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Fixed Variables 10°
» Temperature (Isothermal)
: 10
» Gas Pressure (Passive Gas) =
-
o 107
Primary Variable Options § -
 Aqueous Saturation z
 Aqueous Pressure § 10°
_ _ 104
Simple Relaxation Scheme
DPL — Update to Aqueous Pressure 10°
PG(2,N) — Gas Pressure
PL(2,N) — Aqueous Pressure 102 PR SR S ST S S S S
PAE — Air Entry Pressure 000 020 040 060 080 1.00

IF( PG(2,N)-PL(2,N)-PAE.GT.ZERO .AND.
PG(2,N)-PL(2,N)-PAE-DPL.LT.ZERO ) DPL = 6.D-1*DPL
PL(2,N) = PL(2,N) + DPL
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\%/ Low-Pressure Air-Water Systems:
Pacific Phase Conditions and Transitions

Northwest »
mroweusoore - Phase Conditions
1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Aqueous Air Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Gas Pressure
+ Salt Mass — Total Brine Mass Fraction

3. Saturated with Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. FuIIy Unsaturated
Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* Air Mass — Gas Pressure
+ Salt Mass — Salt Mass .
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STOMP
Subsurface Transport Over Multiple Phases
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critical

Phase Conditions ‘
1. Saturated without Trapped Gas D48 [1rereeeserer AN pot
* Energy — Temperature .
»  Water Mass — Aqueous Pressure
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated ice
* Energy — Temperature P " RO | Sos i R I et
«  Water Mass — Beta Factor atm :

 Salt Mass — Total Brine Mass Fraction

3. Saturated with Trapped Gas :
* Energy — Temperature (VRVVCHN
*  Water Mass — Trapped Gas Saturation /"

The large drawing
is not too scale. A

+  Salt Mass — Total Brine Mass Fraction vapor ‘i‘«’ife‘f,;fzg"ﬁ‘%ﬁv”f
4. Fully Unsaturated R : I

«  Energy — Temperature Y 700 374

»  Water Mass — Water Vapor Partial Pressure 0 0\01 T °C

 Salt Mass — Salt Mass
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NATIONAL LABORATORY Phase COndltlonS PGA - air partlal pressure

PGW — water partial pressure
PG — gas pressure

PL — aqueous pressure

SG — gas saturation

SL — aqueous saturation

1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Aqueous Air Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Gas Pregsure . PCAP = PG — PL
+ Salt Mass — Total Brine Mass Fraction SL = FUNC( PCAP )
3. Saturated with Trapped Gas SG = 1.D4+0 — ST
* Energy — Temperature IF( SG > 1.D-3 ) NPHAZ = 2
* Water Mass — Aqueous Pressure
* Air Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* Air Mass — Gas Pressure
+ Salt Mass — Salt Mass

PGA FUNC( XMLA )
PGW FUNC( T,PCAP )
PG = PGW + PGA
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\gg/ Low-Pressure Air-Water Systems:
Pacific Phase Conditions and Transitions - P

Northwest »
mroweusoore - Phase Conditions
1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Aqueous Air Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

PG — gas pressure
PL — aqueous pressure
ASTL — apparent aqueous sat.

2. Partially Saturated SGT — trapped gas sat.
 Energy — Temperature
* Water Mass — Aqueous Pressure PCAP = PG — PL
* Air Mass — Gas Pressure ASL = FUNC( PCAP )
+ Salt Mass — Total Brine Mass Fraction IF( ASL == 0 && SGT == )
3. Saturated with Trapped Gas NPHAZ = 1

 Energy — Temperature

* Water Mass — Aqueous Pressure

* Air Mass — Trapped Gas Saturation

+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* Air Mass — Gas Pressure
+ Salt Mass — Salt Mass
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\gg/ Low-Pressure Air-Water Systems:
Pacific Phase Conditions and Transitions - P

Northwest »
mroweusoore - Phase Conditions
1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Aqueous Air Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

PG — gas pressure
PL — aqueous pressure
ASTL — apparent aqueous sat.

