A multilevel preconditioner for data assimilation with 4D-Var

Alison Ramage and Kirsty Brown, Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland

Igor Gejadze,
National Research Institute of
Science and Technology for
Environment and Agriculture,
Montpelier, France

Data assimilation

- Combine observational and background data with numerical models to obtain the best estimate of state of a system.
- Find u which minimises

$$J(\mathbf{u}) = \frac{1}{2} (\mathbf{u} - \mathbf{u}_b)^T V_b^{-1} (\mathbf{u} - \mathbf{u}_b)$$

$$+ \frac{1}{2} \sum_{i=0}^{N} (C_o(\mathbf{u}_i) - \mathbf{y}_i)^T V_o^{-1} (C_o(\mathbf{u}_i) - \mathbf{y}_i)$$

subject to
$$\mathbf{u}_{i+1} = \mathcal{M}_{i,i+1}(\mathbf{u}_i), \quad i = 0, \dots, N-1.$$

- Discrete nonlinear evolution operator M_{i,i+1}.
- Incremental 4D-Var: rewrite as an unconstrained minimisation with linearised evolution operator.

Hessian matrix

Linear system (Gauss-Newton method):

$$\mathcal{H}(\mathbf{u}_k)\delta\mathbf{u}_k = G(\mathbf{u}_k)$$

Hessian \mathcal{H} , gradient $G(\mathbf{u}_k)$

PCG convergence depends on conditioning of

$$\mathcal{H} = V_b^{-1} + R^T C_o^T V_o^{-1} C_o R$$

- Discrete tangent linear operator R and its adjoint.
- H is usually too large to be stored in memory but all we need for PCG is Hv.
- This is still very expensive to compute, so we also need a good preconditioner.

First level preconditioning

Projected Hessian:

$$H = (V_b^{1/2})^T \mathcal{H} V_b^{1/2} = I + (V_b^{1/2})^T R^T C_o^T V_o^{-1} C_o R V_b^{1/2}$$

 Eigenvalues of H are usually clustered in a narrow band above one, with few eigenvalues distinct enough to contribute noticeably to the Hessian value.

AIM: construct a limited-memory approximation to H⁻¹ using only matrix-vector multiplication.

Limited-memory approximation

- Find n_e leading eigenvalues (by $\ln \lambda^2$) and orthonormal eigenvectors using the Lanczos method.
- Construct approximation

$$H \approx I + \sum_{i=1}^{n_e} (\lambda_i - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Easy to evaluate matrix powers:

$$H^p \approx I + \sum_{i=1}^{n_e} (\lambda_i^p - 1) \mathbf{u}_i \mathbf{u}_i^T$$

Outline of multilevel algorithm

Represent H₀ at a given level (k, say):

$$H_{0\to k} = R_k^0 (H_0 - I_0) P_0^k + I_k$$

Precondition to improve eigenvalue spectrum:

$$\tilde{H}_{0\to k} = (B_k^{k+1})^T H_{0\to k} B_k^{k+1}$$

- Find n_k eigenvalues/eigenvectors of $\tilde{H}_{0\rightarrow k}$ using the Lanczos method.
- Approximate $\tilde{H}_{0\rightarrow k}^{-1}$:

$$\tilde{H}_{0\to k}^{-1} \approx I_k + \sum_{i=1}^{n_k} \left(\frac{1}{\lambda_i} - 1\right) \mathbf{u}_i \mathbf{u}_i^T.$$

Example

Test using 1D Burgers' equation with initial condition

$$f(x) = 0.1 + 0.35 \left[1 + \sin \left(4\pi x + \frac{3\pi}{2} \right) \right], \quad 0 < x < 1$$

- 1D uniform grid with 7 sensors located at 0.3, 0.4, 0.45, 0.5, 0.5, 0.6, and 0.7 in [0, 1].
- Multilevel preconditioning with four grid levels:

k	0	1	2	3
grid points	401	201	101	51

Assessing approximation accuracy

Riemannian distance:

$$\delta(A, B) = \|ln(B^{-1}A)\|_F = \left(\sum_{i=1}^n ln^2 \lambda_i\right)^{1/2}$$

• Compare eigenvalues of H^{-1} and \tilde{H}^{-1} on the finest grid level k=0 using

$$D = \frac{\delta(H^{-1}, \tilde{H}^{-1})}{\delta(H^{-1}, I)}$$

Vary number of eigenvalues chosen on each grid level

$$N_e = (n_0, n_1, n_2, n_3)$$

Eigenvalues of the inverse Hessian

Exact (blue circles), approximated (red stars)

Fixed memory ratio

• Fixed memory ratio $R = \sum_{k=0}^{k_c} \frac{n_k}{2^k}$

Practical approach: version 1

- Assemble local Hessians for each sensor to form H_a, then apply mlpre to H_a.
- Local Hessians cheaper to compute:
 - Potentially smaller area of influence.
 - Could run local rather than global model.
 - Compute local Hessians at level l.
 - Use limited-memory form with n_l eigenpairs.
 - Can be computed in parallel.
- More memory required:
 - Need to store additional local Hessians.

Iteration counts

Preconditioner	N_e	l	n_l
P1	(200,0,0,0)	1	8
P2	(0,8,16,32)	1	8
P3	(0,4,8,16)	1	8

log(error) vs number of HVP

Practical approach: version 2

Can reduce memory requirements further.

• Approximate local Hessians by applying mlpre to local inverse Hessians using N_e^l .

• Construct a reduced-memory assembled Hessian H_a^{rm} .

• Use mlpre again on H_a^{rm} .

Conclusions and next steps

- Similar results with other configurations (e.g. moving sensors, different initial conditions).
- Multilevel preconditioning looks promising for constructing a good limited-memory approximation to H⁻¹.
- The balance between restrictions on memory/cost limitations may vary between particular applications.
- Identifying globally appropriate values for (n₀, n₁, n₂, n₃) is tricky.

Now ready for two dimensions!

Iteration counts

Preconditioner	N_e	l	n_l	N_e^l
P1	(200,0,0,0)	1	8	-
P2	(0,8,16,32)	1	8	=
P3	(0,4,8,16)	1	8	~
P4	(0,8,16,32)	1	8	(0,8,0,0)
P5	(0,8,16,32)	2	8	(0,0,0,8)

log(error) vs number of HVP

