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Long tails of natural tracers from observation
Intermittency is a key feature of turbulent flows and correctly taking it into
account in turbulence models is of critical importance.

Passive tracer distributions exhibit approximately exponential tails.

Such tails are indeed ubiquitous in observation, model, and reanalysis
data sets for a variety of tracers.1

anomalies of tracer concentrations, the long‐term increasing
trend is removed, and this is mathematically equivalent to a
sink (see auxiliary material). In either case, a vertical gra-
dient is maintained by surface flux input into the atmo-
spheric boundary layer (ABL), relative to the free
atmosphere. Once vertical advection lofts the tracer, hori-
zontal advection acts on resulting horizontal gradients.
[5] An idealized set‐up of equation 1 by Bourlioux and

Majda [2002] motivates our hypothesis that we should
commonly anticipate long tails for anomalies through the
depth of the troposphere and provides a simplest‐case
conjectured physical explanation. Their case of winds and
gradient constant in one direction, say, vertical, yields
tracer anomalies constant in this direction. The deep
structures of horizontal and vertical velocity anomalies
commonly encountered through the depth of the tropo-
sphere will likewise tend to yield coherent vertical struc-
tures of tracer variations, and large variations of vertically
integrated tracer (see auxiliary material for more detailed
considerations and review of prototypes). We thus antic-
ipate that the results from theoretical prototypes can pro-
vide qualitative guidance for analyzing distributions of
column tracers, modified for expected asymmetry between
upward and downward motion. The close analogy between

the problems suggests that long tails should be ubiquitous
in column concentrations, for which we provide initial
evidence here.

2. Column Water Vapor

[6] We begin by examining observations of CWV, due to
its long record of validated satellite observations, its impor-
tance for meteorological problems, and because it is stan-
dardly included in many model systems. Figure 1 (top)
shows the distribution of CWV anomalies from the Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager
(TMI) [Hilburn and Wentz, 2008] from 2002–2007. Exam-
ining anomalies (with respect to a 30 day average) is analo-
gous to the procedure used in prototype systems; this avoids
complexities associated with the climatological spatial dis-
tribution of humidity or relative humidity [Zhang et al., 2003;
Ryoo et al., 2009] to focus on short‐term, transport‐induced
variations. The distribution is shown as counts per bin since
this is useful when doing subsets of the total (normalizing
simply shifts the figure).
[7] At high resolution (0.25° × 0.25°) and effectively

instantaneous in time (the instrument scan), the tails are
considerably broader than a Gaussian fit to the core of the
distribution. The range is on the order of the mean water
vapor (typically 40–55 mm). There is a marked asymmetry
between negative and positive tails of the distribution, with
the positive side having a long exponential range. On the
negative side, the tail tapers off more quickly, but attempt-
ing to fit it with a Gaussian would considerably overestimate
the core. If the long tails are associated with vertical advec-
tion, as will be elaborated below, there are two clear sources
of asymmetry between upward and downward processes
(see examples in auxiliary material). First, upward motion is
stronger in convecting regions compared to compensating
descent over broader surrounding regions; and second, the
effects of downward advection are limited by drying out the
column above the ABL, a known association with occur-
rences of low column water vapor [Holloway and Neelin,
2009].
[8] Averaging in space and time should reduce this asym-

metry and permit comparison to model products in which
convection is parameterized. Figure 1 (top) includes TMI
averaged to 2.5° × 2.5° in space, with a rough daily average
from the twoTRMMsatellite passes each day. For space‐time
averages over a large number of independent realizations, the
distribution should eventually tend toward to Gaussian, but
on these scales of practical interest the tails extend substan-
tially beyond the Gaussian core. As expected, the asymmetry
is reduced.
[9] Figure 1 (bottom) shows a CWV distribution at 2.5° ×

2.5° resolution, for daily averages over 2002–2007 from
the National Center for Environmental Prediction (NCEP)
reanalysis product [Kalnay et al., 1996]. Again the tails of
the distribution fall off less rapidly than the Gaussian core.
Moderate asymmetry between positive and negative tails is
also apparent. Both tails have a long, approximately expo-
nential range. The reanalysis provides dynamical fields that
can confirm the role of vertical advection in producing these
tails. To assess this, Figure 1 (bottom) provides distributions
divided into values associated with ascending and descending
motions. Vertical motion at the 700 mbar level in the lower
free troposphere is used since this level is located within the

