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What is data assimilation?

Courtesy Alan Geer
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Applications of data assimilation

• Forecasting: Using recent observations to improve initial
conditions for short-term predictions (e.g. numerical weather
forecasting)

• Diagnosis, including parameter estimation: Testing and
improving models by comparing predictions to observations
(e.g. flood inundation forecasting)

• Retrospective analysis: Learning more about how the Earth
works, by using models to interpret/extend different types of
data (e.g. climate studies)

• Real-time Control: Use continually changing estimates of
system state to determine control actions (e.g. intelligent
sewers)
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Context - Forecasting High Impact Weather

• High impact weather:
◦ Intense rainfall→ pluvial

floods
◦ Windstorms
◦ Fog
◦ Heat-stress

Radar data, July 11, 2012 ©Met Office 2012

May 11-12 1997, Atlanta Georgia (NASA image). Daytime
air temperatures were only 26.7◦C but some of its surface

temperatures soared to 47.8◦C.
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What is numerical weather prediction?

Picture from Met Office

• Numerical solution of a set of
coupled PDES in complex geometry

• Initial-boundary value problem: we
need an initial condition plus forcing
at the top of the atmosphere and
earth’s surface
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The forecast-assimilation cycle - provision of initial
conditions
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Practical and Numerical aspects

• Large problem
◦ State vector x ∼ O(109), observations y ∼ O(107)

• Time constrained
◦ Need to wait for latest observations to arrive
◦ A late forecast is useless!

• Robustness
◦ Critical operations rely on forecasts (Civil aviation, emergency

response, wind power generation etc.)
◦ Robustness more important than accuracy.
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3D-Var

Minimize

J(x) =
(

x− xb
)T

B−1
(

x− xb
)
+ (y− Hx)T R−1 (y− Hx) .
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Statistical viewpoint of background errors

xt = xb + εb; xt ,xb, εb ∈ Rn

The background errors are assumed
• unbiased, E(εb) = 0
• with covariance E

[
εb(εb)T ] = B

• and Gaussian distributed εb ∼ N(0,B)
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Tikhonov regularization viewpoint

• The minimization problem,

min J(x) = (y− H(x))T R−1 (y− H(x)) .

is ill-posed, since there are not enough observations to define x
uniquely.

• Addition of background term can be viewed as regularization.
• B is chosen to give a balance between fitting the observations

closely and making the problem easier to solve.

12 of 27



Tikhonov regularization viewpoint

• The minimization problem,

min J(x) = (y− H(x))T R−1 (y− H(x)) .

is ill-posed, since there are not enough observations to define x
uniquely.

• Addition of background term can be viewed as regularization.
• B is chosen to give a balance between fitting the observations

closely and making the problem easier to solve.

12 of 27



Role of B in the analysis

Consider the solution for the analysis in the following form,

xa = xb + BHT (HBHT + R)−T (y− Hxb).

Analysis increments are linear combinations of the columns of B.
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Spreading and smoothing

Smith (2010)
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Multivariate effects

Figure from Ross Bannister
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Background errors summary

• Background errors play a large role in
◦ Spreading and smoothing the increments
◦ Setting the multivariate balance properties of the analysis

• B cannot be estimated directly so it is often estimated using
forecast differences, or ensembles (of forecasts or analyses) as
a proxy.

• For more information see Bannister (2008a,b); Buehner (2010)
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Open question - Constrained DA

• Some variables need to be constrained for
physical reasons e.g.
◦ humidity
◦ rainfall rate

• Can resolve this by using constraints in
minimization BUT reduction in minimization
rate
◦ Brute force enforcement
◦ Karush-Kuhn-Tucker
◦ Barrier methods

• How can we enforce positivity without
increasing wall-clock time?
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What are observation errors?

In data assimilation, we consider
the observation equation

y = H(x) + ε.

We assume ε is unbiased,
E(ε) = 0, and has covariance R
such that

Rij = E(εiεj).
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Where do observation errors come from?

The error vector, ε, contains errors from four main sources:

• Instrument noise
• Observation processing
• Forward model error
• Representativity error
◦ contrasting model and observation

resolutions
◦ observations resolve spatial scales or

features that the model cannot
◦ Problem: we know little about natural

variability in cities
http://www.met.reading.ac.uk/micromet/ir-images/
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Problems dealing with observation error
correlations

• Magnitude and character of observation weighting matrices
largely unknown - can only be estimated in a statistical sense,
not observed directly

• In the early days of data assimilation, there were fewer
observations from remote sensing, so historically the most
effort has been put into modelling and preconditioning B.

• Observations thinned spatially, and the R matrix treated as
diagonal (about 80% loss)

• However with higher resolution forecasting we need to retain
the observed information on finer scales.
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Example - Spinning Enhanced Visible and Infrared
Imager (SEVIRI)
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Diagnosed Interchannel correlations (Waller et al.,
2016)

What is happening on the coasts?
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Observation Error summary Conclusions

• It is important to be able to account for observation error
correlations
◦ Avoid thinning (high resolution forecasting)
◦ More information content
◦ Better analysis accuracy
◦ Improved NWP skill score

• Observation error review Janjić et al. (2016)
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Open question - new computing architecture

• How can we write data assimilation
algorithms that are efficient on new
massively parallel computing architecture?

• Can we cope with heterogeneous,
intermittent, low quality data and still get
good results?

• Keep up to date with new data assimilation
blog and network(Get in touch if you want
to contribute!)
http://blogs.reading.ac.uk/dare/
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Useful references

New textbooks:
• Asch et al. (2016) is a text placing data assimilation in the

broader context of inverse problems.
• Reich and Cotter (2015) take a more probabilistic Bayesian

approach.
Classics:
• Daley (1991)
• Bennett (2002)
• Jazwinski (1970)
Research reviews/collections covering a range of applications
• Park and Xu (2017)
• Lahoz et al. (2010)
26 of 27



References
M. Asch, M. Bocquet, and M. Nodet. Data Assimilation: Methods, Algorithms, and Applications:. Fundamentals of

Algorithms. SIAM, 2016. ISBN 9781611974539.
R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational data assimilation. i:

Characteristics and measurements of forecast error covariances. Quarterly Journal of the Royal Meteorological
Society, 134(637):1951–1970, 2008a.

R. N. Bannister. A review of forecast error covariance statistics in atmospheric variational data assimilation. ii: Modelling
the forecast error covariance statistics. Quarterly Journal of the Royal Meteorological Society, 134(637):1971–1996,
2008b.

A.F. Bennett. Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 2002.
M. Buehner. Error statistics in data assimilation: Estimation and modelling. In W. Lahoz, B. Khattatov, and R. Menard,

editors, Data Assimilation: Making Sense of Observations, pages 93–112. Springer, Berlin, Heidelberg, 2010. doi:
10.1007/978-3-540-74703-1_5.

R. Daley. Atmospheric Data Analysis. Cambridge University Press, Cambridge, 1991.
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