Vortex structure in p-wave superconductors

Lia Bronsard

McMaster University

Results obtained with: S. Alama, X. Lamy

47 ▶

- Let $\Omega \subset \mathbb{R}^n$ be a bounded, smooth domain. Here we take n = 2.
- For order parameter (or wave function) η ∈ H¹(Ω; C^k), we define the Ginzburg–Landau energy

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

- Let $\Omega \subset \mathbb{R}^n$ be a bounded, smooth domain. Here we take n = 2.
- For order parameter (or wave function) η ∈ H¹(Ω; C^k), we define the Ginzburg–Landau energy

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

e_{pot}(η) is the potential: we assume *e_{pot}(η)* ≥ 0, and *e_{pot}(η)* = 0 on a manifold Σ ⊂ ℂ^k.

2/1

- Let $\Omega \subset \mathbb{R}^n$ be a bounded, smooth domain. Here we take n = 2.
- For order parameter (or wave function) η ∈ H¹(Ω; C^k), we define the Ginzburg–Landau energy

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

- *e_{pot}(η)* is the potential: we assume *e_{pot}(η)* ≥ 0, and *e_{pot}(η)* = 0 on a manifold Σ ⊂ ℂ^k.
- κ is the Ginzburg–Landau parameter (large.)

- Let $\Omega \subset \mathbb{R}^n$ be a bounded, smooth domain. Here we take n = 2.
- For order parameter (or wave function) η ∈ H¹(Ω; C^k), we define the Ginzburg–Landau energy

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

- *e_{pot}(η)* is the potential: we assume *e_{pot}(η)* ≥ 0, and *e_{pot}(η)* = 0 on a manifold Σ ⊂ ℂ^k.
- κ is the Ginzburg–Landau parameter (large.)
- Expect minimizing η to take values in Σ , while minimizing the gradient energy.
- For topological reasons, this may not be possible, so in the limit $\kappa \to \infty$ singularities are formed: Vortices!

(人間) とうき くうとう う

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(
abla \eta) + e_{pot}(\eta)
ight\} dx$$

Used to describe Sr-Ru superconductors with ferromagnetic "spin triplet" interactions. [Sigrist, Heeb-Agterberg, Ashby-Kallin]

$$e_{kin}(\eta) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}).$$

< 47 ▶ <

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + e_{pot}(\eta) \right\} dx$$

Used to describe Sr-Ru superconductors with ferromagnetic "spin triplet" interactions. [Sigrist, Heeb-Agterberg, Ashby-Kallin]

$$e_{kin}(\eta) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}).$$

- $\eta = (\eta_-, \eta_+) \in H^1(\Omega; \mathbb{C}^2)$
- Operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x i\partial_y$.
- Anisotropy parameter $u \in (-1,1)$

< 回 ト < 三 ト < 三 ト

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + e_{pot}(\eta) \right\} dx$$

Used to describe Sr-Ru superconductors with ferromagnetic "spin triplet" interactions. [Sigrist, Heeb-Agterberg, Ashby-Kallin]

$$e_{kin}(\eta) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}).$$

•
$$\eta = (\eta_-, \eta_+) \in H^1(\Omega; \mathbb{C}^2)$$

- Operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x i\partial_y$.
- Anisotropy parameter $u \in (-1,1)$
- Coefficients determined by Mean-Field limit of microscopic p-wave model.

- 4 週 ト - 4 三 ト - 4 三 ト

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(
abla \eta) + e_{pot}(\eta)
ight\} dx$$

Used to describe Sr-Ru superconductors with ferromagnetic "spin triplet" interactions. [Sigrist, Heeb-Agterberg, Ashby-Kallin]

$$e_{kin}(\eta) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}).$$

•
$$\eta = (\eta_-, \eta_+) \in H^1(\Omega; \mathbb{C}^2)$$

- Operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x i\partial_y$.
- Anisotropy parameter $u \in (-1,1)$
- Coefficients determined by Mean-Field limit of microscopic p-wave model.
- $e_{kin}(\eta) \ge 0$ semi-definite quadratic form.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(
abla \eta) + e_{pot}(\eta)
ight\} dx$$

Used to describe Sr-Ru superconductors with ferromagnetic "spin triplet" interactions. [Sigrist, Heeb-Agterberg, Ashby-Kallin]

$$e_{kin}(\eta) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}).$$

•
$$\eta = (\eta_-, \eta_+) \in H^1(\Omega; \mathbb{C}^2)$$

- Operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x i\partial_y$.
- Anisotropy parameter $u \in (-1,1)$
- Coefficients determined by Mean-Field limit of microscopic p-wave model.
- $e_{kin}(\eta) \ge 0$ semi-definite quadratic form.
- Note: broken charge symmetry $\eta \nleftrightarrow \overline{\eta}$!

