On the Global Behavior of Generalized Characteristics of Hamilton-Jacobi Equations

Joint work of Piermarco Cannarsa and Cui Chen

Wei Cheng

Nanjing University

December 10, 2015

Scottsdale, Arizona

Generalized characteristic and propagation of singularities

• We will talk about the theory of singular dynamics of viscosity solutions initiated by P. Cannarsa, *et al*, i.e., the dynamics on the singular set of a solution driven by a differential inclusion of generalized characteristic.

Generalized characteristic and propagation of singularities

- We will talk about the theory of singular dynamics of viscosity solutions initiated by P. Cannarsa, *et al*, i.e., the dynamics on the singular set of a solution driven by a differential inclusion of generalized characteristic.
- A Lipschitz arc $\mathbf{x} : [0, \tau] \to \mathbb{R}^n$ is said to be a *generalized characteristic* of the Hamilton-Jacobi equation

H(x, Du(x)) = 0,

if \mathbf{x} satisfies the differential inclusion

 $\dot{\mathbf{x}}(s) \in \operatorname{co} H_p(\mathbf{x}(s), D^+ u(\mathbf{x}(s))), \quad a.e. \ s \in [0, \tau].$ (1.1)

Generalized characteristic and propagation of singularities

- We will talk about the theory of singular dynamics of viscosity solutions initiated by P. Cannarsa, *et al*, i.e., the dynamics on the singular set of a solution driven by a differential inclusion of generalized characteristic.
- A Lipschitz arc $\mathbf{x} : [0, \tau] \to \mathbb{R}^n$ is said to be a *generalized characteristic* of the Hamilton-Jacobi equation

H(x, Du(x)) = 0,

if \mathbf{x} satisfies the differential inclusion

$$\dot{\mathbf{x}}(s) \in \operatorname{co} H_p\big(\mathbf{x}(s), D^+ u(\mathbf{x}(s))\big), \quad a.e. \ s \in [0, \tau] \,. \tag{1.1}$$

If x_0 is singular point of u, and

$$0 \notin \operatorname{co} H_p(x_0, D^+ u(x_0)), \qquad (1.2)$$

then there exists such a singular generalized characteristic locally, see [Albano-Can, 2002], [Can-Yu, 2009] for control theory and PDE approach respectively.

Wei Cheng

Local barrier functions and inf/sup-convolution

• Let $u \in C(\mathbb{R}^n)$ and let *H* be a Tonelli Hamiltonian on \mathbb{R}^n . Recall the *Lax-Oleinik operators* T_t^- and T_t^+ , for any $u \in C(\mathbb{R}^n)$,

$$T_t^+ u(x) := \sup_{y \in \mathbb{R}^n} \{ u(y) - A_t(x, y) \},$$

$$T_t^- u(x) := \inf_{y \in \mathbb{R}^n} \{ u(y) + A_t(y, x) \},$$

where $A_t(x, y)$ is the fundamental solution w.r.t H-J equation.

Local barrier functions and inf/sup-convolution

• Let $u \in C(\mathbb{R}^n)$ and let *H* be a Tonelli Hamiltonian on \mathbb{R}^n . Recall the *Lax-Oleinik operators* T_t^- and T_t^+ , for any $u \in C(\mathbb{R}^n)$,

$$T_t^+ u(x) := \sup_{y \in \mathbb{R}^n} \{ u(y) - A_t(x, y) \},$$

$$T_t^- u(x) := \inf_{y \in \mathbb{R}^n} \{ u(y) + A_t(y, x) \},$$

where $A_t(x, y)$ is the fundamental solution w.r.t H-J equation. Solution For any fixed x_0 and t > 0, define the local barrier functions

$$\psi_t(x) := u(x) - A_t(x_0, x),$$

 $\phi_t(x) := u(x) + A_t(x, x_0).$

Recall Mather's barrier function B^* .

Local barrier functions and inf/sup-convolution

• Let $u \in C(\mathbb{R}^n)$ and let *H* be a Tonelli Hamiltonian on \mathbb{R}^n . Recall the *Lax-Oleinik operators* T_t^- and T_t^+ , for any $u \in C(\mathbb{R}^n)$,

$$T_t^+ u(x) := \sup_{y \in \mathbb{R}^n} \{ u(y) - A_t(x, y)) \},$$

$$T_t^- u(x) := \inf_{y \in \mathbb{R}^n} \{ u(y) + A_t(y, x)) \},$$

where A_t(x, y) is the fundamental solution w.r.t H-J equation.
For any fixed x₀ and t > 0, define the local barrier functions

$$\psi_t(x) := u(x) - A_t(x_0, x),$$

 $\phi_t(x) := u(x) + A_t(x, x_0).$

Recall Mather's barrier function B^* .

By the regularity properties of A_t(x, y) and u, φ_t is a locally semiconcave functions, but for t > 0 small enough, ψ_t is both a locally semiconcave function and a convex function. We will discuss this essential point later!

• Recall that a point $x \in \mathbb{R}^n$ is a critical point of a locally semiconcave function u if $0 \in D^+u(x)$.

- Recall that a point $x \in \mathbb{R}^n$ is a critical point of a locally semiconcave function u if $0 \in D^+u(x)$.
- It makes sense to study the critical points of barrier functions, local or global ones. For the global ones, it is useful for the study of homoclinic phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].

- Recall that a point $x \in \mathbb{R}^n$ is a critical point of a locally semiconcave function u if $0 \in D^+u(x)$.
- It makes sense to study the critical points of barrier functions, local or global ones. For the global ones, it is useful for the study of homoclinic phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].
- We discussed that in the case of ϕ_t in [Chen-C, 2015].

- Recall that a point $x \in \mathbb{R}^n$ is a critical point of a locally semiconcave function u if $0 \in D^+u(x)$.
- It makes sense to study the critical points of barrier functions, local or global ones. For the global ones, it is useful for the study of homoclinic phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].
- Solution We discussed that in the case of ϕ_t in [Chen-C, 2015].
- In [Can-Chen-C, draft, 2015], we discussed the local propagation along this line recovering what in [Can-Yu], and more information can be obtained.

