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Introduction to generalized characteristics

Generalized characteristic and propagation of singularities

1 We will talk about the theory of singular dynamics of viscosity solutions
initiated by P. Cannarsa, et al, i.e., the dynamics on the singular set of a
solution driven by a differential inclusion of generalized characteristic.

2 A Lipschitz arc x : [0, τ ]→ Rn is said to be a generalized characteristic
of the Hamilton-Jacobi equation

H(x,Du(x)) = 0,

if x satisfies the differential inclusion

ẋ(s) ∈ co Hp
(
x(s),D+u(x(s))

)
, a.e. s ∈ [0, τ ] . (1.1)

3 If x0 is singular point of u, and

0 6∈ co Hp(x0,D+u(x0)) , (1.2)

then there exists such a singular generalized characteristic locally, see
[Albano-Can, 2002], [Can-Yu, 2009] for control theory and PDE
approach respectively.
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Introduction to generalized characteristics

Local barrier functions and inf/sup-convolution

1 Let u ∈ C(Rn) and let H be a Tonelli Hamiltonian on Rn. Recall the
Lax-Oleinik operators T−t and T+

t , for any u ∈ C(Rn),

T+
t u(x) := sup

y∈Rn
{u(y)− At(x, y))},

T−t u(x) := inf
y∈Rn
{u(y) + At(y, x))},

where At(x, y) is the fundamental solution w.r.t H-J equation.

2 For any fixed x0 and t > 0, define the local barrier functions

ψt(x) := u(x)− At(x0, x),

φt(x) := u(x) + At(x, x0).

Recall Mather’s barrier function B∗.
3 By the regularity properties of At(x, y) and u, φt is a locally semiconcave

functions, but for t > 0 small enough, ψt is both a locally semiconcave
function and a convex function. We will discuss this essential point later!
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Introduction to generalized characteristics

Critical points of (local) barrier functions

1 Recall that a point x ∈ Rn is a critical point of a locally semiconcave
function u if 0 ∈ D+u(x).

2 It makes sense to study the critical points of barrier functions, local or
global ones. For the global ones, it is useful for the study of homoclinic
phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].

3 We discussed that in the case of φt in [Chen-C, 2015].
4 In [Can-Chen-C, draft, 2015], we discussed the local propagation along

this line recovering what in [Can-Yu], and more information can be
obtained.

5 We will concentrate on the critical points of ψt in the procedure of
sup-convolution, and the connection with the global propagation of
singularities along generalized characteristics for general mechanical
systems on Rn ([Can-C, draft, 2015]).

Wei Cheng Global Generalized Characteristics December 10, 2015 4 / 29



Introduction to generalized characteristics

Critical points of (local) barrier functions

1 Recall that a point x ∈ Rn is a critical point of a locally semiconcave
function u if 0 ∈ D+u(x).

2 It makes sense to study the critical points of barrier functions, local or
global ones. For the global ones, it is useful for the study of homoclinic
phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].

3 We discussed that in the case of φt in [Chen-C, 2015].
4 In [Can-Chen-C, draft, 2015], we discussed the local propagation along

this line recovering what in [Can-Yu], and more information can be
obtained.

5 We will concentrate on the critical points of ψt in the procedure of
sup-convolution, and the connection with the global propagation of
singularities along generalized characteristics for general mechanical
systems on Rn ([Can-C, draft, 2015]).

Wei Cheng Global Generalized Characteristics December 10, 2015 4 / 29



Introduction to generalized characteristics

Critical points of (local) barrier functions

1 Recall that a point x ∈ Rn is a critical point of a locally semiconcave
function u if 0 ∈ D+u(x).

2 It makes sense to study the critical points of barrier functions, local or
global ones. For the global ones, it is useful for the study of homoclinic
phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].

3 We discussed that in the case of φt in [Chen-C, 2015].

4 In [Can-Chen-C, draft, 2015], we discussed the local propagation along
this line recovering what in [Can-Yu], and more information can be
obtained.

