uphill atomic currents and induces an
instability

e Checkerboard pattern emerges, and

coarsens in time
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Pyramidal Structures

surface diffusion
du 2 =
¢ =—-Vu+ gV VU

e Elemental Ge is bombarded with noble
gas ions above the recrystalization
temperature

e T he surface is amorphized by ion
bombardment

e Surface diffusion and mass distribution
cause smoothing

e Ehrlich-Schwoebel (ES) barrier creates
uphill atomic currents and induces an
instability

e Checkerboard pattern emerges, and
coarsens in time

ES surface current

_ E?E(?Eu)i + 6(Oxus + Oy u)

nonlinear current

Ou et al., Phys. Rev. Lett. 2013
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Persistent Homology: Sublevel Set Filtration

e (Construct a cubical complex on the sublevel set of the data at each threshold

e T[rack the connected components and holes present of sublevel sets as the height
threshold increases

dealh

Exirth
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A Few Notes on Cubical Complexes

e Hp (v) measures the prominence of valleys or pits
e H; (u) measures the prominence of peaks
Careful!

e When computing homology, we are concerned with
connectedness — should we think of 4-neighbor or

8-neighbor connectedness?

e (Both) we need a discrete version of the Jordan
Curve Theorem, so build the cubical complex on

4-neighbor connections.

e ook to 8 neighbors for considering whether islands
are connected components

e so Hp and H; are summarizing structures in
slightly different ways —

e exploit a duality between Hg of sublevel sets and
H; of superlevel sets and use Hg of the surface

and of the inverted surface to build a statistic
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