- Recall that a point $x \in \mathbb{R}^n$ is a critical point of a locally semiconcave function u if $0 \in D^+u(x)$.
- It makes sense to study the critical points of barrier functions, local or global ones. For the global ones, it is useful for the study of homoclinic phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].
- Solution We discussed that in the case of ϕ_t in [Chen-C, 2015].
- In [Can-Chen-C, draft, 2015], we discussed the local propagation along this line recovering what in [Can-Yu], and more information can be obtained.
- We will concentrate on the critical points of ψ_t in the procedure of sup-convolution, and the connection with the global propagation of singularities along generalized characteristics for general mechanical systems on ℝⁿ ([Can-C, draft, 2015]).

Semiconcave functions

• Let $\Omega \subset \mathbb{R}^n$ be a convex open set, a function $u : \Omega \to \mathbb{R}$ is *semiconcave* if there exists a constant C > 0 such that

$$\lambda u(x) + (1-\lambda)u(y) - u(\lambda x + (1-\lambda)y) \leqslant \frac{C}{2}\lambda(1-\lambda)|x-y|^2$$

for any $x, y \in \Omega$ and $\lambda \in [0, 1]$.

Semiconcave functions

• Let $\Omega \subset \mathbb{R}^n$ be a convex open set, a function $u : \Omega \to \mathbb{R}$ is *semiconcave* if there exists a constant C > 0 such that

$$\lambda u(x) + (1-\lambda)u(y) - u(\lambda x + (1-\lambda)y) \leqslant \frac{C}{2}\lambda(1-\lambda)|x-y|^2$$

for any $x, y \in \Omega$ and $\lambda \in [0, 1]$.

Solution Equivalently, *u* is semiconcave with constant *C* if $u(\cdot) - C|\cdot|^2/2$ is concave.

Semiconcave functions

• Let $\Omega \subset \mathbb{R}^n$ be a convex open set, a function $u : \Omega \to \mathbb{R}$ is *semiconcave* if there exists a constant C > 0 such that

$$\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y) \leq \frac{C}{2}\lambda(1 - \lambda)|x - y|^2$$

for any $x, y \in \Omega$ and $\lambda \in [0, 1]$.

- Solution Equivalently, *u* is semiconcave with constant *C* if $u(\cdot) C| \cdot |^2/2$ is concave.
- A function u : Ω → ℝ is said to be *semiconvex* if -u is semiconcave. A function u : Ω → ℝ is said to be *locally semiconcave* (resp. *locally semiconvex*) if for each x ∈ Ω, there exists an open ball B(x, r) ⊂ Ω such that u is a semiconcave (resp. semiconvex) function on B(x, r).

Superdifferentials and Limiting differentials

Let u : Ω ⊂ ℝⁿ → ℝ be a continuous function. We recall that, for any x ∈ Ω, the closed convex sets

$$D^{-}u(x) = \left\{ p \in \mathbb{R}^{n} : \liminf_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \ge 0 \right\},$$

$$D^{+}u(x) = \left\{ p \in \mathbb{R}^{n} : \limsup_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \le 0 \right\}.$$

are called the (Dini) *subdifferential* and *superdifferential* of *u* at *x*, respectively.

Superdifferentials and Limiting differentials

Let *u* : Ω ⊂ ℝⁿ → ℝ be a continuous function. We recall that, for any *x* ∈ Ω, the closed convex sets

$$D^{-}u(x) = \left\{ p \in \mathbb{R}^{n} : \liminf_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \ge 0 \right\},$$

$$D^{+}u(x) = \left\{ p \in \mathbb{R}^{n} : \limsup_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \le 0 \right\}.$$

are called the (Dini) *subdifferential* and *superdifferential* of *u* at *x*, respectively.

Let u : Ω → ℝ be locally Lipschitz. We recall that a vector p ∈ ℝⁿ is called a *limiting differential* of u at x if there exists a sequence {x_n} ⊂ Ω \ {x} such that u is differentiable at x_k for each k ∈ ℕ, and

$$\lim_{k\to\infty} x_k = x \quad \text{and} \quad \lim_{k\to\infty} Du(x_k) = p.$$

The set of all limiting differentials of *u* at *x* is denoted by $D^*u(x)$.

Tonelli Lagrangians

We concentrate on Tonelli systems.

A function $L : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is said to be a *Tonelli Lagrangian* if the following assumptions are satisfied.

• Smoothness: L = L(x, v) is of class at least C^2 .

Tonelli Lagrangians

We concentrate on Tonelli systems.

A function $L : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is said to be a *Tonelli Lagrangian* if the following assumptions are satisfied.

- Smoothness: L = L(x, v) is of class at least C^2 .
- **Orrestity:** The Hessian $\frac{\partial^2 L}{\partial v^2}(x, v)$ is positive definite on \mathbb{R}^n .

Tonelli Lagrangians

We concentrate on Tonelli systems.

A function $L : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is said to be a *Tonelli Lagrangian* if the following assumptions are satisfied.

- Smoothness: L = L(x, v) is of class at least C^2 .
- **2** *Convexity*: The Hessian $\frac{\partial^2 L}{\partial v^2}(x, v)$ is positive definite on \mathbb{R}^n .

• Superlinearity:

$$\lim_{|\nu|\to\infty}\frac{L(x,\nu)}{|\nu|}=\infty \quad \text{uniformly for } x\in M.$$

We concentrate on Tonelli systems.

A function $L : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is said to be a *Tonelli Lagrangian* if the following assumptions are satisfied.

- Smoothness: L = L(x, v) is of class at least C^2 .
- **2** *Convexity*: The Hessian $\frac{\partial^2 L}{\partial v^2}(x, v)$ is positive definite on \mathbb{R}^n .

Superlinearity:

$$\lim_{|\nu|\to\infty}\frac{L(x,\nu)}{|\nu|}=\infty \quad \text{uniformly for } x\in M.$$

We concentrate on Tonelli systems.

A function $L : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is said to be a *Tonelli Lagrangian* if the following assumptions are satisfied.

- Smoothness: L = L(x, v) is of class at least C^2 .
- **2** *Convexity*: The Hessian $\frac{\partial^2 L}{\partial v^2}(x, v)$ is positive definite on \mathbb{R}^n .

Superlinearity:

$$\lim_{|v|\to\infty}\frac{L(x,v)}{|v|}=\infty \quad \text{uniformly for } x\in M.$$

For more regularity results required, we need more conditions!