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

$$e_{kin}(\eta, A) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}) - \frac{1}{2}$$

• Recall, anisotropy parameter $u \in (-1,1)$

< 47 ▶

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

$$e_{kin}(\eta, A) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}) - \frac{1}{2}$$

- Recall, anisotropy parameter $u \in (-1,1)$
- $\bullet \ e_{pot}(\eta)=0 \quad \iff \quad (|\eta_-|,|\eta_+|)=(1,0) \text{ or } (0,1).$

3

< 🗇 🕨 <

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

$$e_{kin}(\eta, A) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}) - \frac{1}{2}$$

- Recall, anisotropy parameter $u \in (-1,1)$
- $e_{pot}(\eta) = 0 \iff (|\eta_-|, |\eta_+|) = (1, 0) \text{ or } (0, 1).$
- $\Sigma = (\mathbb{S}^1 \times 0) \cup (0 \times \mathbb{S}^1),$ so expect:

A 🖓 h

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

$$e_{kin}(\eta, A) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}) - \frac{1}{2}$$

- Recall, anisotropy parameter $u \in (-1,1)$
- $e_{pot}(\eta) = 0 \quad \iff \quad (|\eta_-|, |\eta_+|) = (1, 0) \text{ or } (0, 1).$

•
$$\Sigma = (\mathbb{S}^1 \times 0) \cup (0 \times \mathbb{S}^1)$$
, so expect:

- ▶ $|\eta_{-}(x)| \simeq 1$ "dominant" component, with quantized degree;
- ▶ $|\eta_+(x)| \simeq 0$ "admixed" component, with little control on singularities
- (or vice-versa)

過す イヨト イヨト

$$E(\eta) = \int_{\Omega} \left\{ e_{kin}(\nabla \eta) + \kappa^2 e_{pot}(\eta) \right\} dx$$

$$e_{kin}(\eta, A) = |\nabla \eta_{+}|^{2} + |\nabla \eta_{-}|^{2} + (\Pi_{-}\eta_{+} \cdot \Pi_{+}\eta_{-}) + \nu (\Pi_{+}\eta_{+} \cdot \Pi_{-}\eta_{-})$$

$$e_{pot}(\eta) = \frac{1}{2}(|\eta_{+}|^{2} - 1)^{2} + \frac{1}{2}(|\eta_{-}|^{2} - 1)^{2} + 2|\eta_{+}|^{2}|\eta_{-}|^{2} + \nu(\eta_{+}^{2}) \cdot (\eta_{-}^{2}) - \frac{1}{2}$$

- Recall, anisotropy parameter $u \in (-1,1)$
- $e_{pot}(\eta) = 0 \quad \iff \quad (|\eta_-|, |\eta_+|) = (1, 0) \text{ or } (0, 1).$

•
$$\Sigma = (\mathbb{S}^1 \times 0) \cup (0 \times \mathbb{S}^1)$$
, so expect:

- ▶ $|\eta_{-}(x)| \simeq 1$ "dominant" component, with quantized degree;
- ▶ $|\eta_+(x)| \simeq 0$ "admixed" component, with little control on singularities
- (or vice-versa)
- Seek entire solutions on R² with prescribed degree in "dominant" η₋, to describe the core structure of vortices.

Euler-Lagrange equations

Recall operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x - i\partial_y$. Critical points of *E* satisfy:

 $\begin{aligned} & 2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2} \right) \\ & 2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2} \right) \end{aligned}$

5/1

Euler–Lagrange equations

Recall operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x - i\partial_y$. Critical points of *E* satisfy:

 $2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2})\right)$ $2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2})\right)$

• A system of four real-valued semilinear PDE, coupled in 2nd order terms.

Euler–Lagrange equations

Recall operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x - i\partial_y$. Critical points of *E* satisfy:

 $2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2})\right)$ $2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2})\right)$

- A system of four real-valued semilinear PDE, coupled in 2nd order terms.
- Impose Σ -valued boundary data, either on $\partial\Omega$ for $\Omega \subset \mathbb{R}^2$ bounded domain, or as $|x| \to \infty$ if $\Omega = \mathbb{R}^2$.

