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acceleration (m/s*)

Bi-stable energy harvester subjected to random excitations

» Robustness under different loads

+ Broadband operation
- Suitable for very weak loads

« Straightforward to implement
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Challenge: Most sources of
\ energy are neither broadband
[ nor monochromatic

\ Goal: Model the stochastic
dynamics of a strongly nonlinear
system involving multiple time
scales and correlated excitations




Methods to analyze systems subjected to correlated noise

Fokker Planck Equation + Filters . A

» Model the excitation as filtered white-noise

» Solve the coupled system+filter FP equation o
« Very expensive and often unrealistic
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% ~ Polynomial Chaos (Wiener, ...) "o

C

% » Expand excitation and solution in a PC series N

< . PC

é‘ * Slow convergence for non-Gaussian responses...  ,, — uJ\PJ ( é:)
S « Little information about non-Gaussian statistics J=0

O

Statistical (non) linearization (Booton, Caughey, ...)

« Approximate dynamics by the closest linear system
« Very powerful method for vibrational systems | g
« Fails for bi-stable (bi-modal) systems




Plan of the presentation - overview of the method

Overview of statistical linearization methods and their limitations

The moment-equation-closure minimization method

-2 Moment equations expressing two-times statistics
> Two-times pdf representations and induced closure schemes

- Simultaneous error minimization for both the moments and the closure
Representation of the full probability density function

Application to bistable systems
- Application to Duffing oscillator excited by correlated noise
-> Application to a bistable electromechanical energy harvester

- Comparison with Gaussian closure methods



Overview of statistical linearization methods

Consider a nonlinear (SDOF) oscillator of the form:

= . . y(t) h(t)
x+/1x+g(x)=y — —e

g(x)=kx+kyx’

y — Correlated random excitation §

> I

Statistical linearization: substitute the non-linear system by the “closest” linear

X+Ax+k,x=Yy E[Al] = E[(ku-\' - g(-\‘))l] =min

How to choose K, ? i E [xe(0)]

£l



Overview of statistical linearization methods

Step 1: Adoption of a pdf representation (single-time statistics)

e.g. if Gaussian statistics for the response is assumed:

k, = E[\g(\)] _ E[kl-\‘: + /\'3_\'4]

Isserlis’ Theorem

=k, + 3%;-{

ZC G B

unknown

Non-Gaussian pdf may also be utilized (statistical non-linearization)

Step 2: Two-times moment equation for the linear system

WK Theorem -(U: ( ) Two-time

¥+ Ax+kx=) mmmm=) O« (@)= 79w (@) gtatistics

) .
|—w' + Al +k,,

y —w’ . _ ,
Oy = f =Sy () Algebraic equation for O
0 ’-w' + Alw + k, +3k,07,




Limitations of statistical linearization methods

1. Moment equations express two-times statistics but adopted pdf representation is
for a single-time statistics.

. E [xg (x) ] Closure relies on single-time statistics...

T2
E [x ] Important for bi-stable system where we have rich correlation structure

k,

2. Closure has to be exactly satisfied and all the mismatch is handled by the

equation.
Information obtained by the equation
’ under the condition
’ ' -
oy=J )  _ E[xem)]

. ‘—w: + Aiw + k, + 3k, 0, 0= -
E [.x" ]
What if the closure condition is not exactly satisfied?

bi-stable systems have non-trivial pdf structure



The moment-equation-closure minimization method

Step 1: Develop a pdf representation for two-times statistics

We want this representation to:
I. incorporate specific properties or information about the response pdf (single time
statistics) in the statistical steady state

ii. incorporate a given correlation structure between the statistics of the response and
the excitation, e.g. Gaussian

lii. have a consistent marginal with the excitation pdf (for the case of the joint
response-excitation pdf),

Iv. induce a non-Gaussian closure scheme that will be consistent with all the above
properties.



The moment-equation-closure minimization method

Step 1: Develop a pdf representation for two-times statistics

Single-time statistics:

flz;v) = %exp{ - }/(%kl;p'l + }lksu)}

Shape that is consistent with the exact solution of the FP equation but with a free parameter

Two-times statistics:

\

1 ) .
response-excitation pdf q(z,y) = M f(z)g(y)e™V f(z) :marginal for x(t) or x(s)
x(t)y(s)
> g(y) :marginal for x(t)
1
response-response pdf z,2) = — f(z)f(2)e*? ¢ :depends on t-s & expresses
x(t)x(s) P%: 8] N f(2)](2) / degree of correlation

Generic non-Gaussian marginals - Gaussian correlation structure



The moment-equation-closure minimization method

Two-times statistics:
1 1 e
response-excitation pdf q(z,y) = ~ f(z)g(y)ec™V f(z) :marginal for x(t) or x(s)
x(t)y(s)
> g(y) :marginal for x(t)
response-response pdf (. ) — 1 f(z)f(z)e™? ¢ :depends on t-s & expresses
’ )\f -
x(t)x(s) J / degree of correlation
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The moment-equation-closure minimization method