Fundamental solutions

Given $x, y \in \mathbb{R}^n$, we define

$$\Gamma_{x,y}^{t} = \{ \gamma \in W^{1,1}([0,t], \mathbb{R}^{n}) : \gamma(0) = x, \gamma(t) = y \}$$

Fundamental solutions

Given $x, y \in \mathbb{R}^n$, we define

$$\Gamma_{x,y}^{t} = \{ \gamma \in W^{1,1}([0,t], \mathbb{R}^{n}) : \gamma(0) = x, \gamma(t) = y \}$$

Let t > 0, we denote

$$A_t(x,y) = \inf_{\gamma \in \Gamma_{x,y}^t} \int_0^t L(\gamma(s), \dot{\gamma}(s)) ds.$$
(2.1)

Fundamental solutions

Given $x, y \in \mathbb{R}^n$, we define

$$\Gamma_{x,y}^{t} = \{ \gamma \in W^{1,1}([0,t], \mathbb{R}^{n}) : \gamma(0) = x, \gamma(t) = y \}$$

Let t > 0, we denote

$$A_t(x,y) = \inf_{\gamma \in \Gamma_{x,y}^t} \int_0^t L(\gamma(s), \dot{\gamma}(s)) ds.$$
(2.1)

In the literature of PDEs, $A_t(x, y)$ is called a *fundamental solution* of H-J equation

$$u_t + H(x, \nabla u(t, x)) = 0, \qquad (2.2)$$

where *H* stands for the associated Tonelli Hamiltonian. $A_t(x, y)$ is also called *generating function* in the context of dynamical systems or symplectic geometry.

We recall that a continuous function *u* is called a *viscosity subsolution* of equation (2.2) if, for any $x \in \mathbb{R}^n$,

$$H(x,p) \leqslant 0, \quad \forall p \in D^+ u(x).$$
 (2.3)

We recall that a continuous function *u* is called a *viscosity subsolution* of equation (2.2) if, for any $x \in \mathbb{R}^n$,

$$H(x,p) \leqslant 0, \quad \forall p \in D^+u(x).$$
 (2.3)

Similarly, *u* is a *viscosity supersolution* of equation (2.2) if, for any $x \in \mathbb{R}^n$,

$$H(x,p) \ge 0, \quad \forall p \in D^-u(x).$$
 (2.4)

We recall that a continuous function *u* is called a *viscosity subsolution* of equation (2.2) if, for any $x \in \mathbb{R}^n$,

$$H(x,p) \leqslant 0, \quad \forall p \in D^+u(x).$$
 (2.3)

Similarly, *u* is a *viscosity supersolution* of equation (2.2) if, for any $x \in \mathbb{R}^n$,

$$H(x,p) \ge 0, \quad \forall p \in D^-u(x).$$
 (2.4)

Finally, u is called a *viscosity solution* of equation (2.2), if it is both a viscosity subsolution and a supersolution.

Two basic facts on viscosity solutions

Proposition

Any viscosity solution of the Hamilton-Jacobi equation (2.2) is locally semiconcave.

Two basic facts on viscosity solutions

Proposition

Any viscosity solution of the Hamilton-Jacobi equation (2.2) is locally semiconcave.

Proposition

Ext $D^+u(x) = D^*u(x)$ for any viscosity solution u of (2.2) and any $x \in \mathbb{R}^n$.

Here we denote by Ext C the set of extremal points of C.

One important observation

Proposition

One important observation

Proposition

One important observation

Proposition

One important observation

Proposition

One important observation

Proposition

Singular set and cut loci

 A point x ∈ Ω is called a *singular point* of u if D⁺u(x) is not a singleton. The set of all singular points of u, also called the *singular set* of u, is denoted by Σ_u.
Singular set and cut loci

- A point x ∈ Ω is called a *singular point* of u if D⁺u(x) is not a singleton. The set of all singular points of u, also called the *singular set* of u, is denoted by Σ_u.
- When talking about the viscosity solution, $\overline{\Sigma_u}$ is called the *cut loci* of *u*. (Under a certain regularity condition, $\overline{\Sigma_u} = \Gamma_u \cup \Sigma_u$, where Γ_u is the conjugate loci.)

• We begin with a local argument. Let x_0 be a singular point of u, and the local barrier function ψ_t is defined w.r.t x_0 for t > 0. We want to find the maximizer, say y_t , of ψ_t in $\overline{B}(x_0, R)$.

- We begin with a local argument. Let x_0 be a singular point of u, and the local barrier function ψ_t is defined w.r.t x_0 for t > 0. We want to find the maximizer, say y_t , of ψ_t in $\overline{B}(x_0, R)$.
- Sy the regularity properties of $A_t(x, y)$, when *t* > 0 small enough, we have that $A_t(x_0, \cdot)$ is convex locally (with the constant of convexity large if *t* small) and $C_{loc}^{1,1}$ consequently. Thus ψ_t is concave in $\overline{B}(x_0, R)$. So there exists a unique $y_t \in \overline{B}(x_0, R)$.

- We begin with a local argument. Let x_0 be a singular point of u, and the local barrier function ψ_t is defined w.r.t x_0 for t > 0. We want to find the maximizer, say y_t , of ψ_t in $\overline{B}(x_0, R)$.
- Sy the regularity properties of $A_t(x, y)$, when *t* > 0 small enough, we have that $A_t(x_0, \cdot)$ is convex locally (with the constant of convexity large if *t* small) and $C_{loc}^{1,1}$ consequently. Thus ψ_t is concave in $\overline{B}(x_0, R)$. So there exists a unique $y_t \in \overline{B}(x_0, R)$.
- The essential difficulty is if the maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$. If so, we can prove that there exists $t_0 > 0$ dependent on the initial point x_0 , such that the arc $\mathbf{y} : [0, t_0] \to \mathbb{R}^n$ defined by

$$\mathbf{y}(t) = \begin{cases} x_0, & t = 0, \\ y_t, & t \in (0, t_0] \end{cases}$$

satisfying that $\mathbf{y}(t)$ is a singular point of u for all $t \in [0, t_0]$.

• We need more conditions in global case.

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;
 - **②** The maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$.

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;
 - **②** The maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$.
- Suppose these two conditions are satisfied. $\xi_t : [0, t] \to \mathbb{R}^n$ is the unique minimizer in the definition of $A_t(x_0, y_t)$.

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;
 - **②** The maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$.
- Suppose these two conditions are satisfied. $\xi_t : [0, t] \to \mathbb{R}^n$ is the unique minimizer in the definition of $A_t(x_0, y_t)$.

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;
 - **②** The maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$.
- Suppose these two conditions are satisfied. $\xi_t : [0, t] \to \mathbb{R}^n$ is the unique minimizer in the definition of $A_t(x_0, y_t)$.

