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Data assimilation

e Combine observational and background data with

numerical models to obtain the best estimate of state of
a system.

e Find u which minimises
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e Discrete nonlinear evolution operator M, ;..

e Incremental 4D-Var: rewrite as an unconstrained
minimisation with linearised evolution operator.
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Hessian matrix

e Linear system (Gauss-Newton method):
H(ug)oup = G(ug)

Hessian H, gradient (uy)
e PCG convergence depends on conditioning of

H=V, '+ R CV,'C,R

e Discrete tangent linear operator R and its adjoint.

e H is usually too large to be stored in memory but all we
need for PCG is Hv.

e This is still very expensive to compute, so we also need
a good preconditioner.

Atlanta, October 2015 —p.3/19




First level preconditioning

e Projected Hessian:
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e Eigenvalues of H are usually clustered in a narrow
band above one, with few eigenvalues distinct enough
to contribute noticeably to the Hessian value.

e AIM: construct a limited-memory approximation to A~}
using only matrix-vector multiplication.
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Limited-memory approximation

e Find . leading eigenvalues (by In \*) and orthonormal
eigenvectors using the Lanczos method.

e Construct approximation
H = [—Z \i — 1)u;u;

e Easy to evaluate matrix powers:

HP ~ ]+ Y A — 1)u;u;

=21
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Outline of multilevel algorithm

e Represent Hj at a given level (k, say):
Hy; = RY(Hy— I))PF + I,

e Precondition to improve eigenvalue spectrum:
Ho = (B¥™)T Hy_y BE!

e Find n; eigenvalues/eigenvectors of Ho using the
Lanczos method.

e Approximate H ', :

O0—=k"
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Example

e Test using 1D Burgers’ equation with initial condition

' 3
f(x) =0.140.35 {l + sin (47.1' + 7)} . O<z<]1

e 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45,
0.5, 0.55, 0.6, and 0.7 in [0. 1].

e Multilevel preconditioning with four grid levels:

k 0 1 2 3
grid points | 401 201 101 51
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Assessing approximation accuracy

e Riemannian distance:

—

e Compare eigenvalues of H~! and H~! on the finest grid
level i = 0 using

S(H 7 H)

D =— .
o(H—.1)

e Vary number of eigenvalues chosen on each grid level

.\, — \ ). I1.792.7.3)
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Eigenvalues of the inverse Hessian

e Exact (blue circles), approximated (red stars)

N.= (8.0.0.4)
D=TTle—1

Atlanta, October 2015—p.12/19




Fixed memory ratio
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Practical approach: version 1

e Assemble local Hessians for each sensor to form H,,
then apply mlpre to H,.

e Local Hessians cheaper to compute:
» Potentially smaller area of influence.
e Could run local rather than global model.
o Compute local Hessians at level /.
e Use limited-memory form with »; eigenpairs.
e Can be computed in parallel.

e More memory required:
e Need to store additional local Hessians.
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lteration counts

Preconditioner N, [
P1 (200,0,0,0) 1 8
P2 (0,8,16,32) 1 8
P3 (0,4,8,16) 1 8
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Practical approach: version 2

e Can reduce memory requirements further.

e Approximate local Hessians by applying mlpre to local
inverse Hessians using V!.

e Construct a reduced-memory assembled Hessian H"".

e Use mlpre againon H"™.
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Conclusions and next steps
e Similar results with other configurations (e.g. moving
sensors, different initial conditions).

e Multilevel preconditioning looks promising for
constructing a good limited-memory approximation to
H

e [he balance between restrictions on memory/cost
limitations may vary between particular applications.

e |dentifying globally appropriate values for (1. 111. 15
IS tricky.

e Now ready for two dimensions!
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Iteration counts

Preconditioner N, [ ny N!
P1 (200,0,0,0) 1 8 -
P2 (0.8,16,32) 1 8 :
P3 (04,8,16) 1 8 .
P4 (0,8,16,32) 1 8 (0,0,8,0)
P5 (0,8,16,32) 2 8 (0,0,0,8)

log(error) vs number of HVP

,,,,,,,,,,,,,,,,,,,,,,,,
-‘35r —— 00
-_—
S o
2
S—
15[—
Fa
— 22 |/, ;- - v ———
= -2}
=
. p— TE L
S 25
e Aalk
ap 3.5 F
4}
A5 L

100 150 200 250 F i =
- AT i . Uc r2015—p.18/19
ensemble mean of Ngyvp e, Sinhar 25— p il