5 We will concentrate on the critical points of ψt in the procedure of
sup-convolution, and the connection with the global propagation of
singularities along generalized characteristics for general mechanical
systems on Rn ([Can-C, draft, 2015]).

Wei Cheng Global Generalized Characteristics December 10, 2015 4 / 29



Introduction to generalized characteristics

Critical points of (local) barrier functions

1 Recall that a point x ∈ Rn is a critical point of a locally semiconcave
function u if 0 ∈ D+u(x).

2 It makes sense to study the critical points of barrier functions, local or
global ones. For the global ones, it is useful for the study of homoclinic
phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].

3 We discussed that in the case of φt in [Chen-C, 2015].
4 In [Can-Chen-C, draft, 2015], we discussed the local propagation along

this line recovering what in [Can-Yu], and more information can be
obtained.

5 We will concentrate on the critical points of ψt in the procedure of
sup-convolution, and the connection with the global propagation of
singularities along generalized characteristics for general mechanical
systems on Rn ([Can-C, draft, 2015]).

Wei Cheng Global Generalized Characteristics December 10, 2015 4 / 29



Introduction to generalized characteristics

Critical points of (local) barrier functions

1 Recall that a point x ∈ Rn is a critical point of a locally semiconcave
function u if 0 ∈ D+u(x).

2 It makes sense to study the critical points of barrier functions, local or
global ones. For the global ones, it is useful for the study of homoclinic
phenomenon, see, for instance, [Can-C, Nonlinearity, 2015].

3 We discussed that in the case of φt in [Chen-C, 2015].
4 In [Can-Chen-C, draft, 2015], we discussed the local propagation along

this line recovering what in [Can-Yu], and more information can be
obtained.

5 We will concentrate on the critical points of ψt in the procedure of
sup-convolution, and the connection with the global propagation of
singularities along generalized characteristics for general mechanical
systems on Rn ([Can-C, draft, 2015]).

Wei Cheng Global Generalized Characteristics December 10, 2015 4 / 29



Preliminaries Nonsmooth analysis

Semiconcave functions

1 Let Ω ⊂ Rn be a convex open set, a function u : Ω→ R is semiconcave
if there exists a constant C > 0 such that

λu(x) + (1− λ)u(y)− u(λx + (1− λ)y) 6
C
2
λ(1− λ)|x− y|2

for any x, y ∈ Ω and λ ∈ [0, 1].

2 Equivalently, u is semiconcave with constant C if u(·)− C| · |2/2 is
concave.

3 A function u : Ω→ R is said to be semiconvex if −u is semiconcave. A
function u : Ω→ R is said to be locally semiconcave (resp. locally
semiconvex) if for each x ∈ Ω, there exists an open ball B(x, r) ⊂ Ω such
that u is a semiconcave (resp. semiconvex) function on B(x, r).
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Preliminaries Nonsmooth analysis

Superdifferentials and Limiting differentials

1 Let u : Ω ⊂ Rn → R be a continuous function. We recall that, for any
x ∈ Ω, the closed convex sets

D−u(x) =

{
p ∈ Rn : lim inf

y→x

u(y)− u(x)− 〈p, y− x〉
|y− x|

> 0
}
,

D+u(x) =

{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− 〈p, y− x〉
|y− x|

6 0
}
.

are called the (Dini) subdifferential and superdifferential of u at x,
respectively.

2 Let u : Ω→ R be locally Lipschitz. We recall that a vector p ∈ Rn is
called a limiting differential of u at x if there exists a sequence
{xn} ⊂ Ω \ {x} such that u is differentiable at xk for each k ∈ N, and

lim
k→∞

xk = x and lim
k→∞

Du(xk) = p.

The set of all limiting differentials of u at x is denoted by D∗u(x).
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Preliminaries Fundamental solutions

Tonelli Lagrangians

We concentrate on Tonelli systems.