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;
 - **②** The maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$.
- Suppose these two conditions are satisfied. $\xi_t : [0, t] \to \mathbb{R}^n$ is the unique minimizer in the definition of $A_t(x_0, y_t)$.

- We need more conditions in global case.
 - There exists $t_0 > 0$ such that for any $t \in (0.t_0]$, there exists R = R(t) > 0 such that, $A_t(x, \cdot)$ is convex in $\overline{B}(x, R)$ uniformly;
 - **2** The maximizer y_t can be attained in the interior of $\overline{B}(x_0, R)$.
- Suppose these two conditions are satisfied. $\xi_t : [0, t] \to \mathbb{R}^n$ is the unique minimizer in the definition of $A_t(x_0, y_t)$.

The velocity of $\mathbf{y}(\cdot)$ at x_0

• Since $\{\dot{\xi}_t(\cdot)\}_{t\in(0,t_0]}$ are equi-Lipschitz, then for any sequence $t_k \to 0^+$ such that $v_{t_k} := \frac{\xi_{t_k}(t_k) - x_0}{t_k}$ converges, it is not hard to have that $v_0 := \lim_{k \to \infty} v_{t_k} = \lim_{k \to \infty} \dot{\xi}_{t_k}(t_k)$ exists.

The velocity of $\mathbf{y}(\cdot)$ at x_0

Since {ξ_t(·)}_{t∈(0,t_0]} are equi-Lipschitz, then for any sequence t_k → 0⁺ such that v_{t_k} := ξ<sub>t_k(t_k)-x₀/t_k converges, it is not hard to have that v₀ := lim_{k→∞} v_{t_k} = lim_{k→∞} ξ_{t_k}(t_k) exists.
 By the semiconcavity of u₀(·), we have
</sub>

 $\langle p - L_{\nu}(y_{t_k}, \dot{\xi}_{t_k}(t_k)), v_{t_k} \rangle + t_k C |v_{t_k}|^2 \ge 0, \quad \forall p \in D^+ u(x_0).$

Taking limit, then $\langle p, v_0 \rangle \ge \langle L_v(x_0, v_0), v_0 \rangle$, for all $p \in D^+ u(x_0)$. In other words,

 $H(x_0,p) \ge H(x_0,p_0), \quad \forall p \in D^+u(x_0),$

where $p_0 \in D^+u(x_0)$ is the unique element solve this associated optimization problem.

The velocity of $\mathbf{y}(\cdot)$ at x_0

Since {ξ_t(·)}_{t∈(0,t₀]} are equi-Lipschitz, then for any sequence t_k → 0⁺ such that v_{t_k} := ξ_{t_k(t_k)-x₀}/t_k converges, it is not hard to have that v₀ := lim_{k→∞} v_{t_k} = lim_{k→∞} ξ_{t_k}(t_k) exists.
 By the semiconcavity of u₀(·), we have

$$\langle p - L_{\nu}(y_{t_k}, \dot{\xi}_{t_k}(t_k)), v_{t_k} \rangle + t_k C |v_{t_k}|^2 \ge 0, \quad \forall p \in D^+ u(x_0).$$

Taking limit, then $\langle p, v_0 \rangle \ge \langle L_v(x_0, v_0), v_0 \rangle$, for all $p \in D^+u(x_0)$. In other words,

 $H(x_0,p) \ge H(x_0,p_0), \quad \forall p \in D^+u(x_0),$

where $p_0 \in D^+u(x_0)$ is the unique element solve this associated optimization problem.

This leads to the assertion that

$$\dot{\mathbf{y}}^+(0) = \lim_{t \to 0^+} \frac{\xi_t(t) - x_0}{t} = \lim_{t \to 0^+} \dot{\xi}_t(t) = v_0,$$

with $v_0 = H_p(x_0, p_0)$.

• We define $p_t(s) := L_{\nu}(\xi_t(s), \dot{\xi}_t(s))$ for all $s \in [0, t]$, and since y_t is maximizer of ψ_t in $B(x_0, R)$, we have

 $p_t(t) \in D^+ u(y_t), \quad t \in (0, t_0].$

• We define $p_t(s) := L_v(\xi_t(s), \dot{\xi}_t(s))$ for all $s \in [0, t]$, and since y_t is maximizer of ψ_t in $B(x_0, R)$, we have

$$p_t(t) \in D^+ u(y_t), \quad t \in (0, t_0].$$

② To prove the singularity of the arc **y**, it suffices to check

 $p_t(t) = L_v(\xi_t(t), \dot{\xi}_t(t)) \notin D^*u(y_t), \quad \forall t \in (0, t_0].$

• We define $p_t(s) := L_v(\xi_t(s), \dot{\xi}_t(s))$ for all $s \in [0, t]$, and since y_t is maximizer of ψ_t in $B(x_0, R)$, we have

$$p_t(t) \in D^+ u(y_t), \quad t \in (0, t_0].$$

② To prove the singularity of the arc **y**, it suffices to check

$$p_t(t) = L_v(\xi_t(t), \dot{\xi}_t(t)) \notin D^*u(y_t), \quad \forall t \in (0, t_0].$$

Indeed, if not, pt(t) ∈ D*u(yt), then there exists a C² backward (u, L, 0)-calibrated curve γ : (-∞, t] → ℝⁿ in the context of weak KAM theory. It is easily checked that γ and ξt coincides on [0, t] since both of them are extremal curves and satisfies the same endpoint condition at yt. This leads to a contradiction since x0 is a singular point of u.

• We define $p_t(s) := L_v(\xi_t(s), \dot{\xi}_t(s))$ for all $s \in [0, t]$, and since y_t is maximizer of ψ_t in $B(x_0, R)$, we have

$$p_t(t) \in D^+ u(y_t), \quad t \in (0, t_0].$$

② To prove the singularity of the arc **y**, it suffices to check

$$p_t(t) = L_v(\xi_t(t), \dot{\xi}_t(t)) \notin D^*u(y_t), \quad \forall t \in (0, t_0].$$

- Indeed, if not, p_t(t) ∈ D^{*}u(y_t), then there exists a C² backward (u, L, 0)-calibrated curve γ : (-∞, t] → ℝⁿ in the context of weak KAM theory. It is easily checked that γ and ξ_t coincides on [0, t] since both of them are extremal curves and satisfies the same endpoint condition at y_t. This leads to a contradiction since x₀ is a singular point of u.
- It is worth noting t_0 is independent on x_0 since our uniformness assumption on *L* are satisfied.