Euler–Lagrange equations

Recall operators $\Pi_+ = \partial_x + i\partial_y$, $\Pi_- = -\Pi^*_+ = \partial_x - i\partial_y$. Critical points of *E* satisfy:

 $2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2})\right)$ $2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2})\right)$

- A system of four real-valued semilinear PDE, coupled in 2nd order terms.
- Impose Σ -valued boundary data, either on $\partial\Omega$ for $\Omega \subset \mathbb{R}^2$ bounded domain, or as $|x| \to \infty$ if $\Omega = \mathbb{R}^2$.
- Note: we do not expect half-trivial solutions, $\eta = (\eta_+, 0)$ or $(0, \eta_-)$!!

< 回 ト < 三 ト < 三 ト

Euler–Lagrange equations, II

Recall

$$2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2})\right)$$

$$2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2})\right)$$

- The system is elliptic, in the sense of Legendre-Hadamard.
 - Write $\eta = (u_1, u_2, u_3, u_4)$, real vector.
 - ▶ The left-hand side may be written in operator form:

$$(\mathcal{L}\eta)_{lpha} = \sum_{i,j=1}^{2} \sum_{lpha,eta=1}^{4} A^{ij}_{lphaeta} \partial_i \partial_j u^{eta}$$

ith $\sum_{i,j,lpha,eta} A^{ij}_{lphaeta} \xi_i \xi_j \tau^{lpha} \tau^{eta} \ge c |\xi|^2 |\tau|^2, \quad \forall \xi \in \mathbb{R}^2, \tau \in \mathbb{R}^4.$

w

Euler–Lagrange equations, II

Recall

$$2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2})\right)$$

$$2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2})\right)$$

- The system is elliptic, in the sense of Legendre-Hadamard.
 - Write $\eta = (u_1, u_2, u_3, u_4)$, real vector.
 - ▶ The left-hand side may be written in operator form:

$$(\mathcal{L}\eta)_{lpha} = \sum_{i,j=1}^{2} \sum_{lpha,eta=1}^{4} A^{ij}_{lphaeta} \partial_i \partial_j u^{eta}$$

ith $\sum_{i,j,lpha,eta} A^{ij}_{lphaeta} \xi_i \xi_j \tau^{lpha} \tau^{eta} \ge c |\xi|^2 |\tau|^2, \quad \forall \xi \in \mathbb{R}^2, \tau \in \mathbb{R}^4.$

w

Euler–Lagrange equations, II

Recall

$$2\Delta\eta_{-} + [\Pi_{-}^{2} + \nu\Pi_{+}^{2}]\eta_{+} = \kappa^{2} \left(2\eta_{-}(|\eta_{-}|^{2} - 1) + 4\eta_{-}|\eta_{+}|^{2} + 2\nu\overline{\eta}_{-}\eta_{+}^{2})\right)$$

$$2\Delta\eta_{+} + [\Pi_{+}^{2} + \nu\Pi_{-}^{2}]\eta_{-} = \kappa^{2} \left(2\eta_{+}(|\eta_{+}|^{2} - 1) + 4\eta_{+}|\eta_{-}|^{2} + 2\nu\overline{\eta}_{+}\eta_{-}^{2})\right)$$

- The system is elliptic, in the sense of Legendre-Hadamard.
 - Write $\eta = (u_1, u_2, u_3, u_4)$, real vector.
 - The left-hand side may be written in operator form:

$$(\mathcal{L}\eta)_{\alpha} = \sum_{i,j=1}^{2} \sum_{\alpha,\beta=1}^{4} A^{ij}_{\alpha\beta} \partial_{i} \partial_{j} u^{\beta}$$

with
$$\sum_{i,j,\alpha,\beta} A^{ij}_{\alpha\beta} \xi_{i} \xi_{j} \tau^{\alpha} \tau^{\beta} \ge c |\xi|^{2} |\tau|^{2}, \quad \forall \xi \in \mathbb{R}^{2}, \tau \in \mathbb{R}^{4}.$$

w

• If solutions exist, they are smooth.