A function L : Rn × Rn → R is said to be a Tonelli Lagrangian if the
following assumptions are satisfied.

1 Smoothness: L = L(x, v) is of class at least C2.

2 Convexity: The Hessian ∂2L
∂v2 (x, v) is positive definite on Rn.

3 Superlinearity:

lim
|v|→∞

L(x, v)

|v|
=∞ uniformly for x ∈ M.

For more regularity results required, we need more conditions!
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Preliminaries Fundamental solutions

Fundamental solutions

Given x, y ∈ Rn, we define

Γt
x,y = {γ ∈ W1,1([0, t],Rn) : γ(0) = x, γ(t) = y}

Let t > 0, we denote

At(x, y) = inf
γ∈Γt

x,y

∫ t

0
L(γ(s), γ̇(s))ds. (2.1)

In the literature of PDEs, At(x, y) is called a fundamental solution of H-J
equation

ut + H
(
x,∇u(t, x)

)
= 0, (2.2)

where H stands for the associated Tonelli Hamiltonian. At(x, y) is also called
generating function in the context of dynamical systems or symplectic
geometry.
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Preliminaries Viscosity solutions

Viscosity solutions

We recall that a continuous function u is called a viscosity subsolution of
equation (2.2) if, for any x ∈ Rn,

H(x, p) 6 0, ∀p ∈ D+u(x) . (2.3)

Similarly, u is a viscosity supersolution of equation (2.2) if, for any x ∈ Rn,

H(x, p) > 0, ∀p ∈ D−u(x) . (2.4)

Finally, u is called a viscosity solution of equation (2.2), if it is both a
viscosity subsolution and a supersolution.
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Preliminaries Viscosity solutions

Two basic facts on viscosity solutions

Proposition
Any viscosity solution of the Hamilton-Jacobi equation (2.2) is locally
semiconcave.

Proposition

Ext D+u(x) = D∗u(x) for any viscosity solution u of (2.2) and any x ∈ Rn.

Here we denote by Ext C the set of extremal points of C.
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Preliminaries Viscosity solutions

One important observation

Proposition

Let x ∈ Rn and u : Rn → R be a viscosity solution of the Hamilton-Jacobi
equation (2.2). Then p ∈ D∗u(x) if and only if there exists a unique C2 curve
γ : (−∞, 0]→ Rn with γ(0) = x which is a backward calibrated curve, and
p = Lv(x, γ̇(0)).

D+u(x)
p ∈ D∗u(x)

Energy hypersurface {p : H(x, p) = 0}
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Preliminaries Viscosity solutions

Singular set and cut loci

1 A point x ∈ Ω is called a singular point of u if D+u(x) is not a singleton.
The set of all singular points of u, also called the singular set of u, is
denoted by Σu.

2 When talking about the viscosity solution, Σu is called the cut loci of u.
(Under a certain regularity condition, Σu = Γu ∪ Σu, where Γu is the
conjugate loci.)
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Procedure of sup-convolution and generalized characteristic

Maximizers of ψt: local case

1 We begin with a local argument. Let x0 be a singular point of u, and the
local barrier function ψt is defined w.r.t x0 for t > 0. We want to find the
maximizer, say yt, of ψt in B̄(x0,R).

2 By the regularity properties of At(x, y), when t > 0 small enough, we
have that At(x0, ·) is convex locally (with the constant of convexity large
if t small) and C1,1

loc consequently. Thus ψt is concave in B̄(x0,R). So
there exists a unique yt ∈ B̄(x0,R).

3 The essential difficulty is if the maximizer yt can be attained in the
interior of B̄(x0,R). If so, we can prove that there exists t0 > 0 dependent
on the initial point x0, such that the arc y : [0, t0]→ Rn defined by

y(t) =

{
x0, t = 0,
yt, t ∈ (0, t0],

satisfying that y(t) is a singular point of u for all t ∈ [0, t0].