• An essential technical result for the regularity of **y** is that $\{\dot{\xi}_t(\cdot)\}_{t \in (0,t_0]}$ are equi-Lipschitz.

- An essential technical result for the regularity of **y** is that $\{\dot{\xi}_t(\cdot)\}_{t \in (0,t_0]}$ are equi-Lipschitz.
- **2** The singular arc **y** is a Lipschitz continuous function on $[0, t_0]$.

- An essential technical result for the regularity of **y** is that $\{\dot{\xi}_t(\cdot)\}_{t \in (0,t_0]}$ are equi-Lipschitz.
- **2** The singular arc **y** is a Lipschitz continuous function on $[0, t_0]$.
- Using the idea of Euler's segments algorithm, originated from [Albano-Can, 2002], we have

 $\dot{\mathbf{y}}(\tau) \in \operatorname{co} H_p(\mathbf{y}(\tau), D^+ u(\mathbf{y}(\tau))), \quad \text{a.e. } \tau \in [0, t_0].$

Moreover,

$$\dot{\mathbf{y}}^+(0) = H_p(x_0, p_0),$$

where p_0 is the unique element of minimal energy:

 $H(x_0,p) \ge H(x_0,p_0), \quad \forall p \in D^+u(x_0).$

- An essential technical result for the regularity of **y** is that $\{\dot{\xi}_t(\cdot)\}_{t \in (0,t_0]}$ are equi-Lipschitz.
- **2** The singular arc **y** is a Lipschitz continuous function on $[0, t_0]$.
- Using the idea of Euler's segments algorithm, originated from [Albano-Can, 2002], we have

$$\dot{\mathbf{y}}(\tau) \in \operatorname{co} H_p(\mathbf{y}(\tau), D^+ u(\mathbf{y}(\tau))), \quad \text{a.e. } \tau \in [0, t_0].$$

Moreover,

$$\dot{\mathbf{y}}^+(0) = H_p(x_0, p_0),$$

where p_0 is the unique element of minimal energy:

$$H(x_0,p) \ge H(x_0,p_0), \quad \forall p \in D^+u(x_0).$$

For mechanical systems, a uniqueness result on generalized characteristic have been obtained in [Albano-Can, 2002] or [Can-Yu, 2009].

Wei Cheng

Global Generalized Characteristics

Extend $\mathbf{y}(\cdot)$ to $[0, +\infty)$

We construct the global propagation by induction. First, we obtain a singular generalized characteristic x⁰(s) on [0, t₀] satisfying

$$\dot{\mathbf{x}}^0(s) \in \operatorname{co} H_p(\mathbf{x}^0(s), D^+u(\mathbf{x}^0(s))), \quad \text{a.e. } s \in [0, t_0],$$

with initial condition

$$\mathbf{x}^0(0) = x_0$$
, and $x_1 := \mathbf{x}^0(t_0) \in \Sigma_u$.

Extend $\mathbf{y}(\cdot)$ to $[0, +\infty)$

We construct the global propagation by induction. First, we obtain a singular generalized characteristic x⁰(s) on [0, t₀] satisfying

$$\dot{\mathbf{x}}^0(s) \in \operatorname{co} H_p(\mathbf{x}^0(s), D^+u(\mathbf{x}^0(s))), \quad \text{a.e. } s \in [0, t_0],$$

with initial condition

$$\mathbf{x}^0(0) = x_0, \quad \text{and} \quad x_1 := \mathbf{x}^0(t_0) \in \Sigma_u.$$

Inductively, for each k = 0, 1, 2, ..., we have a singular Lipschitz arc x^k defined on [0, t₀] and

$$\dot{\mathbf{x}}^k(s) \in \operatorname{co} H_p(\mathbf{x}^k(s), D^+u(\mathbf{x}^k(s))), \quad \text{a.e. } s \in [0, t_0],$$

with initial condition

$$\mathbf{x}^k(0) = x_k$$
, and $x_{k+1} := \mathbf{x}^k(t_0) \in \Sigma_u$.

Extend $\mathbf{y}(\cdot)$ to $[0, +\infty)$

We construct the global propagation by induction. First, we obtain a singular generalized characteristic x⁰(s) on [0, t₀] satisfying

$$\dot{\mathbf{x}}^{0}(s) \in \operatorname{co} H_{p}(\mathbf{x}^{0}(s), D^{+}u(\mathbf{x}^{0}(s))), \quad \text{a.e. } s \in [0, t_{0}],$$

with initial condition

$$\mathbf{x}^0(0) = x_0$$
, and $x_1 := \mathbf{x}^0(t_0) \in \Sigma_u$.

Inductively, for each k = 0, 1, 2, ..., we have a singular Lipschitz arc x^k defined on [0, t₀] and

$$\dot{\mathbf{x}}^k(s) \in \operatorname{co} H_p(\mathbf{x}^k(s), D^+u(\mathbf{x}^k(s))), \quad \text{a.e. } s \in [0, t_0],$$

with initial condition

$$\mathbf{x}^k(0) = x_k$$
, and $x_{k+1} := \mathbf{x}^k(t_0) \in \Sigma_u$.

The juxtaposition of $\{\mathbf{x}^k\}$ gives the desired singular g. c..

(L1) Nagumo conditions: there exists $\nu > 0$, $c_0, c_1, c_2 \ge 0$ and q > 1 such that

(L1) Nagumo conditions: there exists $\nu > 0$, $c_0, c_1, c_2 \ge 0$ and q > 1 such that

(i) $L(x,v) \ge \nu |v|^q - c_0$ for all $(x,v) \in \mathbb{R}^n \times \mathbb{R}^n$;

(L1) Nagumo conditions: there exists $\nu > 0$, $c_0, c_1, c_2 \ge 0$ and

- q > 1 such that
 - (i) $L(x,v) \ge \nu |v|^q c_0$ for all $(x,v) \in \mathbb{R}^n \times \mathbb{R}^n$;
- (ii) $|L_{\nu}(x,\nu)| \leq c_1(1+|\nu|^{q-1})$ for all $(x,\nu) \in \mathbb{R}^n \times \mathbb{R}^n$;

(L1) Nagumo conditions: there exists $\nu > 0$, $c_0, c_1, c_2 \ge 0$ and q > 1 such that

