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Blind Deconvolution

y = g ∗ z+w

We observe a function y which consists of the convolution of
two unknown functions, the blurring function g and the signal of
interest z, plus noise w



Blind deconvolution

Given: y = g ∗ z, where “∗” denotes convolution.

“Ordinary” deconvolution: y and g are known, we compute
z from y and g via “deconvolution”.

Blind deconvolution: Both g and z are unknown.
Need to recover g and z from y .

Solvability: The blind deconvolution problem is not solvable
without further assumptions on g and z.

Note: If z = g, then this is the famous phase retrieval problem



Blind deconvolution is ubiquitous

Blind deconvolution problems appear in numerous scientific
disciplines and applications:

Astronomy
Neuroscience
Spectroscopy
Audio processing
Image processing
Wireless communications



The Internet of Things and 5G

Internet of Things (IoT):
Billions of everyday objects have
network connectivity, allowing them
to send and receive data.

The current wireless system (4G)
will not be able to handle the IoT.

The next generation system, 5G,
will be designed to run the IoT.

5G needs radical departure from
current communication procedures



The headache with the overhead

For each real-time connected device a significant control
signaling overhead is necessary to allow for swift channel
estimation, equalization and demodulation.

In the IoT most devices will transmit very few data and will do
so only sporadically at random time instances
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IoT, sporadic traffic and random access

In the IoT we can no longer afford to send signals with the
usual control signaling overhead.

Is it possible to design communication systems where the
transmitters essentially just send overhead-free signals and the
receiver can still extract the information?

Note: Need to do this in a multi-user environment.

A. Paulraj:

“Channel estimation is one of the key problems for 5G
– it is the elephant in the room."

If channel estimation is such a problem, maybe we can
eliminate it altogether and thus also reduce signal overhead?



Blind deconvolution meets blind demixing

Suppose we are given r sensors, each one sends a function zi
(e.g. a signal or image) to a receiver common to all r sensors.
During transmission each zi gets convolved with a function gi .
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Blind deconvolution meets blind demixing

The receiver measures the
signal y , consisting of the sum
of all these convolved signals:

y =
r∑

i=1

zi ∗ gi + w ,

where w is additive noise.
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Assume the receiver does neither know the zi nor the gi .
When and with which algorithm is it possible to recover all
individual signals zi and gi from one received signal y?



Toward an efficient solver for blind deconvolution

Can we construct a blind deconvolution algorithm that is:
numerically efficient,
robust against noise,
and comes with rigorous convergence guarantees?

We want to have it all: Rapid, Robust, Reliable!

Want a general framework that does not only work for images,
but for other types of applications as well!



Blind Deconvolution

For concreteness, assume we are given

y = g ∗ z + w ,

where y ,g, z,w ∈ CL and only y is known.
Without any further assumptions this problem is ill-posed.
Essentially any arbitrary function z can serve as solution.

Assumption: g as well as z belong to known subspaces:
There exist known matrices A ∈ CL×K and B ∈ CL×N such that

g = Bh, z = Ax ,

for some unknown functions h ∈ CN , x ∈ CK .
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Subspace assumption

Subspace assumption provides flexibility and concreteness.
Choice of subspaces depends on specific application.

Subspace for blurring function:
For example, the blurring function g is often a low-pass filter
and all we need to know about g is an upper bound on its
bandwidth. This is sufficient to determine (or estimate) B.
In communications all we need to know is the so-called
maximum delay spread

Subspace for signal of interest:
In communications, A corresponds to the encoding matrix or
spreading matrix, which is often known at base station.
In image processing this is more challenging.



Blind deconvolution and nonconvex optimization

Using basic Fourier analysis (and assuming circulant
convolution and abusing notation) we can rewrite the blind
deconvolution problem as:

y = diag(Bh)Ax + w ,

We can attempt to solve for x and h via

min
(h,x)

‖diag(Bh)Ax−y‖2.

This is a non-linear least squares problem.

Denote
F (h, x) := ‖diag(Bh)Ax − y‖2.