Figure 1. Distribution (as frequency of occurrence) of col-
umn water vapor anomalies at each spatial point (top) from
TMI observations over the tropics (20S–20N) at two resolu-
tions: 0.25 degrees, instantaneous in time and 2.5 degrees,
daily average; (bottom) for NCEP reanalysis daily average
(20N–20S), showing the distribution for all values, the dis-
tribution separated according to ascending/descending verti-
cal motion in the midtroposphere, and the distribution
conditioned on a low‐rainfall criterion. The parabolas (light
curves) show a Gaussian fit to the core of each distribution,
while the straight lines provide a reference for the approxi-
mately exponential tails.
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(a) Distribution of water vapor anomalies

layer of strong vertical gradient of specific humidity. The
positive tail of the full distribution is clearly associated with
ascending points, and conversely for the negative tail. We can
further assess whether a local sink associated with precipi-
tation is important to these tails by considering points with
small rainfall (less than 0.1 mm/day), for which the local loss
of moisture is negligible. The distribution nonetheless has
exponential tails similar to the case of descending motions.
The positive and negative tails of this small‐rainfall distri-
bution are fairly symmetric, consistent with the hypothesis
that strong upward vertical velocity associated with latent
heat release in regions of precipitation contributes to slower
decay of the positive tail. The presence of the positive tail
makes clear that the basic process of creating the tail does not
require a local loss process.

3. Carbon Monoxide

[10] Carbon monoxide is a tracer with an intermediate
lifetime (on the order of two months) [Levy, 1971] for which
satellite retrievals are available from the Measurements of
Pollution in the Troposphere (MOPITT) mission [Drummond
and Mand, 1996; Pan et al., 1998]. Surface sources, such
as biomass burning, tend to be heterogeneously distributed.
Figure 2 shows distributions of column CO from the MO-
PITT V3 data set from 2001–2006 at 1° × 1° and 2° × 2.5°
resolution, over the tropics and two example sub‐regions
(a South Eastern Pacific region with relatively low sources
and a region spanning South America with fairly strong
sources from biomass burning). In each case, the tails are
close to exponential over a broad range, with small cores.
The slope is modified only slightly by horizontal averaging.
[11] Without the theoretical prototype, a concern might be

whether some unknown noise process in the retrievals could

introduce the exponential tails, although regional differences
in the slopes of the tails argue against this. Comparison to
simulations of CO in the GEOS‐Chem atmospheric chem-
istry model [Bey et al., 2001] in Figure 2 clearly shows that
such tails are produced by physical processes. The simulated
distributions tend to have a peaked core and broader tails.
These are reminiscent of stretched exponential distributions
from cases in Bourlioux and Majda [2002], in which the
slopes of the tails are determined not only by the imposed
gradient and flow variation amplitude, but by assumptions
regarding the flow temporal variability (see auxiliary
material). Thus it is possible that higher temporal coher-
ence in the vertical transport contributes to wider tails in the
model. The MOPITT infrared retrieval may also underesti-
mate the tails, since it is unavailable in cloudy pixels, thus
excluding points with high vertical transport by moist con-
vection. The simulated tails vary among regions in a manner
consistent with observations. Although asymmetry between
high and low tails is smaller than in CWV, the model
asymmetry tends to be in the same sense as the observations.
The statistics are stable enough that most features of the
distribution are reproduced with a single year of data, although
for the model, variation among estimates from individual years
may be seen in the positive tail. These are associated with
interannual variations in the transport (sources are fixed in
these simulations). Year‐to‐year variations are smaller in
the observations.

4. Carbon Dioxide

[12] For carbon dioxide (Figure 3), we examine a pre‐
release daily data set based on new retrievals [Chahine et

Figure 2. Distribution of column‐integrated anomalies of
carbon monoxide (1018 molecules cm−2) from MOPITT ob-
servational estimates for 2001–2006 at 1 × 1° (blue+) and 2 ×
2.5° (black+) and for individual years at 2 × 2.5° (pastel
squares) and GEOS‐Chem atmospheric chemistry model
simulations at 2 × 2.5° for 2000–2005 (red dots) and for
individual years (pastel dots), for the entire tropics (20S–
20N; main panel). Insets show distributions for subregions
in a South Pacific region and region that includes South
America for MOPITT (red dots) and GEOS‐Chem (black+).

Figure 3. Distribution of anomalies of carbon dioxide for
the tropics (20S–20N) (top) from AIRS observational esti-
mates at 2.5° × 2.5° for a deep vertical average that empha-
sizes the mid‐troposphere (weighting function shown in
inset) for 2003. A Gaussian core is fit to points above
half‐maximum. (bottom) From GEOS‐Chem simulations
vertically averaged with the AIRS weighting function For
2000–2005 (black dots) and for individual years (colored
dots).
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(b) Distribution of CO2 anomalies

1Neelin et al, Geophys. Res. Lett., 2010
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Simplified passive scalar models

Simplified models in tracer turbulence:

I Understanding the fundamental mechanisms that can potentially lead to
such behavior is a question of great theoretical interest.

I The analysis of simple systems with a Gaussian core can shed some light
on similar behaviors observed in more complex models.