2. Partially Saturated SGT — trapped gas sat.
 Energy — Temperature
*  Water Mass — Aqueous Pressure PCAP = PG — PL
* Air Mass — Gas Pressure ASL = FUNC( PCAP )
+ Salt Mass — Total Brine Mass Fraction IF( ASL == 0 && SGT > 0 )
3. Saturated with Trapped Gas NPHAZ = 3

 Energy — Temperature

* Water Mass — Aqueous Pressure

* Air Mass — Trapped Gas Saturation

+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* Air Mass — Gas Pressure
+ Salt Mass — Salt Mass



\%/ Low-Pressure Air-Water Systems:
Pacific Phase Conditions and Transitions
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Uu — silt or clay loam

LU — loam-silt or clay

Tt — clay or peat
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Low-Pressure Air-Water Systems:
Phase Conditions and Transitions

Phase Conditions
1. Saturated without Trapped Gas

 Energy — Temperature

* Water Mass — Aqueous Pressure

* Air Mass — Aqueous Air Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Gas Pressure
+ Salt Mass — Total Brine Mass Fraction

3. Saturated with Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
* Air Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated

 Energy — Temperature

*  Water Mass — Water Vapor Partial Pressure

 Air Mass — Gas Pressure
e Salt Mass — Salt Mass

STOMP
Subsurface Transport Over Multiple Phases

s v o

PG — gas pressure

PL — aqueous pressure

ASL — apparent aqueous sat.
SL — aqueous saturation
SGT — trapped gas sat.

PCAP = PG — PL
ASL = FUNC( PCAP )

SL = ASL - SGT

IF( SL == 0 ) NPHAZ = 4
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« Direct Solution Path Between Primary and Secondary Variables
« Equation Residual is Sensitive to Primary Variable
« Think Creatively ... y; - brine mass fraction of total salt
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1. Saturated without Trapped Gas
 Energy — Temperature
«  Water Mass — Aqueous Pressure 10,000
« (CO, Mass — Aqueous CO, Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated 1,000 i critical
 Energy — Temperature
* Water Mass — Aqueous Pressure o _
+ CO; Mass — Gas Pressure 2 gloo
« Salt Mass — Total Brine Mass Fraction §eo

3. Saturated with Trapped Gas

 Energy — Temperature 10 -
* Water Mass — Aqueous Pressure ® triple point
« CO, Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction 1
4. Fully Unsaturated 200 250 300 350 400
«  Energy — Temperature temﬁe('z)t“re

*  Water Mass — Water Vapor Partial Pressure
* CO, Mass — Gas Pressure
+ Salt Mass — Salt Mass .
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% High-Pressure CO,-Brine Systems:

Pacific Phase Conditions and Transitions —
Northwest N |
Phase Conditions PGA — CO, partial pressure

PGW — water partial pressure
PG — gas pressure

PL — aqueous pressure

SG — gas saturation

SL — aqueous saturation

1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
« CO, Mass — Aqueous CO, Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated
 Energy — Temperature
* Water Mass — Aqueous Pressure
+ CO,; Mass — Gas Prgssure . PCAP = PG — PL
+ Salt Mass — Total Brine Mass Fraction SL = FUNC( PCAP )
3. Saturated with Trapped Gas SG = 1.D4+0 — ST
* Energy — Temperature IF( SG > 1.D-3 ) NPHAZ = 2
* Water Mass — Aqueous Pressure
« CO, Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* CO, Mass — Gas Pressure
+ Salt Mass — Salt Mass

PGA FUNC( XMLA )
PGW FUNC( T,PCAP )
PG = PGW + PGA
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\gg/ High-Pressure CO,-Brine Systems:
Pacific Phase Conditions and Transitions N

Northwest »
mroweusoore - Phase Conditions
1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
« CO, Mass — Aqueous CO2 Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

PG — gas pressure
PL — aqueous pressure
ASTL — apparent aqueous sat.

2. Partially Saturated SGT — trapped gas sat.
 Energy — Temperature
* Water Mass — Aqueous Pressure PCAP = PG — PL
« CO,; Mass — Gas Pressure ASL = FUNC( PCAP )
+ Salt Mass — Total Brine Mass Fraction IF( ASL == 0 && SGT == )
3. Saturated with Trapped Gas NPHAZ = 1

 Energy — Temperature

* Water Mass — Aqueous Pressure

« CO, Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* CO, Mass — Gas Pressure
+ Salt Mass — Salt Mass
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\gg/ High-Pressure CO,-Brine Systems:
Pacific Phase Conditions and Transitions N

Northwest »
mroweusoore - Phase Conditions
1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
« CO, Mass — Aqueous CO2 Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

PG — gas pressure
PL — aqueous pressure
ASTL — apparent aqueous sat.