Lifting and blind deconvolution

Following recent ideas from phase retrieval, (PhaseLift,
[Candes-Strohmer-Voroninski, 2013]), we define the
matrix-valued linear operator A via

A : A(Z ) = {b∗l Zal}Ll=1

where bl denotes the l-th column of B∗ and al is the l-th column
of A∗. Hence:

y = A(h0x∗0 ),

and F (h, x) = ‖diag(Bh)Ax − y‖2 becomes

F (h, x) = ‖A(hx∗)− y‖2.



Blind deconvolution as semidefinite program

Using this lifting trick, Ahmed, Recht, and Romberg [2014]
proposed to relax the blind deconvolution problem into

min
Z
‖Z‖∗ subject to ‖A(Z )− y‖2 ≤ η,

where ‖Z‖∗ is the sum of the singular values of Z .
Thus, similar to phase retrieval, blind deconvolution can be
recast as semidefinite program.
Ahmed, Recht, and Romberg showed that under certain
conditions the solution to this problem gives Z = h0x∗0 .

Advantage: Convex optimization, nice theoretical framework.

Drawback: Not suitable for medium- or large scale problems,
since solving an SDP is computationally expensive.
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Toward an efficient solver for blind deconvolution

Main issue: F (h, x) has many local minima, thus a simple
alternating minimization algorithm or gradient descent will likely
get stuck in some suboptimal solution.

Candes, Li, and Soltanolkotabi [2015] proposed a two-step
approach for the nonlinear phase retrieval problem:

1 Use a good starting point obtained via spectral initialization
(based on lifting trick)

2 Use gradient descent to find the true solution.

Their Wirtinger-Flow framework yields an efficient algorithm to
solve the phase retrieval problem.



Toward an efficient solver for blind deconvolution

We follow a similar general two-step philosophy: We use some
form of spectral initialization to construct a starting point that
puts us in the “basin of attraction” and some form of gradient
descent to compute the true solution.

Surprisingly, however, the actual algorithm and the theoretical
analysis are quite different from the Wirtinger-Flow approach.



The initial guess

Observation 1: We need to carefully choose the initial guess
that puts us in the “basin of attraction”, otherwise the algorithm
will get stuck in a local minimum.

Need to define some neighborhood to quantify nearness to true
solution.



(Non)uniqueness of solution

Observation 2: If the pair (g0, z0) is a solution to y = g ∗ z, then
so is the pair (αg0, α

−1z0) for any α 6= 0.

Thus the blind deconvolution problem always has infinitely
many solutions of this type.

Recovery of the true solution (g0, z0) therefore always means
modulo such trivially assoicated solutions (αg0, α

−1z0).

However, from a numerical viewpoint we need to prevent that
‖g‖ → 0 and ‖z‖ → ∞ (or vice versa), while ‖g‖ · ‖z‖ = c.



The Importance of Being Incoherent

Observation 3: Our numerical experiments have shown that the
algorithm’s performance depends on how much the rows of B
and the vector h0 are correlated.

Let µ2
h = ‖Bh0‖2

∞
‖h0‖2 . The smaller µh, the better.

This incoherence property reminds us of matrix completion:
The left and right singular vectors of the solution matrix cannot
be “too aligned” with those of the measurement matrices.

This suggests to introduce a term that controls the incoherence
between B and the iterates hk .
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Building a basin of attraction

Based on the three observations above, we define
the three neighborhoods (denoting d0 = ‖h0‖‖x0‖):

Nd0 := {(h, x) : ‖h‖ ≤ 2
√

d0, ‖x‖ ≤ 2
√

d0}
Nµ := {h : ‖Bh‖∞ ≤ 4µ

√
d0/L}

Nε := {(h, x) : ‖hx∗ − h0x∗0‖F ≤ εd0}.

We first obtain a good initial guess (u0, v0) ∈ Nd0 ∩Nµ ∩Nε,
which is followed by regularized gradient descent.

Regularization forces iterates (uk , vk ) inside Nd0 ∩Nµ ∩Nε.