Wei Cheng Global Generalized Characteristics December 10, 2015 13 / 29



Procedure of sup-convolution and generalized characteristic

Maximizers of ψt: local case

1 We begin with a local argument. Let x0 be a singular point of u, and the
local barrier function ψt is defined w.r.t x0 for t > 0. We want to find the
maximizer, say yt, of ψt in B̄(x0,R).

2 By the regularity properties of At(x, y), when t > 0 small enough, we
have that At(x0, ·) is convex locally (with the constant of convexity large
if t small) and C1,1

loc consequently. Thus ψt is concave in B̄(x0,R). So
there exists a unique yt ∈ B̄(x0,R).

3 The essential difficulty is if the maximizer yt can be attained in the
interior of B̄(x0,R). If so, we can prove that there exists t0 > 0 dependent
on the initial point x0, such that the arc y : [0, t0]→ Rn defined by

y(t) =

{
x0, t = 0,
yt, t ∈ (0, t0],

satisfying that y(t) is a singular point of u for all t ∈ [0, t0].

Wei Cheng Global Generalized Characteristics December 10, 2015 13 / 29



Procedure of sup-convolution and generalized characteristic

Maximizers of ψt: local case

1 We begin with a local argument. Let x0 be a singular point of u, and the
local barrier function ψt is defined w.r.t x0 for t > 0. We want to find the
maximizer, say yt, of ψt in B̄(x0,R).

2 By the regularity properties of At(x, y), when t > 0 small enough, we
have that At(x0, ·) is convex locally (with the constant of convexity large
if t small) and C1,1

loc consequently. Thus ψt is concave in B̄(x0,R). So
there exists a unique yt ∈ B̄(x0,R).

3 The essential difficulty is if the maximizer yt can be attained in the
interior of B̄(x0,R). If so, we can prove that there exists t0 > 0 dependent
on the initial point x0, such that the arc y : [0, t0]→ Rn defined by

y(t) =

{
x0, t = 0,
yt, t ∈ (0, t0],

satisfying that y(t) is a singular point of u for all t ∈ [0, t0].

Wei Cheng Global Generalized Characteristics December 10, 2015 13 / 29



Procedure of sup-convolution and generalized characteristic

Maximizers of ψt: global case

1 We need more conditions in global case.

1 There exists t0 > 0 such that for any t ∈ (0.t0], there exists R = R(t) > 0
such that, At(x, ·) is convex in B̄(x,R) uniformly;

2 The maximizer yt can be attained in the interior of B̄(x0,R).
2 Suppose these two conditions are satisfied. ξt : [0, t]→ Rn is the unique

minimizer in the definition of At(x0, yt).

x0

yt

y(s)

ξt(s)

yt′yt′′
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Procedure of sup-convolution and generalized characteristic

The velocity of y(·) at x0

1 Since {ξ̇t(·)}t∈(0,t0] are equi-Lipschitz, then for any sequence tk → 0+

such that vtk :=
ξtk (tk)−x0

tk
converges, it is not hard to have that

v0 := limk→∞ vtk = limk→∞ ξ̇tk(tk) exists.

2 By the semiconcavity of u0(·), we have

〈p− Lv(ytk , ξ̇tk(tk)), vtk〉+ tkC|vtk |
2 > 0, ∀p ∈ D+u(x0).

Taking limit, then 〈p, v0〉 > 〈Lv(x0, v0), v0〉, for all p ∈ D+u(x0). In other
words,

H(x0, p) > H(x0, p0), ∀p ∈ D+u(x0),

where p0 ∈ D+u(x0) is the unique element solve this associated
optimization problem.