- (i) $L(x,v) \ge \nu |v|^q c_0$ for all $(x,v) \in \mathbb{R}^n \times \mathbb{R}^n$;
- (ii) $|L_{\nu}(x,\nu)| \leq c_1(1+|\nu|^{q-1})$ for all $(x,\nu) \in \mathbb{R}^n \times \mathbb{R}^n$; (iii) For any $x, y \in \mathbb{R}^n$ and $\nu \in \mathbb{R}^n$,

 $|L(x,v) - L(y,v)| \leq c_2(1+|v|^q) \min\{1, |x-y|\}.$

(L1) Nagumo conditions: there exists $\nu > 0$, $c_0, c_1, c_2 \ge 0$ and q > 1 such that (i) $L(x, \nu) \ge \nu |\nu|^q - c_0$ for all $(x, \nu) \in \mathbb{R}^n \times \mathbb{R}^n$; (ii) $|L_{\nu}(x, \nu)| \le c_1(1 + |\nu|^{q-1})$ for all $(x, \nu) \in \mathbb{R}^n \times \mathbb{R}^n$; (iii) For any $x, y \in \mathbb{R}^n$ and $\nu \in \mathbb{R}^n$,

$$|L(x,v) - L(y,v)| \leq c_2(1+|v|^q) \min\{1, |x-y|\}.$$

(L2) Uniform Regularity: for any r > 0 there exists a constant $M_r > 0$ such that

 $|D^{\alpha}L(x,v)| \leq M_r$ for any multindex $|\alpha| = 2$ and all $(x,v) \in \mathbb{R}^n \times \mathbb{R}^n$ such that $|v| \leq r$.

(L1) Nagumo conditions: there exists $\nu > 0$, $c_0, c_1, c_2 \ge 0$ and q > 1 such that (i) $L(x, v) \ge \nu |v|^q - c_0$ for all $(x, v) \in \mathbb{R}^n \times \mathbb{R}^n$; (ii) $|L_v(x, v)| \le c_1(1 + |v|^{q-1})$ for all $(x, v) \in \mathbb{R}^n \times \mathbb{R}^n$; (iii) For any $x, y \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$,

$$|L(x,v) - L(y,v)| \leq c_2(1+|v|^q) \min\{1, |x-y|\}.$$

(L2) Uniform Regularity: for any r > 0 there exists a constant $M_r > 0$ such that

 $|D^{\alpha}L(x,v)| \leqslant M_r$

for any multindex $|\alpha| = 2$ and all $(x, v) \in \mathbb{R}^n \times \mathbb{R}^n$ such that $|v| \leq r$.

Strong conditions All the second order partial derivatives of *L* and *H* are bounded uniformly, see, also, [Bernard, 2012].

Wei Cheng

Global Generalized Characteristics

Boundedness results

Proposition

Let t > 0, R > 0 and suppose L satisfies condition (L1)-(L3). Let $\xi \in \Gamma_{x,y}^t$ be a minimizer for $A_t(x, y)$, $x \in \mathbb{R}^n$, $y \in \overline{B}(x, R)$, and let p(s) be the dual arc of $\xi(s)$. Then we have

$$\sup_{s\in[0,t]}|\dot{\xi}(s)| \leq \Delta(t,R), \quad \sup_{s\in[0,t]}|p(s)| \leq \Delta(t,R),$$

where $\Delta(t, R)$ is strictly increasing in R and strictly decreasing in t.

Moreover, if $0 < t \le 1$, then $\Delta(t, R) = \kappa(R/t)$ where the function $\kappa : (0, \infty) \to (0, \infty)$ is continuous and strictly increasing. We also have $\sup_{s \in [0,t]} |\xi(s) - x| \le \Delta(t, R)$.

Note that under our assumptions, the constant Δ is independent on x. But for a local result we can have x-dependence of such Δ .

Wei Cheng

Global Generalized Characteristics

Compactness

• Suppose R > 0 and L satisfies (L1) and (L2). For any $0 < t \le 1$, and $y \in B(x, R)$, let $\xi_{t,y} \in \Gamma_{x,y}^t$ be a minimizer in $A_t(x, y)$, and $p_{t,y}$ its dual arc, then we have

$$\sup_{s\in[0,t]}|\dot{\xi}_{t,y}(s)|\leqslant\kappa(R/t),\quad \sup_{s\in[0,t]}|p_{t,y}(s)|\leqslant\kappa(R/t).$$

Compactness

• Suppose R > 0 and L satisfies (L1) and (L2). For any $0 < t \le 1$, and $y \in B(x, R)$, let $\xi_{t,y} \in \Gamma_{x,y}^t$ be a minimizer in $A_t(x, y)$, and $p_{t,y}$ its dual arc, then we have

$$\sup_{s\in[0,t]}|\dot{\xi}_{t,y}(s)|\leqslant\kappa(R/t),\quad \sup_{s\in[0,t]}|p_{t,y}(s)|\leqslant\kappa(R/t).$$

2 Now, take $0 < t \le 1$ and $R(t) = \frac{1}{2}t$, we denote

$$\begin{aligned} \mathbf{K}_{x} &:= \bar{B}(x, \kappa(1/2)) \times \bar{B}(0, \kappa(1/2)), \\ \mathbf{K}_{x}^{*} &:= \bar{B}(x, \kappa(1/2)) \times \bar{B}(0, \kappa(1/2)) \end{aligned}$$
(4.1) (4.2)

which is a compact set in the phase space of Euler-Lagrange and Hamiltonian systems respectively.

Compactness

• Suppose R > 0 and L satisfies (L1) and (L2). For any $0 < t \le 1$, and $y \in B(x, R)$, let $\xi_{t,y} \in \Gamma_{x,y}^t$ be a minimizer in $A_t(x, y)$, and $p_{t,y}$ its dual arc, then we have

$$\sup_{s\in[0,t]} |\dot{\xi}_{t,y}(s)| \leqslant \kappa(R/t), \quad \sup_{s\in[0,t]} |p_{t,y}(s)| \leqslant \kappa(R/t).$$

Solve Now, take $0 < t \le 1$ and $R(t) = \frac{1}{2}t$, we denote

$$\mathbf{K}_{x} := \bar{B}(x, \kappa(1/2)) \times \bar{B}(0, \kappa(1/2)), \tag{4.1}$$

$$\mathbf{K}_{x}^{*} := \bar{B}(x, \kappa(1/2)) \times \bar{B}(0, \kappa(1/2))$$
(4.2)

which is a compact set in the phase space of Euler-Lagrange and Hamiltonian systems respectively.

