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Long tails of natural tracers from observation
Intermittency is a key feature of turbulent flows and correctly taking it into
account in turbulence models is of critical importance.

@ Passive tracer distributions exhibit approximately exponential tails.

@ Such tails are indeed ubiquitous in observation, model, and reanalysis
data sets for a variety of tracers.!
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Simplified passive scalar models

@ Simplified models in tracer turbulence:

» Understanding the fundamental mechanisms that can potentially lead to
such behavior is a question of great theoretical interest.

> The analysis of simple systems with a Gaussian core can shed some light
on similar behaviors observed in more complex models.

@ Major Questions:

» What structure is needed for a velocity field so that the PDF for a passive
scalar exhibits a transition from a Gaussian PDF to a broader than
Gaussian shape.

> How to develop explicit reduced-order models with unambiguous behavior
for intermittency of scalar PDFs.
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Outline

e Turbulent diffusion models with mean gradient formulation
@ Elementary models with intermittency for passive scalars
@ Rigorous intermittency in a random resonance regime

e Two-layer baroclinic turbulence as advection flow
@ Two-layer baroclinic turbulence in ocean and atmosphere regimes
@ A reduced-order stochastic model with consistency and sensitivity

e Predicting intermittent PDFs with low-order stochastic models
@ Model calibration in Gaussian velocity field
@ Prediction skill of low-order stochastic models
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Outline

Q Turbulent diffusion models with mean gradient formulation
@ Elementary models with intermittency for passive scalars
@ Rigorous intermittency in a random resonance regime
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Passive tracer with a mean gradient
Passive tracer of turbulent advection, diffusion, and damping

T
%—I—V-VT: —drT+ kAT.

@ The tracer field is assumed to have a background mean gradient
T(x,t)=oux+oy+T (x,y,t).
@ The model for the velocity field is two dimensional and periodic in space
v(x.t) = (U(t),v(x.1)),

with the cross-sweep, U(t), and the shear flow, v (x,t).
@ T'(x,t) denotes fluctuations around the mean gradient

oT’ oT’

o or _ _ . / /
T: +U(t) Ix ov(x,t)—drT' + kAT,
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Elementary model with intermittency?

It is the time modulation in the transverse sweep, more precisely the fact
that the sweep crosses zero periodically, that leads to the intermittency.

T’ o 9°T
Tt HPUO 5~ 5 = —aPev(xt), [Pe—VL/k}

T=ay+T, U(t)=sinot, v(x,t)=sin2zx.

U=0 open streamlines

@ when U =0, the open streamlines in the
horizontal direction, along the mean gradient
ay, promote strong mixing by diffusion.

@ when U # 0, the transverse sweep
corresponds to blocked streamlines, little

) == transport along the gradient, little

opportunity for mixing by diffusion.

A
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Elementary model with intermittency

oT’ oT' 92T’ i) v=sin2mx
(9 +P U(t) ﬁ:—aPev(X,t), ) 7
t X iyv=_&(t), (§(t)&(0)) =R(t).
o M Pe=1 ° /\ Pe=1
“ m Peci0 ) Pe=10
N Pe=100
S|
&
Q—w"’»

a0 B - K -

(c) deterministic (d) random Gaussian

Di Qi (CIMS) Predicting Extreme Events for Passive Tracers May 24, 2017 8/24



Outline

e Two-layer baroclinic turbulence as advection flow
@ Two-layer baroclinic turbulence in ocean and atmosphere regimes
@ A reduced-order stochastic model with consistency and sensitivity
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The two-layer flow as advection flow

The two-layer quasi-geostrophic model is one simple but fully nonlinear
fluid model capable in capturing the essential physics.

Two-layer model

IA
T 1) (way) H(s, q1)+B— Yl = ZA(y-7)-vadqy,

P
+J(w,qf)+1(r qW)+B +U

K
- (BY+KY) = —S A(c—y) - vASG..

barotropic and baroclinic modes: energy and heat flux:

QW:AW7 V=

1
§(W1+II/2) EZE/\VW|2+|VT|2+’<§TZ
1
qr :Arfkf,'r, T= 5

(v1—v2). Hf :ng/VT.
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lllustration about tracer intermittency with heat flux

barotropic flow field, unblocked regime

barotropic flow field, blocked regime

(b) unblocked regime

(a) blocked regime

time-series of flow heat flux vz
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(c) time-series of heat flux and scalar tracer
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Stochastic formulations for the passive tracer and
turbulent flow field

@ reduced-order advection flow equations g, = (?71,k,?72,k)T

diuk =

— (Vg +i0qx) Gm kdt —Dg’{ KGm K dt + zg’{kdwq*, 1<kl <M.