3 This leads to the assertion that

ẏ+(0) = lim
t→0+

ξt(t)− x0

t
= lim

t→0+
ξ̇t(t) = v0,

with v0 = Hp(x0, p0).
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Procedure of sup-convolution and generalized characteristic

The singularities along y(·) on [0, t0]

1 We define pt(s) := Lv(ξt(s), ξ̇t(s)) for all s ∈ [0, t], and since yt is
maximizer of ψt in B(x0,R), we have

pt(t) ∈ D+u(yt), t ∈ (0, t0].

2 To prove the singularity of the arc y, it suffices to check

pt(t) = Lv(ξt(t), ξ̇t(t)) 6∈ D∗u(yt), ∀t ∈ (0, t0].

3 Indeed, if not, pt(t) ∈ D∗u(yt), then there exists a C2 backward
(u,L, 0)-calibrated curve γ : (−∞, t]→ Rn in the context of weak KAM
theory. It is easily checked that γ and ξt coincides on [0, t] since both of
them are extremal curves and satisfies the same endpoint condition at yt.
This leads to a contradiction since x0 is a singular point of u.

4 It is worth noting t0 is independent on x0 since our uniformness
assumption on L are satisfied.
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Procedure of sup-convolution and generalized characteristic

y(·) as a generalized characteristic on [0, t0]

1 An essential technical result for the regularity of y is that {ξ̇t(·)}t∈(0,t0]

are equi-Lipschitz.

2 The singular arc y is a Lipschitz continuous function on [0, t0].
3 Using the idea of Euler’s segments algorithm, originated from

[Albano-Can, 2002], we have

ẏ(τ) ∈ co Hp(y(τ),D+u(y(τ))), a.e. τ ∈ [0, t0].

Moreover,
ẏ+(0) = Hp(x0, p0),

where p0 is the unique element of minimal energy:

H(x0, p) > H(x0, p0), ∀p ∈ D+u(x0).

4 For mechanical systems, a uniqueness result on generalized characteristic
have been obtained in [Albano-Can, 2002] or [Can-Yu, 2009].
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Procedure of sup-convolution and generalized characteristic

Extend y(·) to [0,+∞)

1 We construct the global propagation by induction. First, we obtain a
singular generalized characteristic x0(s) on [0, t0] satisfying

ẋ0(s) ∈ co Hp(x0(s),D+u(x0(s))), a.e. s ∈ [0, t0],

with initial condition

x0(0) = x0, and x1 := x0(t0) ∈ Σu.

2 Inductively, for each k = 0, 1, 2, . . ., we have a singular Lipschitz arc xk

defined on [0, t0] and

ẋk(s) ∈ co Hp(xk(s),D+u(xk(s))), a.e. s ∈ [0, t0],

with initial condition

xk(0) = xk, and xk+1 := xk(t0) ∈ Σu.

3 The juxtaposition of {xk} gives the desired singular g. c..
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Regularity properties of At(x, y)

Conditions for global propagation

(L1) Nagumo conditions: there exists ν > 0, c0, c1, c2 > 0 and
q > 1 such that

(i) L(x, v) > ν|v|q − c0 for all (x, v) ∈ Rn × Rn;
(ii) |Lv(x, v)| 6 c1(1 + |v|q−1) for all (x, v) ∈ Rn × Rn;

(iii) For any x, y ∈ Rn and v ∈ Rn,

|L(x, v)− L(y, v)| 6 c2(1 + |v|q) min{1, |x− y|}.

(L2) Uniform Regularity: for any r > 0 there exists a constant
Mr > 0 such that

|DαL(x, v)| 6 Mr

for any multindex |α| = 2 and all (x, v) ∈ Rn × Rn such that
|v| 6 r.

Strong conditions All the second order partial derivatives of L and H are
bounded uniformly, see, also, [Bernard, 2012].
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Regularity properties of At(x, y)

Boundedness results

Proposition

Let t > 0, R > 0 and suppose L satisfies condition (L1)-(L3). Let ξ ∈ Γt
x,y be

a minimizer for At(x, y), x ∈ Rn, y ∈ B̄(x,R), and let p(s) be the dual arc of
ξ(s). Then we have

sup
s∈[0,t]

|ξ̇(s)| 6 ∆(t,R), sup
s∈[0,t]

|p(s)| 6 ∆(t,R),

where ∆(t,R) is strictly increasing in R and strictly decreasing in t.