2. Partially Saturated SGT — trapped gas sat.
 Energy — Temperature
*  Water Mass — Aqueous Pressure PCAP = PG — PL
+ CO, Mass — Gas Pressure ASL = FUNC( PCAP )
+ Salt Mass — Total Brine Mass Fraction IF( ASL == 0 && SGT > 0 )
3. Saturated with Trapped Gas NPHAZ = 3

 Energy — Temperature

* Water Mass — Aqueous Pressure

« CO, Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* CO, Mass — Gas Pressure
+ Salt Mass — Salt Mass
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LU — loam-silt or clay

Tt — clay or peat
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\gg/ High-Pressure CO,-Brine Systems:
Pacific Phase Conditions and Transitions N

Northwest »
mroweusoore - Phase Conditions
1. Saturated without Trapped Gas
 Energy — Temperature
* Water Mass — Aqueous Pressure
« CO, Mass — Aqueous CO, Mole Fraction
+ Salt Mass — Total Brine Mass Fraction

2. Partially Saturated

 Energy — Temperature

* Water Mass — Aqueous Pressure PG — gas pressure

« CO, Mass — Gas Pressure PL — aqueous pressure

+ Salt Mass — Total Brine Mass Fraction ASL — apparent aqueous sat.
3. Saturated with Trapped Gas SL — aqueous saturation

«  Energy — Temperature SGT — trapped gas sat.

* Water Mass — Aqueous Pressure
« CO, Mass — Trapped Gas Saturation
+ Salt Mass — Total Brine Mass Fraction

4. Fully Unsaturated
 Energy — Temperature
*  Water Mass — Water Vapor Partial Pressure
* CO, Mass — Gas Pressure
+ Salt Mass — Salt Mass

PCAP = PG — PL
ASL = FUNC( PCAP )

SL = ASL - SGT

IF( SL == 0 ) NPHAZ = 4
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Table 1. STOMP-SEQ primary variable switching scheme.

Phase Energy Water Mass CO; Mass Salt Mass 2 i
Condition Equation Equation Equation Equation | I
L T P, w§ yi ; ;
G T 14 vW Pg TTfl 154 r
Gsc T I8 VW Rg TT‘fsl 1 Supercritical CO, I
N T RV P, Ty o I
o . -
LG T P, B yf f - Subcritical CO, Liquid O, Critical Point (30.978°C, 7.3773 MPa) F
LGt T P, Sgt y ; 2 10 ] -
LGsc T P, P, v3 g ] [Nt / [Gsq) i
N i
LGtsc T P, Sgt v ] NG| L
LN T P, P, v 2 NGt -
LNt T P (1 Snt Y. 5‘ I~ - Subcritical CO, Gas L
NG T pY B Tin ]
LNG 5 | 8 = f
T P{’ B yf 0 [ L L L IR L L L L
LNGt T Sgt + Sne B yi 0 20 40 60 80 100
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 Mobile phases
* Aqueous (water, CO,, salt)
* Nonaqueous liquid (CO,, CHy4, n-petroleum components)
 Gas (CO,, CHy, n-petroleum components)

o Phase equi“bria from CubiC equation Of State Zeoy: 0.010.09 0.17 0.25 0.33 0.41 0.49 0.57 0.65 0.73 0.81 0.89 0.97 #\Y
* Peng-Robinson ‘
» Soave-Redlich-Kwong

* Phase properties
» Cubic equation of state
» Corresponding state method
« Empirical correlations

Gas Pressure, MPa: 12.8 13.2 13.6 14 144148 152 156 16 16.4



STOMP
Subsurface Transport Over Multiple Phases

\g/ Three-Phase System for Enhanced
Pacific Qil Recovery: Phase Equilibria

Northwest

NATIONAL LABORATORY

~;