Recall: $e_{kin}(\eta, A) = |\nabla \eta_+|^2 + |\nabla \eta_-|^2 + (\Pi_- \eta_+ \cdot \Pi_+ \eta_-) + \nu (\Pi_+ \eta_+ \cdot \Pi_- \eta_-)$

Let $\Omega \subset \mathbb{R}^2$ bounded domain, $g_{\pm} \in H^{1/2}(\partial \Omega)$ given, and $W := \{\eta \in H^1(\Omega; \mathbb{C}^2) : \eta_{\pm} = g_{\pm} \text{ on } \partial \Omega\}.$

Recall: $e_{kin}(\eta, A) = |\nabla \eta_+|^2 + |\nabla \eta_-|^2 + (\Pi_- \eta_+ \cdot \Pi_+ \eta_-) + \nu (\Pi_+ \eta_+ \cdot \Pi_- \eta_-)$

Let $\Omega \subset \mathbb{R}^2$ bounded domain, $g_{\pm} \in H^{1/2}(\partial \Omega)$ given, and $W := \{\eta \in H^1(\Omega; \mathbb{C}^2) : \eta_{\pm} = g_{\pm} \text{ on } \partial \Omega\}.$

• $e_{kin}(\eta) \ge 0$, but *NOT* coercive;

7/1

Recall: $e_{kin}(\eta, A) = |\nabla \eta_+|^2 + |\nabla \eta_-|^2 + (\Pi_- \eta_+ \cdot \Pi_+ \eta_-) + \nu (\Pi_+ \eta_+ \cdot \Pi_- \eta_-)$

Let $\Omega \subset \mathbb{R}^2$ bounded domain, $g_{\pm} \in H^{1/2}(\partial \Omega)$ given, and $W := \{\eta \in H^1(\Omega; \mathbb{C}^2) : \eta_{\pm} = g_{\pm} \text{ on } \partial \Omega\}.$

• $e_{kin}(\eta) \ge 0$, but *NOT* coercive;

• $e_{kin}(\eta) = 0 \iff \eta \in Z := \{(c_+ + \alpha z, c_- - \alpha \overline{z}) : c_\pm, \alpha \in \mathbb{C}\};$

Recall: $e_{kin}(\eta, A) = |\nabla \eta_+|^2 + |\nabla \eta_-|^2 + (\Pi_- \eta_+ \cdot \Pi_+ \eta_-) + \nu (\Pi_+ \eta_+ \cdot \Pi_- \eta_-)$

Let $\Omega \subset \mathbb{R}^2$ bounded domain, $g_{\pm} \in H^{1/2}(\partial \Omega)$ given, and $W := \{\eta \in H^1(\Omega; \mathbb{C}^2) : \eta_{\pm} = g_{\pm} \text{ on } \partial \Omega\}.$

• $e_{kin}(\eta) \ge 0$, but *NOT* coercive;

• $e_{kin}(\eta) = 0 \iff \eta \in Z := \{(c_+ + \alpha z, c_- - \alpha \overline{z}) : c_\pm, \alpha \in \mathbb{C}\};$

Theorem

Assume $W \cap Z = \emptyset$. Then there exists a minimizer of $E(\eta)$ in W, which is a smooth solution of the EL system with the given Dirichlet BC.

In particular, in $\Omega = B_R$, \exists solutions with any given degrees $n_{\pm} \in \mathbb{Z}$, $\eta_{\pm} = \alpha_{\pm} e^{in_{\pm}\theta}$ on ∂B_R ,

provided $\alpha_{-} \neq -\alpha_{+}$ or one of $n_{\pm} \neq \pm 1$, eg, for Σ_{Ξ} valued BC! is a

Are there symmetric vortex solutons, $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, in $\Omega = \mathbb{R}^2$?

3

▲ 同 ▶ → 三 ▶

Are there symmetric vortex solutons, $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, in $\Omega = \mathbb{R}^2$?

• Define an \mathbb{S}^1 action on η_{\pm} : for $\omega = e^{i\alpha} \in \mathbb{S}^1$, $(\omega \cdot \eta_{\pm})(z) = \omega^{n_{\pm}} \eta(\omega^{-1}z)$

- 31

Are there symmetric vortex solutons, $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, in $\Omega = \mathbb{R}^2$?