Major Questions:

I What structure is needed for a velocity field so that the PDF for a passive
scalar exhibits a transition from a Gaussian PDF to a broader than
Gaussian shape.

I How to develop explicit reduced-order models with unambiguous behavior
for intermittency of scalar PDFs.
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Passive tracer with a mean gradient

Passive tracer of turbulent advection, diffusion, and damping

∂T
∂ t

+v ·—T = �dTT+k�T.

The tracer field is assumed to have a background mean gradient

T (x, t) = a1x+a2y+T0 (x,y, t) .

The model for the velocity field is two dimensional and periodic in space

v(x, t) = (U(t) ,v (x, t)) ,

with the cross-sweep, U(t), and the shear flow, v (x, t).

T0 (x, t) denotes fluctuations around the mean gradient

∂T0

∂ t
+U(t)

∂T0

∂x
= �av (x, t)�dTT

0 +k�T0.
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Elementary model with intermittency2

It is the time modulation in the transverse sweep, more precisely the fact
that the sweep crosses zero periodically, that leads to the intermittency.

∂T0

∂ t
+PeU(t)

∂T0

∂x
� ∂

2T0

∂x2
= �aPev (x, t) , Pe= VL/k .

T = ay+T0, U(t) = sinwt, v (x, t) = sin2px.

is a periodic function of time of period !P!2"/# and of
constant mean w0 . The PDF for the scalar in the model with
$1%, $2% is treated in the statistically stationary state with a
mean gradient along the x axis, i.e.,

T!
x
Lg

"T!$x ,y ,t %. $4%

The nondimensonalization used in $1% is completely standard
with spatial units chosen by the largest length scale L of the
velocity field and the Péclet number given by Pe!VL/& ,
where V is the typical magnitude of v with w assumed to
have comparable magnitude while & is the diffusivity of the
scalar. The quantity Lg

#1 in $4% measures the magnitude of
the imposed scalar gradient in these nondimensional units.

The passive scalar PDFs in these models are given
through exact solutions that are processed below via elemen-
tary stationary phase asymptotics and numerical quadrature
of one-dimensional formulas. Despite the simplicity of the
models in $1%, $2%, $4% the PDF for the scalar exhibits PDF
intermittency as the Péclet number increases, provided, for
example, the velocity field v(y ,t) is nonzero and the periodic
transverse sweep w(t) has isolated zeros. The universal lim-
iting broad-tail shape is determined analytically through ex-
plicit formulas. As a preview of the results developed below,
Figs. 2 and 4 explicitly display scalar intermittency with a
universal limiting shape as Pe!' for the deterministic
steady single spatial mode shear flow with a purely sinu-
soidal transverse sweep:

v$y ,t %!sin$2"y %, w$ t %!sin$#t %, $5%

while Figs. 5 and 6 below show scalar intermittency for the
PDFs with a steady single mode shear with Gaussian random
amplitude and the same transverse sweep from $5%. The
broad tail PDFs in these figures strongly resemble those
found in Fig. 1 from Ref. 12 and Fig. 6, Fig. 16, and Fig. 19
from Ref. 13, which were post-processed from numerical
simulations of much more complex models. These examples
demonstrate unambiguously that surprisingly, none of the de-
tailed structural conditions $a%, $b%, $c% above for the velocity
field are needed to get very strong passive scalar intermit-
tency with a prescribed mean gradient. What is the source of
intermittency in the elementary models with the velocity
field in $2%? When w(t) has an isolated zero in time, the
streamline topology for the flow field changes from com-
pletely blocked behavior in the x direction parallel to the
imposed mean scalar gradient to very rapid transport in the x
direction for a small interval of time around the zero of w(t).
This change of topology is illustrated in Fig. 1: when w
!0, the open streamlines in the horizontal direction, along
the mean gradient, lead to large convective transport and
large deformations of the isocontours for the scalar, which
promote strong mixing by diffusion. When w(0, however,
the transverse sweep corresponds to blocked streamlines,
little transport along the gradient, weak distortion of the sca-
lar isocontours, and, hence, ultimately, little opportunity for
mixing by diffusion. With the time-modulated transverse
sweep used in this paper, blocked streamlines are observed
most of the time, except for the rare occasions when the
transverse sweep is zero, which leads to bursts of strong

mixing; this on/off mechanism that controls turbulent mixing
via streamlines blocking and opening defines what is meant
by intermittency in the present setup by reference to qualita-
tively similar phenomena in more complex systems. This
intuitive reasoning is made more precise in the detailed
analysis below and already played a similar role in previous
work of Kramer and the second author,16 where scaling laws
for the turbulent diffusivity of the models in $1%, $2% were
calculated asymptotically at high Péclet numbers. The phi-
losophy of the work presented here to develop explicit mod-
els with unambiguous behavior for intermittency of scalar
PDFs has also been utilized for decaying passive scalars at
long times16–18 with recent powerful results demonstrating
families of stretched exponential tails in the long time
limit.19–21

