Reconstructing Rotor Dynamics from Sparse Noisy Data

Daniel Gurevich, Roman Grigoriev

Rotor mapping for ablation therapy

Model of atrial fibrillation

Karma model

Phase singularities

Wu et al. (2004)

Interpreting noisy data

Phase singularities & level sets

Topological description

• Complexity of the excitation pattern can be quantified by the number of phase singularities (PS)

Marcotte & Grigoriev (2017)

Topological description

- Complexity of the excitation pattern can be quantified by the number of phase singularities (PS)
- Each PS lies at the intersection of two level sets (e.g., $\partial_t u = 0$ and $\partial_t^2 u = 0$).

Marcotte & Grigoriev (2017)

Topological description

- Complexity of the excitation pattern can be quantified by the number of phase singularities (PS)
- Each PS lies at the intersection of two level sets (e.g., $\partial_t u = 0$ and $\partial_t^2 u = 0$).

- Each PS has a topological charge: $q = \operatorname{sign}(\hat{\mathbf{z}} \cdot \nabla u \times \nabla \partial_t u) = \pm 1$
- The net topological charge is conserved*: $\sum q_i = 0$
- Phase singularities can only be created/destroyed in pairs*

Practical implementation

Karma model

Step 1: Gaussian smoothing

Step 2: robust "time derivative"

Step 3: coarse level sets

Step 4: signed distance function

Step 5: smooth level sets

Dealing with sparsity

Effect of noise and sparsity

Gurevich & Grigoriev (2019)

Effect of noise and sparsity

	256x256	64x64	32x32	16x16	8x8
η=0	0.995	0.995	0.994	0.955	0.255
η=0.1	0.993	0.994	0.992	0.957	0.308
η=0.3	0.988	0.988	0.985	0.954	0.357
η=1	0.990	0.974	0.849	0.695	

Accuracy of PS detection (fraction matched)

	256x256	64x64	32x32	16x16	8x8
η=0	1.1	1.1	1.4	4.8	9.9
η=0.1	1.2	1.3	1.6	4.6	9.6
η=0.3	1.7	1.8	2.3	4.9	9.4
η=1	2.3	3.1	4.5	6.9	

Precision of PS detection (in fine grid units)

Ventricular fibrillation (pig)

More spirals? (Fenton-Karma model)

Sparse spiral (Barkley model)

Summary

- Developed, implemented, and validated novel topological analysis of excitable systems
- This method is far more robust than existing techniques and directly applicable to numerical models and optical mapping recordings
- Can find and track many nonstationary PSs simultaneously and handle challenging edge cases
- The new approach promises to provide new insight into dynamical mechanisms underlying fibrillation

Rotor mapping for ablation therapy

Phase singularities & level sets

Level sets of phase

Level sets of voltage

Thank you!