• Define an \mathbb{S}^1 action on η_{\pm} : for $\omega = e^{i\alpha} \in \mathbb{S}^1$, $(\omega \cdot \eta_{\pm})(z) = \omega^{n_{\pm}} \eta(\omega^{-1}z)$

• Calculate the effect on the energy:

$$\begin{split} E(\eta) - E(\omega \cdot \eta) &= \int \left[(1 - \omega^{n_{+} - n_{-} - 2}) \Pi_{-} \eta_{+} \right] \cdot (\Pi_{+} \eta_{-}) \\ &+ \nu \int \left[(1 - \omega^{n_{+} - n_{-} + 2}) \Pi_{+} \eta_{+} \right] \cdot (\Pi_{-} \eta_{-}) \\ &+ \kappa^{2} \nu \int \left[(1 - \omega^{2(n_{+} - n_{-})}) \eta_{+}^{2} \right] \cdot (\eta_{-}^{2}). \end{split}$$

Are there symmetric vortex solutons, $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, in $\Omega = \mathbb{R}^2$?

• Define an \mathbb{S}^1 action on η_{\pm} : for $\omega = e^{i\alpha} \in \mathbb{S}^1$, $(\omega \cdot \eta_{\pm})(z) = \omega^{n_{\pm}} \eta(\omega^{-1}z)$

• Calculate the effect on the energy:

$$E(\eta) - E(\omega \cdot \eta) = \int \left[(1 - \omega^{n_+ - n_- - 2}) \Pi_- \eta_+ \right] \cdot (\Pi_+ \eta_-)$$
$$+ \nu \int \left[(1 - \omega^{n_+ - n_- + 2}) \Pi_+ \eta_+ \right] \cdot (\Pi_- \eta_-)$$
$$+ \kappa^2 \nu \int \left[(1 - \omega^{2(n_+ - n_-)}) \eta_+^2 \right] \cdot (\eta_-^2).$$

• Energy invariant iff $\nu = 0$ and $n_+ = n_- + 2$.

When $\nu \neq 0$, solutions are expected to have square symmetry.

FIG. 2. Contour plot of GL calculations for the absolute values of the dominant η_- (a) and the admixed η_+ component (b) for the parameters κ =2.5 and ν =-0.3. The contours are 0.99, 0.975,... for (a) and 0.03, 0.045,...0.225 for (b).

Heeb-Agterberg, Phys Rev B59, 1999

Lia Bronsard (McMaster)

<ロ> (日) (日) (日) (日) (日)

So we assume $\nu = 0$, $n_+ = n_- + 2$, with ansatz:

 $\eta_{\pm}=f_{\pm}(r)e^{in_{\pm} heta}$, with $f_{+}(r)
ightarrow 0$, $f_{-}(r)
ightarrow 1$, $r
ightarrow \infty$.

- 31

< 回 > < 三 > < 三 >

So we assume $\nu = 0$, $n_+ = n_- + 2$, with ansatz:

 $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, with $f_{+}(r) \rightarrow 0$, $f_{-}(r) \rightarrow 1$, $r \rightarrow \infty$.

• As in classical G-L, energy of nontrivial entire solutions diverges.

A 🖓 h

So we assume $\nu = 0$, $n_+ = n_- + 2$, with ansatz: $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, with $f_+(r) \rightarrow 0$, $f_-(r) \rightarrow 1$, $r \rightarrow \infty$.

- As in classical G-L, energy of nontrivial entire solutions diverges.
- Solve in B_R (existence with Σ -valued Dirichlet BC!), and let $R \to \infty$.

$$\begin{split} \Delta_r f_- &- \frac{n_-^2}{r^2} f_- + \frac{1}{2} \left(\Delta_r f_+ + \frac{n_-(n_-+2)}{r^2} f_+ + 2 \frac{n_-+1}{r} f'_+ \right) \\ &= f_-(|f_-|^2 - 1) + 2 f_- f_+^2, \\ \Delta_r f_+ &- \frac{(n_-+2)^2}{r^2} f_+ + \frac{1}{2} \left(\Delta_r f_- + \frac{n_-(n_-+2)}{r^2} f_- - 2 \frac{n_-+1}{r} f'_- \right) \\ &= f_+(|f_+|^2 - 1) + 2 f_+ f_-^2, \\ f_-(R) &= 1, \ f_+(R) = 0. \end{split}$$

A 🖓 h

So we assume $\nu = 0$, $n_+ = n_- + 2$, with ansatz: $\eta_{\pm} = f_{\pm}(r)e^{in_{\pm}\theta}$, with $f_+(r) \rightarrow 0$, $f_-(r) \rightarrow 1$, $r \rightarrow \infty$.