So For the estimate in the proof of the regularity property of $A_t(x, y)$, all the partial derivatives of *L* or *H* involved are bounded by certain constants on \mathbf{K}_x or \mathbf{K}_x^* respectively.
Convexity result of $A_t(x, y)$

Proposition (Convexity of fundamental solutions)

Suppose *L* is a Tonelli Lagrangian satisfying (L1)-(L3). Fix any $x \in \mathbb{R}^n$, then there exists $t_0 > 0$, such that for $0 < t \leq t_0$, $(t, y) \mapsto A_t(x, y)$ is locally convex in

$$S(x,t_0) = \{(t,y) \in \mathbb{R} \times \mathbb{R}^n : 0 < t \leq t_0, |y-x| \leq R(t)\},\$$

with R(t) defined above. More precisely, there exists constants $C_1, C_2 > 0$ such that, if $y \in B(x, R(t))$, then, for $|h| \ll 1$ and $|z| \ll 1$, we have

$$A_{t+h}(x,y+z) + A_{t-h}(x,y-z) - 2A_t(x,y) \ge \frac{C_1}{t^3} |h|^2 + \frac{C_2}{t} |z|^2.$$
(4.3)

$C_{loc}^{1,1}$ result of $A_t(x,y)$

Proposition

Suppose *L* is a Tonelli Lagrangian satisfying (L1)-(L3). For any $x \in \mathbb{R}^n$, there exists $t_0 > 0$, such that the functions $w : (t, y) \mapsto A_t(x, y)$ and $(t, y) \mapsto A_t(y, x)$ are both of class $C_{loc}^{1,1}$ in

$$S(x,t_0) = \{(t,y) \in \mathbb{R} \times \mathbb{R}^n : 0 < t \leq t_0, |y-x| \leq R(t)\},\$$

with R(t) defined above, for $0 < t \leq t_0$. In Particular, for any $t \in (0, t_0]$,

$$D_{y}A_{t}(x,y) = L_{v}(\xi(t),\dot{\xi}(t)),$$
 (4.4)

$$D_{x}A_{t}(x,y) = -L_{\nu}(\xi(0),\dot{\xi}(0)), \qquad (4.5)$$

$$D_t A_t(x, y) = -E_{t,x,y},$$
 (4.6)

where $\xi \in \Gamma_{x,y}^t$ is the unique minimizer for $A_t(x, y)$ and $E_{t,x,y}$ is the energy of the Hamiltonian trajectory $(\xi(s), p(s))$ with $p(s) = L_v(\xi(s), \dot{\xi}(s))$.

An additional condition

(L3) *u* is a viscosity solution of H-J equation with $|D^+u(x)|$ small, and $D_y A_t(x, x)$ is also small for small *t*.

An additional condition

- (L3) *u* is a viscosity solution of H-J equation with $|D^+u(x)|$ small, and $D_y A_t(x, x)$ is also small for small *t*.
- By the regularity properties of u(·) and A_t(x₀, ·), for the maximizer y_t of ψ_t, we have

$$0 \le |y_t - x| \le \frac{2|p - p'|}{C_2/t - C_1},\tag{4.7}$$

for all $p \in D^+u(x)$ and $p' = D_y A_t(x, x)$.

An additional condition

- (L3) *u* is a viscosity solution of H-J equation with $|D^+u(x)|$ small, and $D_y A_t(x, x)$ is also small for small *t*.
- By the regularity properties of u(·) and A_t(x₀, ·), for the maximizer y_t of ψ_t, we have

$$0 \leqslant |y_t - x| \leqslant \frac{2|p - p'|}{C_2/t - C_1},$$
(4.7)

for all $p \in D^+u(x)$ and $p' = D_y A_t(x, x)$.

Other More precise condition of (L3): let C₂ be the constant of convexity of the function $(t, y) \mapsto A_t(x, y)$ in B(x, R(t)), and let C₁ be the constant of semiconcavity of u, then for any $p \in D^+u(x)$, $p' = D_yA_t(x, x)$ and $0 < t ≤ t_0$, we have

$$\frac{2|p-p'|}{C_2/t - C_1} < R(t),$$

where t_0 is determined such that $\psi_t(\cdot)$ is strictly concave by Theorem 4.3.

Global propagation

Theorem ([Can-C, 2015])

Let H be a C^2 Tonelli Hamiltonian with the associated Lagrangian satisfies conditions (L1)-(L3), and u be a viscosity solution of the Hamilton-Jacobi equation

$$H(x, Du(x)) = 0, \quad x \in \mathbb{R}^n.$$

If x belongs to Σ_u , the singular set of u, then there exists a generalized characteristic $\mathbf{x} : [0, +\infty) \to \mathbb{R}^n$ such that $\mathbf{x}(s) \in \Sigma_u$ for all $s \in [0, +\infty)$.

Under our conditions, an example satisfies the conditions is the mechanical systems in the following form:

$$H(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + V(x) - E, \quad x \in \mathbb{R}^n, p \in \mathbb{R}^n,$$

where

A(x) are n × n symmetric and positive definite matrices smoothly dependent on x with all the positive eigenvalues bounded and being away from 0 uniformly,

Under our conditions, an example satisfies the conditions is the mechanical systems in the following form:

$$H(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + V(x) - E, \quad x \in \mathbb{R}^n, p \in \mathbb{R}^n,$$

where

- A(x) are n × n symmetric and positive definite matrices smoothly dependent on x with all the positive eigenvalues bounded and being away from 0 uniformly,
- 2 the constant E > 0,

Under our conditions, an example satisfies the conditions is the mechanical systems in the following form:

$$H(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + V(x) - E, \quad x \in \mathbb{R}^n, p \in \mathbb{R}^n,$$

where

- A(x) are n × n symmetric and positive definite matrices smoothly dependent on x with all the positive eigenvalues bounded and being away from 0 uniformly,
- (2) the constant E > 0,
- $V \in C^2(\mathbb{R}^n, R), V \leq 0 \text{ and } \sup_{x \in \mathbb{R}^n} V(x) = 0.$

