An Implicit Discontinuous Galerkin Method for Modeling Intestinal Edema

Beatrice Riviere compm.rice.edu

Department of Computational and Applied Mathematics, Rice University

<u>Collaborators</u> Travis Thompson, Simula Research Laboratory Matthew Knepley, University at Buffalo

SIAM Life Sciences 2018

1 Edema, Intestinal Physiology, and Fluid Balance

2 Model Equations and DG Discretization

Clinical Experiments and Simulations

Edema in the body

Edema: a generalized condition characterized by an excess of watery fluid collecting in body cavities or tissues

Epidermal edema (left) and cerebral edema (right)

Intestinal edema: fluid collects in the interstitium, ileus

RICE

Intestinal Physiology

Intestinal Physiology

• Young's modulus • Shear modulus Layer and pressure dependent values

Young's Modulus			
Layer	<i>p</i> _{low}	p _{high}	
Mucosa	1.0 kPa	0.5 kPa	
Subumucosa	350 kPa	250 kPa	
Musculature	40 kPa	20 kPa	

Shear Modulus			
Mucosa	0.4 kPa	0.2 kPa	
Subumucosa	140 kPa	100 kPa	
Musculature	16 kPa	8 kPa	

RICE

Vascular and Lymphatic Fluid Exchange

Vascular : Starling-Landis $J_V(p) = K_F (P_V - p - \sigma(\Pi_V - \Pi_I))$

Lymphatic: Drake-Laine $J_L(p) = R_L^{-1} (p + P_p - P_L)$

Pore pressure: p

Fluid Balance Model

Capillary Distribution Function $\mathcal{C}:\Omega\rightarrow [0,1]$

Fluid Exchange Model $\Phi(\mathbf{x}, p)$

$$\Phi(\mathbf{x}, p) = \frac{\eta}{V_0} C(\mathbf{x}) \left(J_V(p) - J_L(p) \right)$$

$C(\mathbf{x})$	Piecewise linear per layer	
Mucosa:	1 at lumen boundary, linearly	
	decreasing to submucosa	
Submucosa:	1×10^{-3}	
Muscle:	2×10^{-3}	
η	Calibrated constant scaling	
	10	
V_0	Clinical reference volume	
	8400 ml	

Edema, Intestinal Physiology, and Fluid Balance

2 Model Equations and DG Discretization

8 Clinical Experiments and Simulations

Biot's Linear Poroelasticity Equations

Displacement **w**, pressure p and dilatation ε

$$c_1 \frac{\partial p}{\partial t} + c_0 \frac{\partial \varepsilon}{\partial t} - \kappa \Delta p = \Phi(p), \quad \text{in} \quad \Omega \times [0, T],$$
$$-\nabla \cdot (\mu(p) \nabla \mathbf{w}) + c_0 \nabla p - (\mu(p) + \lambda(p)) \nabla \varepsilon = 0, \quad \text{in} \quad \Omega \times [0, T],$$
$$\nabla \cdot \mathbf{w} - \varepsilon = 0, \quad \text{in} \quad \Omega \times [0, T].$$

Boundary conditions:

$$\begin{split} \kappa \nabla p \cdot \mathbf{n} &= 0 & \text{on } \partial \Omega \times (0, T) \\ \mathbf{w} &= \mathbf{0} & \text{on } \Gamma_{wD} \times (0, T) \\ \mu \nabla \mathbf{w} \cdot \mathbf{n} + (\mu + \lambda) \varepsilon \mathbf{n} - c_0 p \mathbf{n} &= 0 & \text{on } \Gamma_{wN} \times (0, T) \end{split}$$

Numerical Scheme with Discontinuous Galerkin

At time
$$t^{n+1}$$
 find $(p_h^{n+1}, \varepsilon_h^{n+1}, \mathbf{w}_h^{n+1})$ in $M_h \times M_h \times \mathbf{V}_h$ s.t. for
every $(r, q, \mathbf{v}) \in (M_h \times M_h \times \mathbf{V}_h)$
 $(c_1 \frac{p_h^{n+1} - p_h^n}{\Delta t}, r)_{\Omega} + (c_0 \frac{\varepsilon_h^{n+1} - \varepsilon_h^n}{\Delta t}, r)_{\Omega} + \kappa a_1(p_h^{n+1}, r) = (\Phi(p_h^n), r)_{\Omega} + \ell_1(t^{n+1}; r)_{\Omega}$
 $(\varepsilon_h^{n+1}, q)_{\Omega} + b_1(\mathbf{w}_h^{n+1}, q) = \ell_2(t^{n+1}; q)$
 $a_2(\mathbf{w}_h^{n+1}, \mathbf{v}) - b_2(\mathbf{v}, \varepsilon_h^{n+1}) + c_0b_1(\mathbf{v}, p_h^{n+1}) + j(\frac{\mathbf{w}_h^{n+1} - \mathbf{w}_h^n}{\Delta t}, \mathbf{v}) = \ell_3(t^{n+1}; \mathbf{v})$

 M_h , V_h : DG broken polynomial spaces of order one. Convergence analysis of scheme for homogeneous medium in: Riviere, Tan, Thompson. 'Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations' CAMWA. 73(4)666-683, 2017.