Moreover, if 0 < t 6 1, then ∆(t,R) = κ(R/t) where the function
κ : (0,∞)→ (0,∞) is continuous and strictly increasing. We also have
sups∈[0,t] |ξ(s)− x| 6 ∆(t,R).

Note that under our assumptions, the constant ∆ is independent on x. But for
a local result we can have x-dependence of such ∆.
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Regularity properties of At(x, y)

Compactness

1 Suppose R > 0 and L satisfies (L1) and (L2). For any 0 < t 6 1, and
y ∈ B(x,R), let ξt,y ∈ Γt

x,y be a minimizer in At(x, y), and pt,y its dual arc,
then we have

sup
s∈[0,t]

|ξ̇t,y(s)| 6 κ(R/t), sup
s∈[0,t]

|pt,y(s)| 6 κ(R/t).

2 Now, take 0 < t 6 1 and R(t) = 1
2 t, we denote

Kx := B̄(x, κ(1/2))× B̄(0, κ(1/2)), (4.1)

K∗x := B̄(x, κ(1/2))× B̄(0, κ(1/2)) (4.2)

which is a compact set in the phase space of Euler-Lagrange and
Hamiltonian systems respectively.

3 For the estimate in the proof of the regularity property of At(x, y), all the
partial derivatives of L or H involved are bounded by certain constants on
Kx or K∗x respectively.
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Regularity properties of At(x, y)

Convexity result of At(x, y)

Proposition (Convexity of fundamental solutions)

Suppose L is a Tonelli Lagrangian satisfying (L1)-(L3). Fix any x ∈ Rn, then
there exists t0 > 0, such that for 0 < t 6 t0, (t, y) 7→ At(x, y) is locally convex
in

S(x, t0) = {(t, y) ∈ R× Rn : 0 < t 6 t0, |y− x| 6 R(t)},

with R(t) defined above.
More precisely, there exists constants C1,C2 > 0 such that, if y ∈ B(x,R(t)),
then, for |h| � 1 and |z| � 1, we have

At+h(x, y + z) + At−h(x, y− z)− 2At(x, y) >
C1

t3 |h|
2 +

C2

t
|z|2. (4.3)
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Regularity properties of At(x, y)

C1,1
loc result of At(x, y)

Proposition

Suppose L is a Tonelli Lagrangian satisfying (L1)-(L3). For any x ∈ Rn, there
exists t0 > 0, such that the functions w : (t, y) 7→ At(x, y) and (t, y) 7→ At(y, x)
are both of class C1,1

loc in

S(x, t0) = {(t, y) ∈ R× Rn : 0 < t 6 t0, |y− x| 6 R(t)},

with R(t) defined above, for 0 < t 6 t0. In Particular, for any t ∈ (0, t0],

DyAt(x, y) =Lv(ξ(t), ξ̇(t)), (4.4)

DxAt(x, y) =− Lv(ξ(0), ξ̇(0)), (4.5)

DtAt(x, y) =− Et,x,y, (4.6)

where ξ ∈ Γt
x,y is the unique minimizer for At(x, y) and Et,x,y is the energy of

the Hamiltonian trajectory (ξ(s), p(s)) with p(s) = Lv(ξ(s), ξ̇(s)).
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Regularity properties of At(x, y)

An additional condition

(L3) u is a viscosity solution of H-J equation with |D+u(x)| small,
and DyAt(x, x) is also small for small t.