Under our conditions, an example satisfies the conditions is the mechanical systems in the following form:

$$H(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + V(x) - E, \quad x \in \mathbb{R}^n, p \in \mathbb{R}^n,$$

where

- A(x) are n × n symmetric and positive definite matrices smoothly dependent on x with all the positive eigenvalues bounded and being away from 0 uniformly,
- (2) the constant E > 0,
- $\ \, {\bf S} \ \, V\in C^2(\mathbb{R}^n,R), \, V\leqslant 0 \text{ and } \sup_{x\in\mathbb{R}^n}V(x)=0.$

A(x) and V(x) and all the derivatives up to the second order are uniformly bounded

Since the Hamiltonian is 2-homogenous in *p*, we define

$$H^{\varepsilon}(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + \varepsilon^{2}(V(x) - E),$$

and condider

 $H^{\varepsilon}(x, Du^{\varepsilon}(x)) = 0,$

Since the Hamiltonian is 2-homogenous in *p*, we define

$$H^{\varepsilon}(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + \varepsilon^{2}(V(x) - E),$$

and condider

$$H^{\varepsilon}(x, Du^{\varepsilon}(x)) = 0,$$

e we need estimate involved uniform semiconcavity constant and convexity constant for 0 < ε ≤ ε₀.

Since the Hamiltonian is 2-homogenous in *p*, we define

$$H^{\varepsilon}(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + \varepsilon^{2}(V(x) - E),$$

and condider

$$H^{\varepsilon}(x, Du^{\varepsilon}(x)) = 0,$$

• we need estimate involved uniform semiconcavity constant and convexity constant for $0 < \varepsilon \leq \varepsilon_0$.

So For each 0 < ε ≤ ε₀ there exists a generalized characteristic starting at *x*, i.e.,

 $\dot{\mathbf{x}}^{\varepsilon}(s) \in A(\mathbf{x}^{\varepsilon}(s))D^{+}u^{\varepsilon}(\mathbf{x}^{\varepsilon}(s)), \quad s \in [0, +\infty)$

with initial condition $\mathbf{x}^{\varepsilon}(0) = x$ and $\mathbf{x}^{\varepsilon}(s) \in \Sigma_{u^{\varepsilon}}$, for all $s \in [0, +\infty)$.

Since the Hamiltonian is 2-homogenous in *p*, we define

$$H^{\varepsilon}(x,p) = \frac{1}{2} \langle A^{-1}(x)p, p \rangle + \varepsilon^{2}(V(x) - E),$$

and condider

$$H^{\varepsilon}(x, Du^{\varepsilon}(x)) = 0,$$

- we need estimate involved uniform semiconcavity constant and convexity constant for $0 < \varepsilon \leq \varepsilon_0$.
- So For each 0 < ε ≤ ε₀ there exists a generalized characteristic starting at *x*, i.e.,

$$\dot{\mathbf{x}}^{\varepsilon}(s) \in A(\mathbf{x}^{\varepsilon}(s))D^{+}u^{\varepsilon}(\mathbf{x}^{\varepsilon}(s)), \quad s \in [0, +\infty)$$

with initial condition $\mathbf{x}^{\varepsilon}(0) = x$ and $\mathbf{x}^{\varepsilon}(s) \in \Sigma_{u^{\varepsilon}}$, for all $s \in [0, +\infty)$.

$$\mathbf{x}(s) = \mathbf{x}^{\varepsilon}(\varepsilon s), \quad s \in [0, +\infty)$$

is what we want, since u and u^{ε} share the singularities.

Global Generalized Characteristics

Another typical systems satisfying our condition (L1)-(L3) is a type of nearly integrable systems:

$$L^{\varepsilon}(x,v) = \frac{1}{2} \langle A(x)v,v \rangle - \varepsilon^2 l(x,v), \quad (x,p) \in \mathbb{R}^n \times \mathbb{R}^n.$$

Another typical systems satisfying our condition (L1)-(L3) is a type of nearly integrable systems:

$$L^{\varepsilon}(x,v) = \frac{1}{2} \langle A(x)v,v \rangle - \varepsilon^2 l(x,v), \quad (x,p) \in \mathbb{R}^n \times \mathbb{R}^n.$$

② Can we weaken our conditions? In fact (L2) is not essential. We can use Nagumo function $\theta(s) = 1 + s^q$, q > 1 instead.

Another typical systems satisfying our condition (L1)-(L3) is a type of nearly integrable systems:

$$L^{\varepsilon}(x,v) = rac{1}{2} \langle A(x)v,v \rangle - \varepsilon^2 l(x,v), \quad (x,p) \in \mathbb{R}^n \times \mathbb{R}^n.$$

- ② Can we weaken our conditions? In fact (L2) is not essential. We can use Nagumo function $\theta(s) = 1 + s^q$, q > 1 instead.
- By the works of Clarke and Vinter in 1985, the coercive condition is not essential for small time variational problem in calculus of variation. When L(t, x, v) is of class C², only strict convexity of L is needed for the local regularity of A_t(x, y).

Another typical systems satisfying our condition (L1)-(L3) is a type of nearly integrable systems:

$$L^{\varepsilon}(x,v) = \frac{1}{2} \langle A(x)v,v \rangle - \varepsilon^2 l(x,v), \quad (x,p) \in \mathbb{R}^n \times \mathbb{R}^n.$$

- ② Can we weaken our conditions? In fact (L2) is not essential. We can use Nagumo function $\theta(s) = 1 + s^q$, q > 1 instead.
- By the works of Clarke and Vinter in 1985, the coercive condition is not essential for small time variational problem in calculus of variation. When L(t, x, v) is of class C², only strict convexity of L is needed for the local regularity of A_t(x, y).
- The uniqueness of the generalized characteristic. Can we have the uniqueness result for general symmetric L?

Another typical systems satisfying our condition (L1)-(L3) is a type of nearly integrable systems:

$$L^{\varepsilon}(x,v) = \frac{1}{2} \langle A(x)v,v \rangle - \varepsilon^2 l(x,v), \quad (x,p) \in \mathbb{R}^n \times \mathbb{R}^n.$$

- ② Can we weaken our conditions? In fact (L2) is not essential. We can use Nagumo function $\theta(s) = 1 + s^q$, q > 1 instead.
- By the works of Clarke and Vinter in 1985, the coercive condition is not essential for small time variational problem in calculus of variation. When L(t, x, v) is of class C², only strict convexity of L is needed for the local regularity of A_t(x, y).
- The uniqueness of the generalized characteristic. Can we have the uniqueness result for general symmetric *L*?
- What is the connection between asymptotic behavior of L-O semi-group and that of generalized characteristic?

Thanks for your attention!