

Stochastic Closure Schemes for bi-stable Energy Harvesters **Excited by Colored Noise**

Themis P. Sapsis & Han Kyul Joo **Department of Mechanical Engineering Massachusetts Institute of Technology**

sandlab.mit.edu

Funding provided by MIT Energy Initiative MITe

Bi-stable energy harvester subjected to random excitations

- Robustness under different loads
- Broadband operation
- Suitable for very weak loads
- Straightforward to implement

Walking vibrations

Ocean waves

Challenge: Most sources of energy are neither broadband nor monochromatic

Goal: Model the stochastic dynamics of a strongly nonlinear system involving multiple time scales and correlated excitations

Methods to analyze systems subjected to correlated noise

Fokker Planck Equation + Filters

- Model the excitation as filtered white-noise
- Solve the coupled system+filter FP equation
- Very expensive and often unrealistic

Polynomial Chaos (Wiener, ...)

- Expand excitation and solution in a PC series
- Slow convergence for non-Gaussian responses...
- Little information about non-Gaussian statistics

$$u = \sum_{J=0}^{N_{PC}} \hat{u}_J \Psi_J(\xi)$$

Statistical (non) linearization (Booton, Caughey, ...)

- Approximate dynamics by the closest linear system
- Very powerful method for vibrational systems
- Fails for bi-stable (bi-modal) systems

Plan of the presentation - overview of the method

- Overview of statistical linearization methods and their limitations
- The moment-equation-closure minimization method
 - → Moment equations expressing two-times statistics
 - → Two-times pdf representations and induced closure schemes
 - → Simultaneous error minimization for both the moments and the closure
- Representation of the full probability density function
- Application to bistable systems
 - → Application to Duffing oscillator excited by correlated noise
 - → Application to a bistable electromechanical energy harvester
 - → Comparison with Gaussian closure methods

Overview of statistical linearization methods

Consider a nonlinear (SDOF) oscillator of the form:

$$\ddot{x} + \lambda \dot{x} + g(x) = \ddot{y}$$
$$g(x) = k_1 x + k_3 x^3$$

 $y \rightarrow$ Correlated random excitation

Statistical linearization: substitute the non-linear system by the "closest" linear

$$\ddot{x} + \lambda \dot{x} + k_0 x = \ddot{y}$$

How to choose k_0 ?

$$E[\Delta^{2}] = E[(k_{0}x - g(x))^{2}] = \min$$

$$E[xg(x)]$$

$$\Rightarrow k_0 = \frac{E[xg(x)]}{E[x^2]}$$

Overview of statistical linearization methods

Step 1: Adoption of a pdf representation (single-time statistics)

e.g. if Gaussian statistics for the response is assumed:

$$k_0 = \frac{E[xg(x)]}{E[x^2]} = \frac{E[k_1x^2 + k_3x^4]}{E[x^2]} = k_1 + 3k_3 \sigma_X^2$$
 Isserlis' Theorem unknown

Non-Gaussian pdf may also be utilized (statistical non-linearization)

Step 2: Two-times moment equation for the linear system

$$\ddot{x} + \lambda \dot{x} + k_0 x = \ddot{y}$$

$$= \frac{-\omega^2}{\left|-\omega^2 + \lambda i\omega + k_0\right|^2} S_{yy}(\omega)$$
Two-time statistics

$$\sigma_X^2 = \int_0^\infty \frac{-\omega^2}{\left|-\omega^2 + \lambda i\omega + k_1 + 3k_3\sigma_X^2\right|^2} S_{YY}(\omega)$$
 Algebraic equation for σ_X^2

Limitations of statistical linearization methods

1. Moment equations express two-times statistics but adopted pdf representation is for a single-time statistics.

$$k_0 = \frac{E[xg(x)]}{E[x^2]}$$

 $k_0 = \frac{E[xg(x)]}{E[x^2]}$ Closure relies on single-time statistics...

Important for bi-stable system where we have rich correlation structure

Closure has to be exactly satisfied and all the mismatch is handled by the equation.

$$\sigma_X^2 = \int_0^\infty \frac{-\omega^2}{\left|-\omega^2 + \lambda i\omega + k_1 + 3k_3\sigma_X^2\right|^2} S_{YY}(\omega)$$

Information obtained by the equation under the condition

$$k_0 = \frac{E[xg(x)]}{E[x^2]}$$

What if the closure condition is not exactly satisfied?

bi-stable systems have non-trivial pdf structure

Step 1: Develop a pdf representation for two-times statistics

We want this representation to:

- incorporate specific properties or information about the response pdf (single time statistics) in the statistical steady state
- ii. incorporate a given correlation structure between the statistics of the response and the excitation, e.g. Gaussian
- iii. have a consistent marginal with the excitation pdf (for the case of the joint response-excitation pdf),
- iv. induce a non-Gaussian closure scheme that will be consistent with all the above properties.