558 . ==y o3

Gas B mole :
> 1 -
Vi Yo o YN) ] :
81 Cricondenbar Point N
. Liquid Critical Point -
g 6 g
T,P 3 :
Feed, 1 mole ) g ] r
> > 1 Cricondentherm Point |
(21, Zgy weer Z) 2 4_1 Two-Phase Region -
] Gas L
2 -
] Bubble-Point Branch \
(1'[3) mole ] Dew-Point Branch
> ]
Qil X1y X9j veeny X T . T ! T T T T T T T T T T
(1 %) N 160 180 200 220 240 260 280

Temperature, K

Source: Pedersen, K. S., and P. L. Christensen. 2007. Phase Behavior
of Petroleum Reservoir Fluids. CRC Taylor & Francis, New York.
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Gas B mole 25x10° R b
> 1 co,/CH,/N,
v —04/00/06
e oo ) —04/02/04
1 04/04/02 |
e ——04/06/00 |
] —06/00/04 |
—06/02/02
—06/04/00
¢ 151 —08/00/02
Feed, 1 mole T,P % ] ——08/02/00 |
> 2
(21, Zgy weer Z) g
by |
10 L
5_ | -
(1-B) mole ]
>
QOil (XI’XZ’"“’XN) -V ]

230 240 250 260 270 280 290

Temperature, K

Source: Pedersen, K. S., and P. L. Christensen. 2007. Phase Behavior
of Petroleum Reservoir Fluids. CRC Taylor & Francis, New York.
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Gas B mole
>
(Y15 Y2 wves YN)
Feed, 1 mole T,P
>
(21, Zgy weer Z)
(1-B) mole
>
Oll (Xlr X9y veers XN)

Source: Pedersen, K. S., and P. L. Christensen. 2007. Phase Behavior
of Petroleum Reservoir Fluids. CRC Taylor & Francis, New York.
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ELSEVIER

Phase equilibrium calculations. What is easy and
what is difficult?

Michael L. Michelsen

Show more

https://doi.org/10.1016/S0098-1354(09)80006-9 Get rights and content

Abstract

Calculation of phase equilibrium for a mixture of given composition requires
specification of two process variables, typically chosen among the following:
Temperature, pressure, vapour fraction, enthalpy, entropy or volume. The
difficulties associated with solving the equilibrium equations are strongly related to
the chosen selection of these process variables. The aim of the present paper is to
outline the characteristics associated with the different types of specification in
order to provide guidelines for efficient and robust solution algorithms.
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AAAAAAAAAAAAAAAAAA Primary Variables e
- State #1 (aqueous saturated)

8= 0.10
b=0.666

CcO CH i salt .
T,P,o 2, m""4 m, o for i=3,n o
Co—maaft(ﬁ;ﬁfnus wet)
-50 E %‘:){mixed wet)
= ;;{OJ:(nm:aqueou‘.fi-liquidI wet)

-100

 State #2 (aqueous + nonaqueous) o e e e

T, Py Pog 20 2 204 2) @ for i=3,n-1

« State #3 (nonaqueous saturated)

CO, CH, .
T, mWater, Pog Xt 2, x4 mS for i =3.n—1
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ﬁ%‘ﬁ'tfrlﬁvest Oil Recovery — First Contact
C,
Dew point line
Critical tie line
Two-phase A — Composition of Qil

avea Critical mixture

B — Composition of Gas

Single phase Fixed temperature & pressure

region

Bubble point line

N

Composition path
between A and B

Cuo Mole % C,y

Source: Pedersen, K. S., and P. L. Christensen. 2007. Phase Behavior
of Petroleum Reservoir Fluids. CRC Taylor & Francis, New York.
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7
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A — Composition of Qll

B — Composition of Gas

Critical tie line

Injection gas

New oil composition

Fixed temperature & pressure Co
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Injection gas

Critical tie line

Increasing pressure
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— CH,
— CO;,
_N2

400

300 N, Hydrate

Nz (g) + H20 CO, Hydrate

Pressure, bar

200
CO, () + H,0

100

CH, Hydrate

CH4 (g) ‘2 Hgo

CO; (g) + H-0
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CH, Mole Fraction of Formers (Hydrate}