- As in classical G-L, energy of nontrivial entire solutions diverges.
- Solve in B_R (existence with Σ -valued Dirichlet BC!), and let $R \to \infty$.

$$\begin{split} \Delta_r f_- &- \frac{n_-^2}{r^2} f_- + \frac{1}{2} \left(\Delta_r f_+ + \frac{n_-(n_-+2)}{r^2} f_+ + 2 \frac{n_-+1}{r} f'_+ \right) \\ &= f_-(|f_-|^2 - 1) + 2 f_- f_+^2, \\ \Delta_r f_+ &- \frac{(n_-+2)^2}{r^2} f_+ + \frac{1}{2} \left(\Delta_r f_- + \frac{n_-(n_-+2)}{r^2} f_- - 2 \frac{n_-+1}{r} f'_- \right) \\ &= f_+(|f_+|^2 - 1) + 2 f_+ f_-^2, \\ f_-(R) &= 1, \ f_+(R) = 0. \end{split}$$

• Crucial estimate via Pohozaev identity; available when $n_{-} = -1, n_{+} = +1$ only.

Case $\nu = 0$ and $n_- = -1$, $n_+ = +1$

Degrees $n_{-} = -1$, $n_{+} = +1$ are most relevant for the physics (expected stability) and make the equations much more tractable:

$$\Delta_r f_- - \frac{1}{r^2} f_- + \frac{1}{2} \left(\Delta_r f_+ - \frac{1}{r^2} f_+ \right) = f_-(|f_-|^2 - 1) + 2f_- f_+^2,$$

$$\Delta_r f_+ - \frac{1}{r^2} f_+ + \frac{1}{2} \left(\Delta_r f_- - \frac{1}{r^2} f_- \right) = f_+(|f_+|^2 - 1) + 2f_+ f_-^2,$$

with $f_{-}(r) \rightarrow 1$, $f_{+}(r) \rightarrow 0$ as $r \rightarrow \infty$.

< 回 ト < 三 ト < 三 ト

There exists a smooth entire equivariant solution $\eta = (\eta_-, \eta_+) = (f_-(r)e^{-i\theta}, f_+(r)e^{+i\theta})$ with $f_-(r) \to 1$ and $f_+(r) \to 0$ as $r \to \infty$. Moreover, as $r \to +\infty$,

$$f_{-} = 1 - \frac{1}{2r^2} - \frac{7}{4r^4} + O(r^{-6}), \qquad f_{+} = -\frac{1}{2r^2} - \frac{13}{4r^4} + O(r^{-6}).$$
 (1)

There exists a smooth entire equivariant solution $\eta = (\eta_-, \eta_+) = (f_-(r)e^{-i\theta}, f_+(r)e^{+i\theta})$ with $f_-(r) \to 1$ and $f_+(r) \to 0$ as $r \to \infty$. Moreover, as $r \to +\infty$,

$$f_{-} = 1 - \frac{1}{2r^2} - \frac{7}{4r^4} + O(r^{-6}), \qquad f_{+} = -\frac{1}{2r^2} - \frac{13}{4r^4} + O(r^{-6}).$$
 (1)

• Uniqueness, and existence for $n_{-} \neq -1$ are open problems.

There exists a smooth entire equivariant solution $\eta = (\eta_-, \eta_+) = (f_-(r)e^{-i\theta}, f_+(r)e^{+i\theta})$ with $f_-(r) \to 1$ and $f_+(r) \to 0$ as $r \to \infty$. Moreover, as $r \to +\infty$,

$$f_{-} = 1 - \frac{1}{2r^2} - \frac{7}{4r^4} + O(r^{-6}), \qquad f_{+} = -\frac{1}{2r^2} - \frac{13}{4r^4} + O(r^{-6}).$$
 (1)

- Uniqueness, and existence for $n_{-} \neq -1$ are open problems.
- For classical G-L, $u = f(r)e^{in\theta} \iff |u|^2 = f(r)$, $0 \le f(r) < 1$, and $f^2(r)$ gives a relative density of superconducting electrons.