Regularized Gradient Descent

We consider

F̃ (h, x) = F (h, x)+G(h, x)

where the regularization function G(h, x) is the form of

G(h, x) = ρ
[
G0

(
‖h‖2

2d

)
+ G0

(
‖x‖2

2d

)
+

L∑
l=1

G0

(
L|b∗l h|2

8dµ2

)]
with G0(z) = max{z − 1,0}2.
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The RGD algorithm

Phase 1: Initialization via spectral method and projection:
Compute A∗(y).
Find the leading singular value, left and right singular vectors
of A∗(y), denoted by d , ĥ0 and x̂0 respectively.
Set v0 =

√
dx̂0 and solve:

u0 := argminz ‖z −
√

dĥ0‖2, subject to
√

L‖Bz‖∞ ≤ 2
√

dµ

This ensures that (u0, v0) ∈ Nd0 ∩Nµ ∩Nε.

Phase 2: Gradient descent with constant stepsize:
Initialization: obtain (u0, v0) via Phase 1.
for k = 1,2, . . . , do

uk = uk−1 − η∇F̃h(uk−1, vk−1)

vk = vk−1 − η∇F̃x (uk−1, vk−1)
end for



Theorem: [Li-Ling-Strohmer-Wei, 2016].

Consider y = diag(Bh0)Ax0 + w ,

where B is an L× N low-pass Fourier matrix, A is an L× K
Gaussian random matrix and the noise w ∼ N (0, σ

2d2
0

L ).
If the number of measurements satisfies

L ≥ C(µ2
h + σ2) max{K ,N} log2(L)/ε2,

(i) then the initialization (u0, v0) ∈ 1√
3
Nd0

⋂ 1√
3
Kµ
⋂

K 2
5 ε

;
(ii) our algorithm creates a sequence (uk , vk ) ∈ Nd0 ∩Nµ ∩Nε,
which converges linearly to (h0, x0); i.e., with high probability:

max{sin∠(uk ,h0), sin∠(vk , x0)} ≤ 1
dk

(
(1− α)k/2εd0 + 40‖A∗(w)‖

)
where α = O( 1

(K+N) log2 L
) and dk := ‖uk‖‖vk‖ → ‖h0‖‖x0‖.



Proof

The proof relies on four key properties:

1. Local Regularity Condition: establishes that objective
function decreases.

‖∇F̃ (h, x)‖2 ≥ ωF̃ (h, x)

2. Local Restricted Isometry Property: allows us to transfer
convergence of objective function to convergence of iterates.

3
4
‖hx∗ − h0x∗0‖2F ≤ ‖A(hx∗ − h0x∗0 )‖2 ≤ 5

4
‖hx∗ − h0x∗0‖2F

holds uniformly for all (h, x) ∈ Nd0 ∩Nµ ∩Nε.



Proof

3. Local Smoothness Condition: governs rate of convergence.
There exists a constant C such that

‖∇f (z + t∆z)−∇f (z)‖ ≤ Ct‖∆z‖, ∀0 ≤ t ≤ 1,

for all {(z,∆z) : z ∈ Nε ∩NF̃ , z + t∆z ∈ Nε
⋂
NF̃}

i.e., the whole line segment connecting z and z + ∆z belongs
to the nonconvex set Nε

⋂
NF̃ .

4. Robustness Condition: provides stability against noise.

‖A∗(w)‖ ≤ εd0

10
√

2



Numerical simulations

Nonconvex vs. convex optimization: How does Regularized
Gradient Descent compare to Nuclear Norm Minimization?

min
h,x

F̃ (h, x)

vs

min
Z
‖Z‖∗ s.t. ‖A(Z )− y‖2 ≤ η,



Nonconvex vs. convex optimization

Empirical phase transition curves when A is random Gaussian.
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Nonconvex vs. convex optimization

Empirical phase transition when A is random Hadamard matrix.
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Stability against noise
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Unknown subspaces

In the previous examples the subspaces A and B are known
(but of course, the signal and the blurring function are
unknown!)

This is a justified assumption in certain applications, such as
wireless communications.

In various image processing applications we may neither know
A or B (in addition to not knowing the blurring function and the
signal).

For images, we might assume that the subspace A belongs to
some larger wavelet space, but we may or may not know A.



Blind deconvolution with known blurring subspace

Subspace B is known, but subspace A is unknown.



Blind deconvolution with unknown subspaces

Subspace B is unknown and subspace A is unknown.