The organization of the remaining parts of the paper is as
follows. Section II has exact solution formulas for the model
in $1%, $2%, $4% as well as an important collection of elemen-
tary formulas for scalar PDFs for the model. The behavior of
the turbulent diffusivity for the model in $1%, $2%, $4% at finite
large Péclet numbers is studied in Sec. III in order to link the
behavior of large variance in the passive scalar statistics with
the intermittency scenario in the geometry of streamlines
transverse to the mean gradient mentioned earlier; this pro-
vides important intuition and a link with subsequent results
on scalar intermittency. Also, the high Péclet number scaling
analysis16 is confirmed. The results briefly discussed above
for the special case of a steady single mode shear are devel-
oped in Sec. IV. The situation where the velocity field v(y ,t)
is a Gaussian random field in space–time with a finite cor-
relation time is developed in Sec. V; scalar intermittency in
this case is more subtle because the scalar PDF for the model
in $1%, $2%, $4% in the extreme limiting case with ) correlation
in time in the velocity field v(y ,t) is Gaussian for all $even
arbitrarily large% Péclet numbers.

FIG. 1. Effect of the transverse sweep on the topology of the streamlines.
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when U= 0, the open streamlines in the
horizontal direction, along the mean gradient
ay, promote strong mixing by diffusion.

when U 6= 0, the transverse sweep
corresponds to blocked streamlines, little
transport along the gradient, little
opportunity for mixing by diffusion.

2Bourlioux & Majda, Physics of Fluids, 2002
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Elementary model with intermittency

∂T0

∂ t
+PeU(t)

∂T0

∂x
� ∂

2T0

∂x2
= �aPev(x, t) ,

i) v= sin2px,

ii) v= x (t) , hx (t)x (0)i = R(t) .

large Pe by simply setting w0!0. Because of the symmetry
in the two zeros t*, the period of !2(t) is now "P/2, with
!2(t) given by

!2# t $!!max
2 e"8%2t, with !max

2 !
Pe "p
2%Lg

2&
, #38$

for 0't'"P/2. This expression will now be used in the gen-
eral formulas #21$, #23$ to derive explicit asymptotic expres-
sions at large Péclet numbers for the PDF of the passive
scalar in the case of a steady single mode shear with, respec-
tively, a deterministic or a stationary Gaussian random am-
plitude. Examples of PDFs obtained using numerical compu-
tations of !2(t) are also reported.

A. PDFs for a deterministic steady single mode shear

1. Numerical results: Transition from sub-Gaussian
to broad-tail PDFs

Figure 3 shows the results of numerical experiments
with &!1, Pe!1, 10, 100, 1000, 10 000, "P!0.5, and the
deterministic steady single mode shear v(y)!sin(2%y) #also
discussed in Sec. II B$. The PDFs were obtained by the dis-
crete quadrature of #21$ with !2(t) computed numerically
following the strategy outlined in Sec. III. Also shown as
dashed lines are the Gaussian PDFs with the same variance.
When Pe!1, the PDF displays the typical double-peak sine
PDF in #20$, which is clearly sub-Gaussian. As the Péclet

number increases, however, the double-peak core shrinks,
the normalized fluctuations become larger, with the PDFs
tails clearly becoming progressively broader.

2. Asymptotic limiting shape
In Fig. 4, the PDFs for eight values of Pe in the range

500#Pe#10 000 are superimposed to demonstrate the exis-
tence of a limiting shape. This limiting shape is predicted
asymptotically, by integrating exactly the general formula in
#21$ with !2(t) given at large Péclet by #38$ to yield the
following.

Self-similar PDF for the deterministic case. In the limit
of large Pe,

p#T!$!
1
!̄
p(! T!

!̄ " , #39$

with

p(#z $!K1
%"2 arcsin#K2#z#$

K2#z#
, #40$

where K1 is a normalizing constant and K2!1/!4%2"P.
This expression is valid for !min##T!##!max with !min

!!max exp("2%2"P) the very small size of the inner core.
This asymptotic PDF shape is shown in Fig. 4 as a thick
dashed line. The agreement for moderately large values of
the normalized fluctuations #T!#/!̄ is excellent. As Pe in-
creases, the agreement extends to increasingly large values
of #T!#/!̄ as the asymptotic stationary phase approximation
for !2(t) used to obtain #40$ becomes more relevant.