12 / 1

There exists a smooth entire equivariant solution $\eta = (\eta_-, \eta_+) = (f_-(r)e^{-i\theta}, f_+(r)e^{+i\theta})$ with $f_-(r) \to 1$ and $f_+(r) \to 0$ as $r \to \infty$. Moreover, as $r \to +\infty$,

$$f_{-} = 1 - \frac{1}{2r^2} - \frac{7}{4r^4} + O(r^{-6}), \qquad f_{+} = -\frac{1}{2r^2} - \frac{13}{4r^4} + O(r^{-6}).$$
 (1)

- Uniqueness, and existence for $n_{-} \neq -1$ are open problems.
- For classical G-L, $u = f(r)e^{in\theta} \iff |u|^2 = f(r)$, $0 \le f(r) < 1$, and $f^2(r)$ gives a relative density of superconducting electrons.
- Asymptotics shows $f_-(r) \rightarrow 1^-$, $0 \ge f_+(r) \rightarrow 0^-$; is it true that $0 \le f_-(r) = |\eta_-|, 0 \ge f_+(r) = -|\eta_+|$ for all r?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

There exists a smooth entire equivariant solution $\eta = (\eta_-, \eta_+) = (f_-(r)e^{-i\theta}, f_+(r)e^{+i\theta})$ with $f_-(r) \to 1$ and $f_+(r) \to 0$ as $r \to \infty$. Moreover, as $r \to +\infty$,

$$f_{-} = 1 - \frac{1}{2r^2} - \frac{7}{4r^4} + O(r^{-6}), \qquad f_{+} = -\frac{1}{2r^2} - \frac{13}{4r^4} + O(r^{-6}).$$
 (1)

- Uniqueness, and existence for $n_{-} \neq -1$ are open problems.
- For classical G-L, $u = f(r)e^{in\theta} \iff |u|^2 = f(r)$, $0 \le f(r) < 1$, and $f^2(r)$ gives a relative density of superconducting electrons.
- Asymptotics shows $f_-(r) \rightarrow 1^-$, $0 \ge f_+(r) \rightarrow 0^-$; is it true that $0 \le f_-(r) = |\eta_-|$, $0 \ge f_+(r) = -|\eta_+|$ for all r?
- If so, then we can show $|\eta_-|^2 + |\eta_+|^2 \le 1$, as is expected on physical grounds. But this does not follow from standard variational or maximum principle arguments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

We introduce a parameter $t \in [0, 1]$, to connect our system to G-L. (See also Han-Lin, Kim-Phillips)

For equivariant solutions $\eta_{-} = f_{-}(r)e^{-i\theta}$, $\eta_{+} = f_{+}(r)e^{i\theta}$, E-L system:

$$\Delta_r f_- - \frac{1}{r^2} f_- + \frac{t}{2} (\Delta_r f_+ - \frac{1}{r^2} f_+) = f_-(f_-^2 - 1) + 2f_- f_+^2,$$

$$\Delta_r f_+ - \frac{1}{r^2} f_+ + \frac{t}{2} (\Delta_r f_- - \frac{1}{r^2} f_-) = f_+(f_+^2 - 1) + 2f_+ f_-^2.$$

< 回 ト < 三 ト < 三 ト

- 3

We introduce a parameter $t \in [0, 1]$, to connect our system to G-L. (See also Han-Lin, Kim-Phillips)

For equivariant solutions $\eta_{-} = f_{-}(r)e^{-i\theta}$, $\eta_{+} = f_{+}(r)e^{i\theta}$, E-L system:

$$\Delta_r f_- - \frac{1}{r^2} f_- + \frac{t}{2} (\Delta_r f_+ - \frac{1}{r^2} f_+) = f_-(f_-^2 - 1) + 2f_- f_+^2,$$

$$\Delta_r f_+ - \frac{1}{r^2} f_+ + \frac{t}{2} (\Delta_r f_- - \frac{1}{r^2} f_-) = f_+(f_+^2 - 1) + 2f_+ f_-^2.$$

• For t = 0, $f^0 = (f^0_{-}(r), f^0_{+}(r)) = (f^{GL}(r), 0)$ is a solution.

< 回 ト < 三 ト < 三 ト

We introduce a parameter $t \in [0, 1]$, to connect our system to G-L. (See also Han-Lin, Kim-Phillips)

For equivariant solutions $\eta_{-} = f_{-}(r)e^{-i\theta}$, $\eta_{+} = f_{+}(r)e^{i\theta}$, E-L system:

$$\Delta_r f_- - \frac{1}{r^2} f_- + \frac{t}{2} (\Delta_r f_+ - \frac{1}{r^2} f_+) = f_-(f_-^2 - 1) + 2f_- f_+^2,$$

$$\Delta_r f_+ - \frac{1}{r^2} f_+ + \frac{t}{2} (\Delta_r f_- - \frac{1}{r^2} f_-) = f_+(f_+^2 - 1) + 2f_+ f_-^2.$$