RICE

DG Bilinear Forms

$$\begin{split} a_{2}(\mathbf{w},\mathbf{v}) &= \sum_{E \in \mathbf{T}_{h}} (\tilde{\mu}(p) \nabla \mathbf{w}, \nabla \mathbf{v})_{E} - \sum_{e \in \Gamma_{h} \cup \Gamma_{wD}} (\{\tilde{\mu}(p) \nabla \mathbf{w}\} \mathbf{n}_{e}, [\mathbf{v}])_{e} \\ &+ \theta_{2} \sum_{e \in \Gamma_{h} \cup \Gamma_{wD}} (\{\tilde{\mu}(p) \nabla \mathbf{v}\} \mathbf{n}_{e}, [\mathbf{w}])_{e} + \sum_{e \in \Gamma_{h} \cup \Gamma_{wD}} \frac{\sigma_{2}}{h_{e}} \{\tilde{\mu}(p)\} ([\mathbf{w}], [\mathbf{v}])_{e} \\ b_{2}(\mathbf{v}, q) &= -\sum_{E \in \mathbf{T}_{h}} (\nabla \cdot \mathbf{v}, (\tilde{\mu}(p) + \tilde{\lambda}(p))q)_{E} \\ &+ \sum_{e \in \Gamma_{h} \cup \Gamma_{wD}} (\{(\tilde{\mu}(p) + \tilde{\lambda}(p)) q\}, [\mathbf{v}] \cdot \mathbf{n}_{e})_{e} \end{split}$$

1 Edema, Intestinal Physiology, and Fluid Balance

2 Model Equations and DG Discretization

3 Clinical Experiments and Simulations

 $11 \, / \, 18$

Clinical Experiments

Abbrev.	Description	
CTRL*	Sham surgical procedure (control group)	
HS	An infusion of hypertonic saline	
EVP**	Large infusion of normal saline, and a suture to	
	induce elevated venous pressure	
EVP-HS	A large infusion of normal saline, a suture to induce elevated	
	venous pressure, an infusion of hypertonic saline midway	

Numerical Values for Clinical Experiments					
Experiment	P_V	Π_V	K _f	P_p	σ
CTRL*	12	18.5	121	15	0.8
HS	12	20	121	15	0.8
EVP**	20	18.5	160	28	0.45
EVP-HS	20	18.5 / 20	160 / 121	28	0.45 / 0.8

*: Used to calibrate oncotic pressure Π_V (drop) due to surgical trauma **:Used to calibrate reflection coefficient σ due to endothelial stretching

Calibrated Value - Clinical Experimental Value - Literature Value

Comparison to Clinical Experiment

Experiment	Final Clinical Submuc. Pres. (Pa)	Comput. Avg. Submuc. Pres. (Pa)
CTRL*	Avg: 117.3	119.5
HS [†]	Avg:66, Range: 21 - 112	46.7
EVP*	Avg:506	505.7
EVP-HS [†]	Avg:133, Range:99 — 168	149.5

†: Predictive computation, no calibration. * Calibration to experimental average

Average Pressure, All Layers

14/18

Relative Pressure, All Experiments

Lumen Radius dilatation, All Simulations

Intestinal Motility and Resuscitation

$$\begin{split} r &= \sqrt{2(r_g + r_c)^2} \quad \text{Pre-edema} \\ \hat{r} &= \sqrt{2(\hat{r}_g + \hat{r}_c)^2} \quad \text{Post-edema} \\ \hat{r} &= \sqrt{2(r_c + r_g + dr_g)^2} \quad \text{Cell impermeability} \end{split}$$

 ϕ (porosity) estimated from clinical data: 22-24% $dr_g \approx \frac{r_g}{2\phi} \frac{dV_b}{V_b}^*$

$$\hat{r} \approx \sqrt{2\left(r_c + r_g\right)^2 + 2\left(r_c + r_g\right)\frac{r_g}{\phi}\frac{dV_b}{V_b} + \frac{1}{2}\frac{r_g^2}{\phi^2}\left(\frac{dV_b}{V_b}\right)^2}$$

Desigation	rg lower (nm)	rg upper (nm)
Healthy	2	30
EVP	15.432	242.7
EVP-HS	4.718	72.99

Optimal Communication Distance: 12-20 nm (Savtchenko, 2007). Reduced communication outside this range.

* Smooth muscle compressibility \ll bulk tissue compressibility V_b : Bulk volume, tracked in simulation

Goal: estimate $\hat{r}_c = r_g + dr_g$

Conclusions

- Mathematical and numerical model for intestinal edema
- Validated by in-vitro experiments
- Hypertonic saline resuscitation helps control the formation of acute edema in presence of high venous pressure
- Funding acknowledgments: NSF