B. PDFs for a stationary Gaussian random shear
1. Numerical results: Transition from Gaussian to
broad-tail PDFs

Using the same data for !2(t) as above, numerical PDFs
based on #23$ are generated that correspond to the case of a
shear with steady stationary Gaussian random amplitude.
Figure 5 displays the PDFs with increasing Péclet numbers,
along with the Gaussian PDFs with the same variance. At
Pe!1, the PDF is Gaussian. At Pe!10, there still appears to
be a Gaussian core, but its support has shrunk, the tails are
broader, and the PDF resembles an exponential distribution.

FIG. 3. The PDF as a function of Pe—deterministic single mode. Here and
in similar plots below, the y axis is the usual logarithmic scale, z!T!/!̄ ,
and the dashed line represents the Gaussian PDF with the same variance.

FIG. 4. Asymptotic PDF #dashed line$ shape for a deterministic single mode
compared to the numerical results for a range of large Péclet numbers #solid
lines$.
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(c) deterministic

This trend continues for Pe!100 and larger, the PDF has
even broader tails with an overall shape closer to a stretched
exponential distribution.

2. Asymptotic limiting shape
As for the deterministic case in Sec. IVA, the PDFs

converge at large Péclet to a universal limiting shape that can
be predicted asymptotically by integrating exactly !23" with
the asymptotic approximation for #2(t) in !38".

3. Self-similar PDF for the steady stationary Gaussian
random case

In the limit of large Pe,

p!T!"!
1
#̄
p$! T!

#̄ " , !41"

with

p$!z "!K1
erf!CK2z ""erf!K2z "

K2z
, !42"

where K1 is a normalizing constant, K2!1/!4%2&P, and C
!exp(2%2&P) is a very large constant.

This formula is valid for #z# outside the inner core. This
asymptotic shape is shown in Fig. 6 along with the PDFs for
eight values of Pe in the range 500#Pe#10 000 with excel-
lent agreement.

Remark: The range #T!##10#̄ in Figs. 5 and 6 was se-
lected because it corresponds to a representative range for
reliable experimental data or numerical data with more com-

plex models. In the present formulation, accurate numerical
or asymptotic values could be generated quite easily, even
for arbitrarily rare events. The trend observed for large val-
ues of #T!#/#̄ is similar to the one observed in Fig. 4: the
PDF drops markedly since there can be no significant con-
tributions at very large values. The regime that appears to
follow a stretched exponential applies only for a finite band
extending over many standard deviations of the Gaussian.

To summarize, the transition depicted in Fig. 5 from
Gaussian PDF to exponential PDF !around Pe!10" to a uni-
versal stretched exponential PDF !for Pe$100" is therefore
qualitatively similar to experimental results as well as nu-
merical results obtained with more complex models, at least
for a reasonable range of values. The asymptotic explicit
formula in !42", however, indicates that the limiting shape
cannot be described everywhere by the stretched exponential
that one typically obtains by a best fit based on a limited
range of values over a few standard deviations of the Gauss-
ian. Such limited range fits are what is actually used in pro-
cessing experimental or numerical data.

C. Asymptotic regimes

To conclude this section, we will now address the fol-
lowing issue. We have just documented the existence of self-
similar PDFs with strong intermittency in the limit of large
Péclet numbers as a result of a bursting mechanism linked to
isolated zeros in the transverse sweep. In the experiments
above, good agreement between the numerical PDFs at large
but finite Péclet and the asymptotic self-similar PDF oc-
curred, beginning at values on the order of Pe'100.

In general, how large should the Péclet number be for
strong intermittency?

We will answer this question by stating more precisely
the conditions on Pe in relation to the other parameters in the
model that need to be satisfied for the self-similar intermit-
tent regime to exist. With w(t)!( sin()t), the model !11",
!13" becomes

T!!y ,t "!
Pe
Lg

!TJ!̂eiKJy%c.c.",

with

FIG. 5. The same as in Fig. 3 for the case of a random stationary Gaussian
single mode.

FIG. 6. The same as in Fig. 4 for the case of a random stationary Gaussian
single mode.
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The two-layer flow as advection flow

The two-layer quasi-geostrophic model is one simple but fully nonlinear
fluid model capable in capturing the essential physics.

Two-layer model

∂q
y

∂ t
+ J

�
y,q

y

�
+ J(t,q

t

)+b

∂y

∂x
+U

∂�t

∂x
= � k

2
�(y � t)�n�sq

y

,

∂q
t

∂ t
+ J(y,q

t

)+ J
�
t,q

y

�
+b

∂t

∂x
+U

∂

∂x

�
�y +k2dy

�
= � k

2
�(t �y)�n�sq

t

.

barotropic and baroclinic modes:

q
y

=�y, y =
1
2
(y1+y2) ,

q
t

=�t �k2dt, t =
1
2
(y1 �y2) .

energy and heat flux:

E=
1
2

Z
|—y|2+ |—t|2+k2dt

2,

Hf =k
2
dU

Z
vt.
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Illustration about tracer intermittency with heat flux18 Predicting Extreme Events for Passive Scalar Turbulence through Reduced-Order Stochastic Models

barotropic flow field, blocked regime

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

(a) blocked regime

barotropic flow field, unblocked regime
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(b) unblocked regime
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(c) time-series of heat flux and scalar tracer

Fig. 4.3: Illustration about tracer intermittency with heat flux. The first row is the snapshots of
the flow field with blocked and unblocked regime. The following parts show typical time-series
for both the heat flux and scalar passive tracer.

for the reduced-order tracer model.

