
ing Things Done

An Introduction to Git Source Control Software

Written by Explainly, Presented by Ahad Amdani

What Is ?

Simple versioning creates
complete copies and uses

significant space.

Git captures transactional changes
and incorporates merging,

comparisons, and commentary
directly into the tool.

What Is ?

Do you have experience with source control software?

1) Never heard of it
2) As a feature inside software (R Studio / Visual Studio)
3) I’ve used a GUI tool here or there
4) I browse GitHub for fun

What Is “Git”? ?

Git is a distributed source control software system.

The software’s goal is to make managing and tracking
multiple versions of information faster, easier, and more

efficient than simple file versioning.

What Does Git Do?

 Track changes for any file
type.

 Save snapshots of any set
of files (or changeset).

 Stage the changes you
want to version (which
files are part of the set).

 Stash changes to the side
for the right moment.

 Branch and experiment
without fear.

How Can Git Help Me?

 Data Integrity
 Speed and performance
 Small footprint

 Improve efficiency
 Easy to learn

Git enables you to rollback to any point in history of your
tracked repository.

Git also allows for reporting and comparisons across
different versions of history.

What Is A Repository?

 Commonly called a “repo”
 Reflects a version-controlled

directory along with any
specified contents.

 Encompasses all subfolders and
files.

 Works with any file types.

Git works with differences across any filetypes from simple
files such as a text or CSV document to more complex types

such as Excel or binary files.

Repository Management Overview

init

Initializes directory
as a repo

add

Adds and removes
files from staging

commit

Define version
snapshot of repo

Files and directories can be
added between commits.

Initialize Repo - init

 Create a directory or select a
pre-existing directory.

 Execute “git init” command
from within directory.

 Git repository will initialize.
 No files or subdirectories will

be added to staging.

Managing Repo Files - add

 The “add” command adds and
removes files and directories
from staging.

 Syntax is:
git add “filename”

 Adding the file to staging does
not create a snapshot in time.

 Only files added to staging will
have their history tracked.

Managing Repo Files - add

 Simple and easy shortcut is
git add –A

 Command adds all files and
subdirectories to staging.

 Also removes deleted files
from staging.

 Still does not create a
snapshot of files.

Managing Repo Files – status / reset

 To see current staging status use:
git status

 Displays newly added files to
staging and files with changes
since last snapshot.

 To reset addition of new files:
git reset

 Does not undo changes to files,
simply removes newly added
files from staging.

Create A Snapshot – commit / diff
 Git status will show list of new or

changed files.
 To save a snapshot of the directory

git commit –m “message”
 Saves changes made to staged files

as a new commit.
 Best practices include a message

describing the context for the
changes.

Repository Navigation Overview

checkout

Set directory files
and subfolders to
selected version.

log

View list of
available versions
for active branch.

branch

View list of
branches for the

current repository.

All commands except for
“branch” execute within the
context of the active branch.

Navigating a Repo – log / checkout
 To view available commits:

git log
 Will display commit id, author,

date, and message for each
snapshot.

 Only displays commits for currently
active branch.

 To set directory to a specific
snapshot use:
git checkout <commitID>

Navigating a Repo – branch / checkout
 To view available branches:

git branch
 Will display branch name for each

branch within repo.
 To navigate to a branch use:

git checkout <branchName>
 This selects the latest version

within that branch.
 Other versions of that branch can

then be loaded via checkout.

Experiments – Branching and Merging

Main v01

Main v02

Main v03

Main v04

 A branch is a parallel version of the
repository, like an alternate reality.

 Can be used for testing new
functionality or for maintaining
alternative versions built from a
baseline case.

 Can be joined together via
“merge” to reconcile changes into
a single, unified version.

Feature 01

Alt v01

Alt v02

Alt v03

Alt v04

Feature 01

Experiments – Branching and Merging

Base

Base

Base

Base

 Merge commands can bring the
changes from one version into another
in either direction.

 A permanent branch for a special case
version (such as state-specific forms or
features) can allow for parallel
maintenance and development across
two paths.

 A temporary branch can allow for
development of a new feature while
maintaining the production version.

Experiment

State Adj

State Adj

State Adj

State Adj

Experiment

Branches
 To create a branch:

git checkout –B “branchname”
 Will create a copy of the current

branch as a starting point for the
new branch, named “branchname”

 Git commands are local to the
currently active branch.

 Delete a branch with:
git branch –D “branchname”

Merges – merge
 To merge one set of changes into the

current version:
git merge “branch/commit”

 All of the changes within the named
branch/commit will be merged into
the active branch.

 The log will show the resulting overlap
of branches.

Git Interface Tools
 Git is a popular tool with many third-

party implementation options.
 GUI clients offer ways to implement

git without extensive knowledge of
the command line functions.

 Git GUIs tools include Tower, GitHub
Desktop, Fork, among many others.

Git Built-In Support
 Many tools integrate Git directly into their interface, including some

tools common among the actuarial community.
 R Studio, PyCharm (plus other JetBrains offerings), and Microsoft Visual

Studio all have Git integrated directly into their software.

Collaborative Git Tools
 Webinar focuses on local git repositories.
 Online collaborative repositories allow

multiple users to work on, interact, and
merge changes within a single repo.

 Adds new commands including clone, push,
fetch, and pull for remote interaction.

 Common providers include:
GitHub
GitLab
BitBucket

Git Ideas For Actuaries

 Track and manage versions of a rating manual produced
from Python and published in LaTeX.

 Collaborate and manage R / Python functions library.
 Compare, contrast, and track client-provided files.
 Maintain and manage statistical tables (such as life or

frequency tables) with change histories.

Conclusion

Git can improve business workflows in many different
scenarios by assisting with version tracking for reports,

code, manuals, and more.
While traditionally a software development tool, git has

many applications across businesses and industries.

Q&A

Explainly and I would like to thank you
for participating in our webinar.

To learn more about us, visit us at
https://www.explainly.io