1= . .
vmv =V-Vu, duk=HkVmk,

1

2

Z (AkmGm ©Gn +AknGn ©Gm) = *Dg”kam‘,kdt-l- ZQ’{deq,k.
m+n=k

- - = ~ ~ T
@ reduced-order passive tracer equations 7, = (Tl,k7T2,k)

d:I‘—M_’k + (VM

-VTM)kdE = alePmudt— (Fra+ior) Tuxdt, 1<kl <M.
Vv = Z I.I(L leMjkeik'x.
Ik|<M,
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Model calibration in the advection flow field

@ The imperfect model calibration parameters (D, £¢') need properly
reflect the true nonlinear energy mechanism.
@ The statistical equations for the fluctuation covariance matrix
Ry = (GGy,) become?
dRq q a9\ Rd 4 RA ( 9 qy)*
+oF =(L+Z)RI+RL(LI+2])", |k <N,
1 = - = = 2%
OF( k)= 3 Z ((AkmGm ©Gn +AannOQm)qk>-
m+n=k
@ In the statistical steady state, dRﬁ/dt = 0, then the nonlinear fluxes can
be calculated at equilibrium as t — «

oFeq ($q+@¢7) kqurRkeq(‘gngr@I(z)*'

4Sapsis & Majda, Physica D, 2013
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Imperfect model correction from equilibrium
statistics and additional terms

@ the first proposal for the linear damping and Gaussian random noise
correction can be introduced as

-1 1/2
eq _ q eq __ q,+ .
Dq‘k OF .eq.k (Rk eq) ’ zq,k - (OF,eq,k) !

@ a further correction for the noise and damping with a simple constant
damping and noise

2 dy+io
d _ padd add add M M
Q =Dy Rmk+ (ZM,k) , Dy = [ dy—i M] .

@ Combining the ideas, we propose the additional damping and noise
corrections for the reduced-order flow vorticity mode

-1 1/2
M dd dd
Doy = OFeCL (Rzeq) ~ D", (OFeqk+(za 3 ) '
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Outline

e Predicting intermittent PDFs with low-order stochastic models
@ Model calibration in Gaussian velocity field
@ Prediction skill of low-order stochastic models
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Gaussian velocity stochastic models for passive
tracer statistics

@ Apply the Galerkin truncation strategy by resolving only the first M
leading modes in spectral space

doy , " .

d—f = (=Y +iwy,) O + oy Wi, k| <M.

@ One of the simplest and most direction way to estimate the undetermined
coefficients y, , wy, , oy, is through the mean stochastic model (MSM):

By = var ({k (1)) = (lak () - <ak>|2>,
o= [ (0= /<(uk(r 0)) (@ (7+0) = (@))")

var (@ (2)

Di Qi (CIMS) Predicting Extreme Events for Passive Tracers May 24, 2017

18/24



Spectral Information criterion for improving imperfect
model prediction skill

A natural way of measuring the lack of information is the relative entropy

@ (n,n"”) :/nlog ﬂlM

Khinchin’s formula: if the autocorrelation function Z (t) is smooth and rapid-decay,

u(t):/m ™2 (dn), %’(t):/_ie’“dF()L):/m eME()dA,

—oo —oo

Energy spectrum can be represented by E(A) or dF (1)
dF (A) = E(A)dA =E|Z(dA)|*.

Spectral information criterion

A) max|Z(t)— &M (t)] <2V3 ([ (B (A)+E% (1)) dA)> 2 (E(A),EM (1)) *;
B) [|%(t)— 2" (t)|° dt < 12max|E2 (A)+E3 (1)| 2 (E(R),EM (1)).
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PDFs in stream functions of the advection flow

regime N B kg U r dr K o
ocean, high lat. 128 2 40 0.1 0.1 0.5 0.001 1
atmosphere, high lat. 128 2 4 0.2 0.2 0.1 0.001 1
atmosphere, mid lat. 128 1 4 0.2 0.1 0.1 0001 1
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(a) high lat. ocean (b) high lat. atmosphere (c) mid lat. atmosphere
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Autocorrelation functions for representative modes

T (t) =

(O (D)= () (O (T+) — (B ) ")

var(Ug(r))
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Skill of stochastic models in two-layer QG

upper layer, mode (1,0) lower layer, mode (1,0)

time-series of mode (1,0) in lower layer, true model
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Figure: Prediction about tracer intermittency in high latitude ocean regime.
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Skill of stochastic models in two-layer QG

time-series of mode (1,0) in lower layer, true model
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Figure: Prediction about tracer intermittency in high latitude atmosphere regime.
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Skill of stochastic models in two-layer QG

time-series of mode (1,0) in lower layer, true model
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Figure: Prediction about tracer intermittency in mid latitude atmosphere regime with

parameters.

Di Qi (CIMS) Predicting Extreme Events for Passive Tracel May 24, 2017

23/24



Summary

@ The single-point probability distribution function of a passive scalar has been
the focus of much interest and requires better understanding.

@ The generation of tracer intermittency is related with the competition between
the blocked and unblocked modes in advection flow.

@ The complex strongly turbulent dynamical system requires proper
reduced-order modeling strategy of adopting simple advection flow models.

@ Reduced-order stochastic models in passive scalar turbulence are useful in
predicting extreme events and intermittency.

@ D. Qi and A. Majda, Predicting fat-tailed Intermittent probability distributions in passive
scalar turbulence with imperfect models through empirical information theory, CMS,
2015.

@ D. Qi and A. Majda, Predicting extreme events for passive scalar turbulence in two-layer
baroclinic flows through reduced-order stochastic models, submitted, 2017.

Thank you for your attention!
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