4.2. Calibration in the advection flow field
Now we use the reduced-order stochastic model in (2.6) and (2.7) to predict scalar passive

tracer statistics with only calibration of the background turbulent advection flow field. Only
the leading modes |k|10 are resolved for reducing model computational cost. As the model
calibration strategy described in Section 3.1, we need to confirm equilibrium consistency in
the energy spectra and time scale consistency in autocorrelation functions for the flow vorticity
solutions.

4.2.1. Consistency in energy spectra
As described in the modeling strategy in the previous section, the linear Gaussian flow ap-

proximation equations in (2.6) should recover the true statistical energy in equilibrium in the
first place. Choosing the parameters according to the constraint (3.7), naturally the same statis-
tics can be reached since the true equilibrium first two moments are used to help construct the
reduced model approximation for additional damping and noise corrections. To further con-
firm this convergence and make sure the validity of the numerical schemes, Figure 4.4 displays
the equilibrium PDFs from the first 4 leading modes, ŷ(1,0),ŷ(0,1),ŷ(1,1)ŷ(�1,1), of flow stream
functions in truth and reduced-order model predictions. Consistency in variances is confirmed
in these marginal distributions for the reduced-order model predictions overlapping the Gaus-
sian fit of the truth with the same variance. Besides, consistent with the numbers in Table 4.2,
the true leading modes all display some degree of non-Gaussian statistics with sub-Gaussian or
super-Gaussian structures in the tails. Especially for the first two leading modes, that is, (1,0)
for the Rossby waves and (0,1) for the large-scale zonal flow, strongly non-Gaussian features
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Stochastic formulations for the passive tracer and
turbulent flow field

reduced-order advection flow equations ~qk =
�
q̂1,k, q̂2,k

�T

d~qM,k = �
�
gq,k+ iwq,k

�
~qM,kdt�DM

q,k~qM,kdt+⌃M
q,kd~Wq,k, 1  |k|  M.

vM = —?~
yM, ~qM,k = Hk~

yM,k,

�1
2 Â

m+n=k

(Akm~qm �~qn+Akn~qn �~qm) ! �DM
q,k~qM,kdt+⌃M

q,kd~Wq,k.

reduced-order passive tracer equations ~Tk =
�
T̂1,k, T̂2,k

�T

d~TM,k+
⇣
vM ·—~TM

⌘

k
dt̃ = a�k~

yM,kdt̃�
�
gT,k+ iwT,k

�
~TM,kdt̃, 1  |k|  M.

vM = Â
|k|M1

ik?~
yM,ke

ik·x.
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Model calibration in the advection flow field

The imperfect model calibration parameters
�
DM
q ,⌃M

q

�
need properly

reflect the true nonlinear energy mechanism.

The statistical equations for the fluctuation covariance matrix
Rqk =

⌦
~qk~q⇤

k

↵
become4

dRqk
dt

+Qq
F =

�
L q

k +Dq
k

�
Rqk+Rqk

�
L q

k +Dq
k

�⇤
, |k|  N,

Qq
F (~qk) =

1
2 Â
m+n=k

h(Akm~qm �~qn+Akn~qn �~qm)~q⇤
ki .

In the statistical steady state, dRqk/dt = 0, then the nonlinear fluxes can
be calculated at equilibrium as t ! •

Qq
F,eq =

�
L q

k +Dq
k

�
Rqk,eq+Rqk,eq

�
L q

k +Dq
k

�⇤
.

4Sapsis & Majda, Physica D, 2013
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Imperfect model correction from equilibrium
statistics and additional terms

the first proposal for the linear damping and Gaussian random noise
correction can be introduced as

Deq
q,k = �1

2
Qq,�
F,eq,k

⇣
Rqk,eq

⌘�1
, ⌃eq

q,k =
⇣
Qq,+
F,eq,k

⌘1/2
;

a further correction for the noise and damping with a simple constant
damping and noise

Qadd
M,k = �Dadd

M RM,k+
⇣
⌃add
M,k

⌘2
, Dadd

M =


dM+ iwM

dM � iwM

�
.