1 By the regularity properties of u(·) and At(x0, ·), for the maximizer yt of
ψt, we have

0 6 |yt − x| 6 2|p− p′|
C2/t − C1

, (4.7)

for all p ∈ D+u(x) and p′ = DyAt(x, x).
2 More precise condition of (L3): let C2 be the constant of convexity of the

function (t, y) 7→ At(x, y) in B(x,R(t)), and let C1 be the constant of
semiconcavity of u, then for any p ∈ D+u(x), p′ = DyAt(x, x) and
0 < t 6 t0, we have

2|p− p′|
C2/t − C1

< R(t),

where t0 is determined such that ψt(·) is strictly concave by Theorem 4.3.
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Regularity properties of At(x, y)

Global propagation

Theorem ([Can-C, 2015])

Let H be a C2 Tonelli Hamiltonian with the associated Lagrangian satisfies
conditions (L1)-(L3), and u be a viscosity solution of the Hamilton-Jacobi
equation

H(x,Du(x)) = 0, x ∈ Rn.

If x belongs to Σu, the singular set of u, then there exists a generalized
characteristic x : [0,+∞)→ Rn such that x(s) ∈ Σu for all s ∈ [0,+∞).
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Regularity properties of At(x, y)

An example

Under our conditions, an example satisfies the conditions is the mechanical
systems in the following form:

H(x, p) =
1
2
〈A−1(x)p, p〉+ V(x)− E, x ∈ Rn, p ∈ Rn,

where
1 A(x) are n× n symmetric and positive definite matrices smoothly

dependent on x with all the positive eigenvalues bounded and being away
from 0 uniformly,

2 the constant E > 0,
3 V ∈ C2(Rn,R), V 6 0 and supx∈Rn V(x) = 0.
4 A(x) and V(x) and all the derivatives up to the second order are

uniformly bounded
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Regularity properties of At(x, y)

Rescaling

1 Since the Hamiltonian is 2-homogenous in p, we define

Hε(x, p) =
1
2
〈A−1(x)p, p〉+ ε2(V(x)− E),

and condider
Hε(x,Duε(x)) = 0,

2 we need estimate involved uniform semiconcavity constant and
convexity constant for 0 < ε 6 ε0.

3 For each 0 < ε 6 ε0 there exists a generalized characteristic starting at x,
i.e.,

ẋε(s) ∈ A(xε(s))D+uε(xε(s)), s ∈ [0,+∞)

with initial condition xε(0) = x and xε(s) ∈ Σuε , for all s ∈ [0,+∞).
4

x(s) = xε(εs), s ∈ [0,+∞)

is what we want, since u and uε share the singularities.

Wei Cheng Global Generalized Characteristics December 10, 2015 27 / 29



Regularity properties of At(x, y)

Rescaling

1 Since the Hamiltonian is 2-homogenous in p, we define

Hε(x, p) =
1
2
〈A−1(x)p, p〉+ ε2(V(x)− E),

and condider
Hε(x,Duε(x)) = 0,

2 we need estimate involved uniform semiconcavity constant and
convexity constant for 0 < ε 6 ε0.

3 For each 0 < ε 6 ε0 there exists a generalized characteristic starting at x,
i.e.,
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Regularity properties of At(x, y) End

Comments

1 Another typical systems satisfying our condition (L1)-(L3) is a type of
nearly integrable systems:

Lε(x, v) =
1
2
〈A(x)v, v〉 − ε2l(x, v), (x, p) ∈ Rn × Rn.

2 Can we weaken our conditions? In fact (L2) is not essential. We can use
Nagumo function θ(s) = 1 + sq, q > 1 instead.

3 By the works of Clarke and Vinter in 1985, the coercive condition is not
essential for small time variational problem in calculus of variation.
When L(t, x, v) is of class C2, only strict convexity of L is needed for the
local regularity of At(x, y).

4 The uniqueness of the generalized characteristic. Can we have the
uniqueness result for general symmetric L?

5 What is the connection between asymptotic behavior of L-O semi-group
and that of generalized characteristic?
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Regularity properties of At(x, y) End

Thanks for your attention!
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