- For t = 0, $f^0 = (f^0_-(r), f^0_+(r)) = (f^{GL}(r), 0)$ is a solution.
- At t = 0, f^0 is nondegenerate (linearly stable) [Uses Mironescu '95]

We introduce a parameter $t \in [0, 1]$, to connect our system to G-L. (See also Han–Lin, Kim–Phillips)

For equivariant solutions $\eta_{-} = f_{-}(r)e^{-i\theta}$, $\eta_{+} = f_{+}(r)e^{i\theta}$, E-L system:

$$\Delta_r f_- - \frac{1}{r^2} f_- + \frac{t}{2} (\Delta_r f_+ - \frac{1}{r^2} f_+) = f_- (f_-^2 - 1) + 2f_- f_+^2,$$

$$\Delta_r f_+ - \frac{1}{r^2} f_+ + \frac{t}{2} (\Delta_r f_- - \frac{1}{r^2} f_-) = f_+ (f_+^2 - 1) + 2f_+ f_-^2.$$

- For t = 0, $f^0 = (f^0_-(r), f^0_+(r)) = (f^{GL}(r), 0)$ is a solution.
- At t = 0, f^0 is nondegenerate (linearly stable) [Uses Mironescu '95]
- Implicit Function Theorem plus sharp asymptotic estimates yields result:

There exists t_0 such that for all $t \in (0, t_0)$ there exist smooth bounded solutions (f_-^t, f_+^t) such that:

(a)
$$f_{-}^{t}(0) = 0 = f_{+}^{t}(0);$$

(b) $f_{-}^{t}(r) \to 1, f_{+}^{t}(r) \to 0 \text{ as } r \to \infty;$
(c) $0 < f_{-}^{t}(r) < 1, f_{+}^{t}(r) < 0 \text{ for all } r \in (0,\infty);$
(d) As $r \to \infty$,

$$f_{-}^{t} = 1 - \frac{1}{2r^{2}} - \frac{5t^{2} + 9}{8r^{4}} + O(r^{-6}), \qquad f_{+}^{t} = t \left[-\frac{1}{2r^{2}} - \frac{13}{4r^{4}} + O(r^{-6}) \right].$$

- 3

(日) (周) (三) (三)

There exists t_0 such that for all $t \in (0, t_0)$ there exist smooth bounded solutions (f_-^t, f_+^t) such that:

(a)
$$f_{-}^{t}(0) = 0 = f_{+}^{t}(0);$$

(b) $f_{-}^{t}(r) \to 1, f_{+}^{t}(r) \to 0 \text{ as } r \to \infty;$
(c) $0 < f_{-}^{t}(r) < 1, f_{+}^{t}(r) < 0 \text{ for all } r \in (0, \infty);$
(d) $As \ r \to \infty,$
 $f_{-}^{t} = 1 - \frac{1}{2r^{2}} - \frac{5t^{2} + 9}{8r^{4}} + O(r^{-6}), \qquad f_{+}^{t} = t \left[-\frac{1}{2r^{2}} - \frac{13}{4r^{4}} + O(r^{-6}) \right].$

We use the sharp asymptotic expansion (d) to guarantee that $f_{\pm}(r)$ have fixed sign!

< 回 ト < 三 ト < 三 ト

- 31

14 / 1

There exists t_0 such that for all $t \in (0, t_0)$ there exist smooth bounded solutions (f_-^t, f_+^t) such that:

(a)
$$f_{-}^{t}(0) = 0 = f_{+}^{t}(0);$$

(b) $f_{-}^{t}(r) \to 1, f_{+}^{t}(r) \to 0 \text{ as } r \to \infty;$
(c) $0 < f_{-}^{t}(r) < 1, f_{+}^{t}(r) < 0 \text{ for all } r \in (0,\infty);$
(d) As $r \to \infty$,
 $f_{-}^{t} = 1 - \frac{1}{2r^{2}} - \frac{5t^{2} + 9}{8r^{4}} + O(r^{-6}), \qquad f_{+}^{t} = t \left[-\frac{1}{2r^{2}} - \frac{13}{4r^{4}} + O(r^{-6}) \right].$

We use the sharp asymptotic expansion (d) to guarantee that $f_{\pm}(r)$ have fixed sign!

Many, many questions remain open!

< 同 ト く ヨ ト く ヨ ト