Step 2: Formulation of moment equations for the original system

E(t)y(s) + Az(t)y(s) + kr1z(t)y(s) + kaz(t)3y(s) = #(t)y(s)
E(t)z(s) + Az (t)z(s) + k1z(t)x(s) + kaz(t)3z(s) = y(t)z(s)
Assuming statistical stationarity: T = 1 — 8
2 2
E%ny('r) + /\ngIy(T) + k1Cry(7) + k3z(t)3y(s) &= %C’yy(r)
620’ )\aC' k,C ks: 3-'~82C
572 zz(T) + o7 zz(7) + k1Cz2(7) + k3z(t)3z(s) = 972 zy(—T)

Different equations for C..(7) and C.,(7)

In statistical (non-) linearization closure is applied directly to the governing eq.

Here we apply closure to the exact two-times moment equations instead...
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nt-equation-closure minimization method

two-times closures for the terms z(1)%y(s) and z(t)%z(s)

me e iplicit computations using the two-times pdf representations we obtain

function of 7

%l &

Using similar arguments we obtain a closure for x(t)3y(s)

Py _ ahyet ) (@0 - 3t (2)?)

z2y2e + L (ziyt — 3(22)2(y2)?) &3




nent-equation-closure minimization method

induced two-times closures to the moment equations

0? - 9, 02
bﬁcﬂ:‘y(‘r) i AECIy(T) I (kl £ 2 pz,ykii)ca:y('r) . chy('r)’
0? 0 0?2
gi’cmz("') + ’\50&(7) + (k1 + pz,2k3)Crz(T) = E?Cwy(—'r)

We transform the two time equations to spectrum equations

w4

{k1 + pzyks — w? + j(Aw) Hkr + pz,zks —w? — j(Aw)}

Szz(w) = Syy(w)

From which we obtain the following constraint:

Syy(w)dw
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The moment-equation-closure minimization method

Step 4: Simultaneous minimization of the two constraints

Ly oc 2 i i
Tepas) = (- [T & Sy () ) + (72
0 (k1 + pz,yks — w? + j(Ow)}{k1 + pz,zk3 — w? —J()\«J)} pzx

e — e .- — _—
Dynamics Closure
constraint constraint

Notes:

* For the case where the closure constraint is exactly satisfied we recover the
statistical (non-) linearization method.

« After we obtain the two unknowns we can go back and recover the correlation
functions C.(7) and C,(7)
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The moment-equation-closure minimization method

» Using the values of the correlation functions we can find the constant c to
obtain the full joint (two-times) pdf:

Full pdf representation
Fzte)z(t+r)y(e+7)(Z) 2, Y) = %f (z;7) f(2;7)9(y)ezp(c1zz + coxy + ca3yz)
Correlation functions from the pdf...
(7)) = /// T2 fr(t)z(t+7)y(t+7) (T, 2, y)dzdydz = ¢; (:2—2)2 + 0 ()
Cay(T) = /// ZY fa(t)x(t+ryy(e+) (T, 2, y)dedydz = crz?y? + O (c3)

¢
Czy(0) = /// Yz fa(t)z(t+r)y(t+r) (T, 2, y)dedydz = c3z®y? + O (c3)
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Application to the Duffing equation under correlated excitation

. . 3 .. excitation is a Gaussian 1 1
X+Ax+kx+kx =y : S(w) =q —exp(——)
with spectrum w? wi
Cx Cuy
1, r v v
--=-Monte Cario Simulation 0.6 - | — — Monte Carlo Simulation
A Gaussian Closure Gaussian Closure
08 MECM Method - MECM Method
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Application to the Duffing equation under correlated excitation

excitation is a Gaussian 1 1
Sw)=gq

ba ’ - ..
X+Ax+kx+kx =y with Spectrum — exp(— J)

Btz (t+1)y(t+7) (T, 2, V)

Monte Carlo Simulation MECM Method
J 0‘ . 5 > - i .
v P ) 0 . ™ i {
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Bistable oscillator coupled to an electromechanical harvester

F 4+ A+ kyx + ksz® + ov = i), excitation is a Gaussian g
with spectrum

v+ v = oz
257r
2 .
1.5} v
I /
1r i
..'( .
05+ Monte Carlo Simulation
. Gaussian Closure
f | = MECM Method
0= .
q
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Bistable oscillator coupled to an electromechanical harvester

. . 3 . - . . . .
I+ A& + kyx + kaz” + av = §j, excitation is a Gaussian S(w) =g 1 cxp(— i)
- 1 = ?
b+ Bv = 0i with spectrum w3 wd
Cx Cw
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Bistable oscillator coupled to an electromechanical harvester

&+ Ai + kyx + kax® + av = jj, excitation is a Gaussian S(w) = 1 Lk _L)
b+ Bu = 6@  With spectrum =4 5 XP\T 3
fr@)z(t+r)y(t+7) (T5 2, Y)
Monte Carlo Simulation MECM Method
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