Combining the ideas, we propose the additional damping and noise
corrections for the reduced-order flow vorticity mode

DM
q,k = �1

2
Qq,�
F,eq,k

⇣
Rqk,eq

⌘�1
�Dadd

M , ⌃M
q,k =

⇣
Qq,+
F,eq,k+

�
⌃add
M,k

�2⌘1/2
.
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Outline

1 Turbulent diffusion models with mean gradient formulation
Elementary models with intermittency for passive scalars
Rigorous intermittency in a random resonance regime

2 Two-layer baroclinic turbulence as advection flow
Two-layer baroclinic turbulence in ocean and atmosphere regimes
A reduced-order stochastic model with consistency and sensitivity

3 Predicting intermittent PDFs with low-order stochastic models
Model calibration in Gaussian velocity field
Prediction skill of low-order stochastic models
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Gaussian velocity stochastic models for passive
tracer statistics

Apply the Galerkin truncation strategy by resolving only the first M
leading modes in spectral space

dûMk
dt

=
�
�guk + iwuk

�
ûMk +sukẆk, |k|  M.

One of the simplest and most direction way to estimate the undetermined
coefficients guk ,wuk ,suk is through the mean stochastic model (MSM):

Ek ⌘ var(ûk (t)) =
D
|ûk (t)�hûki|2

E
,

Rk =
Z

Rk (t) ⌘
Z ⌦

(ûk (t)�hûki)(ûk (t + t)�hûki)⇤
↵

var(ûk (t))
.
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Spectral Information criterion for improving imperfect
model prediction skill

A natural way of measuring the lack of information is the relative entropy

P
⇣

p,pM
⌘
=

Z
p log

p

p

M .

Khinchin’s formula: if the autocorrelation function R (t) is smooth and rapid-decay,

u(t) =
Z •

�•
eil tẐ (dl ) , R (t) =

Z •

�•
eil tdF (l ) =

Z •

�•
eil tE(l )dl ,

Energy spectrum can be represented by E(l ) or dF (l )

dF (l ) = E(l )dl = E
��Ẑ (dl )

��2 .

Spectral information criterion

A) max
��R (t)�RM (t)

��  2
p
3

�R �
E2 (l)+E2M (l)

�
dl

�1/2
P

�
E(l) ,EM (l)

�1/2
;

B)
R ��R (t)�RM (t)

��2 dt  12max
��E2 (l)+E2M (l)

��P
�
E(l) ,EM (l)

�
.
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PDFs in stream functions of the advection flow

regime N b kd U r dT k a

ocean, high lat. 128 2 40 0.1 0.1 0.5 0.001 1

atmosphere, high lat. 128 2 4 0.2 0.2 0.1 0.001 1

atmosphere, mid lat. 128 1 4 0.2 0.1 0.1 0.001 1
Di Qi and Andrew J. Majda 19
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Fig. 4.4: The marginal PDFs of the first four leading modes in stream functions in all three
test regimes. The truth is shown in blue and red is the reduced model result. The Gaussian
distributions with the same equilibrium variance are in dashed black lines. Since we use the
equilibrium statistics to correct the linear Gaussian approximation models, exact recovery about
the Gaussian fit can be achieved through this reduced-order model.

can be observed in all three regimes. On the other hand, the reduced-order model only captures
the Gaussian statistics since only linear Gaussian model is used.

4.2.2. Consistency in autocorrelations
Still the climate consistency in the leading order moments is not sufficient for representing

the low-order imperfect approximations in an optimal way. It is observed that large model error
could still exist in the autocorrelation functions of each mode. As illustrated in Section 4.1.2 and
Figure 4.3, the tracer intermittency is related to the competition between the zonal mode (0,1)
and meridional mode (1,0). Thus the correct modeling about the time mixing scales in these
modes is directly linked with the occurrence of intermittency, then with the accurate prediction
of the fat-tails in tracer distributions.

The autocorrelation functions of the first four leading modes in the flow stream functions
are plotted in Figure 4.5. Again we observe that the zonal mode (0,1) has a long decaying
time representing the persistent zonal jet especially in mid latitude regime; while the Rossby
mode (1,0) is highly oscillating responsible for the intermittent heat transport. Comparing the
reduced-order model results with the optimal parameters from (3.13) and the non-optimized
model with no additional corrections dM =0,sM =0, it can be seen that in all three test regimes,
the tuning process in the training phase can effective improve the accuracy in the predicted
autocorrelation functions, while large error may still exist for the non-optimal case without ad-
ditional correction. Important time scales in these crucial modes will be missed if no additional
model calibration is considered. As we can see in the predictions for tracer statistics in the next
section, this is also important for the reduced model skill for tracer results.