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Hydrate Density, kg/m®

916 936 956 976 996 1016 1036 1056 1076

0.8 0.8

0.6 0.6

0.4 0.4}

CH, Mole Fraction of Formers {Hydrate Gas)
CH, Mole Fraction of Formers {Hydrate Gas)

0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
CO, Mole Fraction of Formers (Hydrate Gas) CO, Mole Fraction of Formers {Hydrate Gas)
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Phase Condition #10 Series
Energy T
Water Mass P
Mobile CO, Mass PVCO2
Mobile CH, Mass pta
Mobile N, Mass p)
Hydrate CO, Mass Mo
Hydrate CH, Mass M,fH‘*
Hydrate N, Mass M,’:'Z

Salt

Temperature
Pressure

CO, Vapor Pressure
CH, Vapor Pressure

N, Vapor Pressure
Hydrate CO, Mass
Hydrate CO, Mass
Hydrate CO, Mass

Subsurface Transport Over Multiple Phases g

-

2
oy

sp = 0.0,s, +s5 =0.0,sp +5;, = 1.0

Brine Mass Fraction of Total Salt
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Phase Condition #20 Series
Energy T

Water Mass Sp + S;
Mobile CO, Mass 2202 or P
Mobile CH, Mass z,le‘* or P
Mobile N, Mass z>2 or P
Hydrate CO, Mass M,fOZ
Hydrate CH, Mass M,fH‘*
Hydrate N, Mass M,’:'Z

Salt

Vi

sp = 0.0,s, + 55 > 0.0,sp+5; <1.0

Temperature
Aqueous + lce Saturation

CO, Mole Fraction or Pressure
CH, Mole Fraction or Pressure
N, Mole Fraction or Pressure
Hydrate CO, Mass

Hydrate CO, Mass

Hydrate CO, Mass
Brine Mass Fraction of Total Salt
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Phase Condition #30 Series
Energy T

Water Mass Sp + S;
Mobile CO, Mass 2202 or P
Mobile CH, Mass z,le‘* or P
Mobile N, Mass z>2 or P
Hydrate CO, Mass ’(;‘02 or Sp
Hydrate CH, Mass ,fH‘* or Sp,
Hydrate N, Mass 1/),’2’2 or Sp

Salt

Vi

sp > 0.0,5, + 55 > 0.0, +5; < 1.0

Temperature
Aqueous + lce Saturation

CO, Mole Fraction or Pressure
CH, Mole Fraction or Pressure
N, Mole Fraction or Pressure
CO, Mole Fraction of Former
CH, Mole Fraction of Former

N, Mole Fraction of Former
Brine Mass Fraction of Total Salt
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Phase Condition #40 Series
Energy T

Water Mass P

Mobile CO, Mass PVCO2
Mobile CH, Mass pta
Mobile N, Mass p)
Hydrate CO, Mass ’(;‘02 OT Sp
Hydrate CH, Mass ,fH‘* or Sp,
Hydrate N, Mass 1/),’2’2 or Sp

Salt

sp > 0.0,s, + s, = 0.0,sp +5; < 1.0

Temperature
Pressure

CO, Vapor Pressure

CH, Vapor Pressure

N, Vapor Pressure

CO, Mole Fraction of Former
CH, Mole Fraction of Former

N, Mole Fraction of Former
Brine Mass Fraction of Total Salt
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Phase Condition #10 Series s, = 0.0,s, +s; = 0.0,s, + 5; =

1.0
Assume a hydrate phase exists (common approach!)

Compute a hydrate equilibrium pressure P? = func|T,y 2,5, 2]

Compute the vapor pressure of formers P, = P,,CO2 + PVCH”‘ + PvN2

Compute the total gas pressure F; = PvCO2 + PvCH4 + P,,N2 + PUHZO
if (P, > P;?) then hydrate forms
* if (Py > Py + Peptry) then hydrate forms

Phase Condition #30 Series s, > 0.0,s, +s;, > 0.0,s, +5; < 1.0
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Pacific Takeaways / Conclusions

Northwest

* Primary variable switching is an
effective scheme for modeling
phase transitions

» Select primary variables that yield
direct calculations of all secondary
variables

* Phase equilibria calculations are
harder than they appear

» Discontinuities slow convergence

« Be creative in defining primary
variables and phase conditions
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