Blind deconvolution meets blind demixing

Suppose we are given r sensors, each one sends a function zi
(e.g. a signal or image) to a receiver common to all r sensors.
During transmission each zi gets convolved with a function gi .
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The basic model

We are given y ∈ CL with

y =
r∑

i=1

zi ∗ gi + w ,

and we want to find all zi and gi .
This problem is highly underdetermined, thus we need some
prior information about zi and gi to have a chance to solve it.

Often we can assume that the gi as well as the zi belong to
some known (but perhaps for each i different) subspaces:

zi = Aixi for Ai ∈ CL×Ni , and gi = Bihi for Bi ∈ CL×Ki ,

for known Ai ,Bi , i = 1, . . . , r .
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We need at least L ≥ r(N + K ) many measurements to have a
theoretical chance to solve the problem.
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Proceeding with the meanwhile well-established lifting trick, we
let Xi := hixT

i ∈ RK×N and define for i = 1, . . . , r

Ai(Z ) := {b∗i,lZai,l}Ll=1.

We can lift the non-linear vector-valued equations to linear
matrix-valued equations given by

y =
r∑

i=1

Ai(Xi).

Since this system is highly underdetermined, we consider

min
r∑

i=1

‖Zi‖∗ subject to
r∑

i=1

Ai(Zi) = y . (SDP)

If the solutions Z1, . . . ,Zr are all rank-one, we can easily extract
xi and hi from Zi via a simple matrix factorization.



Theorem: [Ling-Strohmer 2015]
Let the Ai be L× N i.i.d. Gaussian random matrices. Assume
that the impulse responses gi satisfy gi(k) = 0 if k ≥ K .
Let µh be a certain “incoherence parameter” related to the
measurement matrices. Suppose we are given

y =
r∑

i=1

gi ∗ (Aixi).

Then, as long as the number of measurements L satisfies

L & Cr2 max{K , µ2
hN} log L3 log r ,

(where C is a numerical constant), all xi (and thus zi = Aixi ) as
well as all gi can be recovered from y with high probability by
solving (SDP).
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Does L really scale with r2?

Numerical experiments show that L scales with r .

Surprise: L ≈ r(K +µ2
hN) measurements seem to suffice,

which is close to the information-theoretic limit.

In numerical example, e.g.
K = N = 30, r = 7, hence
r(K + N) = 420 and with
L > 480 get exact recovery.
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Back to the Internet-of-Things

At each sensor the signal xk gets “precoded” by applying Ak .
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Back to the Internet-of-Things

A large number of simple sensors sporadically send a few data
to a base station (and a few other sensors send frequently a lot
of data).

Each sensor “precodes” the signal xk by applying Ak (like in
standard CDMA).

The base station only needs to know which of the users is
active. Can be achieved via very-low rate feedback channel.

The base station can recover all signals without any channel
estimation (unlike in standard CDMA) with only minimal
overhead.



A Toy Internet-of-Things Example

A practical choice for Ak (although
not yet covered by our theory):
Let A0 be a tall subsection of a
Hadamard matrix.
Define Ak = DkA0, where D i is a
diagonal matrix with entries ±1.

Can either
(i) choose diagonal entries ±1 randomly.
or
(ii) choose diagonal entries ±1 deterministically according to
design of mutually unbiased basis (for how to do this see
Calderbank-Cameron-Kantor-Seidel 1995).

Can easily demix dozens of users without channel estimation.



A Toy Internet-of-Things Example
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L = 64

L = 128

L = 256

L = 512

Number of measurements for empirical recovery is close to
information-theoretic limit in these examples.
E.g. for r = 16 : r(K + N) = 480 and L = 512 gives successful
recovery!



Calibration issues everywhere

Femtosecond X-ray Nanocrystallography
Compressive microscopy: calibration of coded aperture
(similar to structured illuminations with random masks)
Radar: calibration of antenna arrays
Time-interleaved ADCs: unknown time-offsets and gains
Astronomy: E.g. James Webb Space Telescope
Chemical cloud detection
Exploration geophysics



Conclusion and Open Problems

Efficient framework for blind deconvolution.
Extension to blind deconvolution-blind demixing.
Could play a role in the future Internet-of-Things
Open problem: include sparsity in signal or blurring fct.
Open problem: for image processing need better way to
determined unknown subspace A.

Open problem: A murderer is still on the loose ....
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