4.3. Predictions of turbulent tracer statistics in reduced-order models
In this section, we test the prediction skill of the reduced-order tracer models in (2.7) using

the solution from the optimized flow equations as achieved above. As we have discussed, the
nonlinear advection in the tracer equation vM ·—TM is important for the final tracer statistical
structure, while this part is expensive to calculate explicitly since it is nonlocal requiring the
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Autocorrelation functions for representative modes

Rk (t) =
h(ûk(t)�hûki)(ûk(t+t)�hûki)⇤i

var(ûk(t))
.20 Predicting Extreme Events for Passive Scalar Turbulence through Reduced-Order Stochastic Models
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Fig. 4.5: Autocorrelation functions in the first four most energetic modes in the flow field stream
functions in all three test regimes. The truth in dashed blacked lines are compared with the op-
timized reduced-order model estimations in red lines. The optimal parameters in the reduced-
order model is achieved by minimizing the information metric between the autocorrelations
with the truth. For comparison, we also give the non-optimized results without additional cor-
rections (dM,sM)=0 in dotted-dashed blue lines.

modes in different scales. So the strategy is to consider only principal modes with largest
variance in vM in calculating the nonlinear term and check the imperfect model prediction skill
as in (2.7). Besides, we still have the scale separation parameter e and linear damping dT to
control the tracer structures in the tracer model. This enables us to investigate the reduced model
skill with different statistics by changing these parameter values.

4.3.1. Prediction in tracer equilibrium spectra and autocorrelation functions
In the reduced-order tracer equation (2.7), we would not like to introduce further calibra-

tions of the tracer field. Thus in the first place, we should check the imperfect model skill in
recovering the energy spectra and autocorrelation functions in the resolved tracer modes. As
from the original tracer model (2.4a), the nonlinear advection in the tracer dynamics is non-
local, while the reduced-order model only uses the leading modes in the flow field solution
vM =Âv̂M,keik·x,|k|M1, to calculate the nonlinear part. By changing the size of truncated
modes M1, we can check the contribution of modes in different scales in tracer advection. In
Figure 4.6-4.8, the equilibrium spectra in tracer modes and cross-covariance between tracer
modes and flow stream functions are shown. To clearly compare the two-dimensional modes
along one axis, the tracer modes are ordered all together with descending energy according
to the advection flow modes. In the reduced-order model only the leading modes |k|10 are
computed explicitly in the equations. Furthermore, we consider two different truncation sizes
M1 =10 and M1 =2 in calculating the nonlinear advection in vM . Thus with M1 =2, only the
first two dominant modes (1,0) and (0,1) are used in the nonlinear advection velocity, vM ·—TM .
In general, the energy structure in the largest scales can be captured with desirable accuracy,
while large errors appear with smaller size of advection modes. The cross-covariances between
the tracer mode and stream function can also be captured through the reduced-order formula-
tion. Comparing in more details in the first few dominant modes, using only two modes M1 =2
leads to larger errors due to the inaccurate modeling about the unresolved small scale feed-
backs to the largest scales. Especially in the mid latitude regime with persistent zonal jet, using
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Skill of stochastic models in two-layer QG5 Concluding discussion 25
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Fig. 4.13: Prediction about tracer intermittency in high latitude ocean regime with parameters
�
e

�1,dT
�

= (5,0.5).
The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.13: Prediction about tracer intermittency in high latitude ocean regime with parameters
�
e

�1,dT
�

= (5,0.5).
The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model and
reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.

Figure: Prediction about tracer intermittency in high latitude ocean regime.
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Fig. 4.11: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
�
e

�1,dT
�

=
(5,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction.
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Fig. 4.11: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
�
e

�1,dT
�

=
(5,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction.

Figure: Prediction about tracer intermittency in high latitude atmosphere regime.
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Fig. 4.12: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
�
e

�1,dT
�

=
(1,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.
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Fig. 4.12: Prediction about tracer intermittency in high latitude atmosphere regime with parameters
�
e

�1,dT
�

=
(1,0.1). The left panel is the time-series for the first two leading modes (1,0) and (0,1) between true model
and reduced model results; the right panel compares the PDFs in the first four modes between the truth and
reduced model prediction with the Gaussian fit in dashed black lines.

Figure: Prediction about tracer intermittency in mid latitude atmosphere regime with
parameters.
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Summary

The single-point probability distribution function of a passive scalar has been
the focus of much interest and requires better understanding.

The generation of tracer intermittency is related with the competition between
the blocked and unblocked modes in advection flow.

The complex strongly turbulent dynamical system requires proper
reduced-order modeling strategy of adopting simple advection flow models.

Reduced-order stochastic models in passive scalar turbulence are useful in
predicting extreme events and intermittency.

D. Qi and A. Majda, Predicting fat-tailed Intermittent probability distributions in passive
scalar turbulence with imperfect models through empirical information theory, CMS,
2015.

D. Qi and A. Majda, Predicting extreme events for passive scalar turbulence in two-layer
baroclinic flows through reduced-order stochastic models, submitted, 2017.

Thank you for your attention!
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