Step 1: Develop a pdf representation for two-times statistics

Single-time statistics:

$$f(x;\gamma) = \frac{1}{\mathcal{F}} \exp\left\{-\frac{1}{\gamma}\left(\frac{1}{2}k_1x^2 + \frac{1}{4}k_3x^4\right)\right\}$$

Shape that is consistent with the exact solution of the FP equation but with a free parameter

Two-times statistics:

Generic non-Gaussian marginals - Gaussian correlation structure

Two-times statistics:

response-excitation pdf
$$q(x,y)=rac{1}{\mathcal{M}}f(x)g(y)e^{cxy}$$
 $x(t)y(s)$
$$p(x,z)=rac{1}{\mathcal{N}}f(x)f(z)e^{cxz}$$

$$p(x,z)=\frac{1}{\mathcal{N}}f(x)f(z)e^{cxz}$$

response-response
$$pdf$$

 $x(t)x(s)$

$$p(x,z) = \frac{1}{\mathcal{N}} f(x) f(z) e^{cxz}$$

f(x) : marginal for x(t) or x(s)

g(y): marginal for x(t)

: depends on t-s & expresses degree of correlation

Step 2: Formulation of moment equations for the original system

$$\frac{\ddot{x}(t)y(s) + \lambda \dot{x}(t)y(s) + k_1 \overline{x(t)y(s)} + k_3 \overline{x(t)^3 y(s)} = \overline{\ddot{y}(t)y(s)}}{\ddot{x}(t)x(s) + \lambda \dot{x}(t)x(s) + k_1 \overline{x(t)x(s)} + k_3 \overline{x(t)^3 x(s)} = \overline{\ddot{y}(t)x(s)}}$$

Assuming statistical stationarity: au = t - s

$$\frac{\partial^{2}}{\partial \tau^{2}}C_{xy}(\tau) + \lambda \frac{\partial}{\partial \tau}C_{xy}(\tau) + k_{1}C_{xy}(\tau) + k_{3}\overline{x(t)^{3}y(s)} = \frac{\partial^{2}}{\partial \tau^{2}}C_{yy}(\tau),$$

$$\frac{\partial^{2}}{\partial \tau^{2}}C_{xx}(\tau) + \lambda \frac{\partial}{\partial \tau}C_{xx}(\tau) + k_{1}C_{xx}(\tau) + k_{3}\overline{x(t)^{3}x(s)} = \frac{\partial^{2}}{\partial \tau^{2}}C_{xy}(-\tau)$$

Different equations for $C_{xx}(au)$ and $C_{xy}(au)$

In statistical (non-) linearization closure is applied directly to the governing eq. Here we apply closure to the exact two-times moment equations instead...

Step 3: Induced two-times closures for the terms $\overline{x(t)^3y(s)}$ and $\overline{x(t)^3x(s)}$

With some explicit computations using the two-times pdf representations we obtain

Closure constraint

$$\overline{x(t)^3 x(s)} = \rho_{x,x} \ \overline{x(t) x(s)}$$
 $\rho_{x,x} = \frac{x^4}{\overline{x^2}}$ function of γ

Using similar arguments we obtain a closure for $\overline{x(t)^3y(s)}$

$$\rho_{x,y} = \frac{\overline{x^3y}}{\overline{xy}} = \frac{\bar{x^4}\bar{y^2}c + \frac{1}{6}\left(\bar{x^6}\bar{y^4} - 3\bar{x^4}\bar{x^2}(\bar{y^2})^2\right)c^3}{\bar{x^2}\bar{y^2}c + \frac{1}{6}\left(\bar{x^4}\bar{y^4} - 3(\bar{x^2})^2(\bar{y^2})^2\right)c^3}$$

Substitute the induced two-times closures to the moment equations

$$\frac{\partial^2}{\partial \tau^2} C_{xy}(\tau) + \lambda \frac{\partial}{\partial \tau} C_{xy}(\tau) + (k_1 + \rho_{x,y} k_3) C_{xy}(\tau) = \frac{\partial^2}{\partial \tau^2} C_{yy}(\tau),$$

$$\frac{\partial^2}{\partial \tau^2} C_{xx}(\tau) + \lambda \frac{\partial}{\partial \tau} C_{xx}(\tau) + (k_1 + \rho_{x,x} k_3) C_{xx}(\tau) = \frac{\partial^2}{\partial \tau^2} C_{xy}(-\tau)$$

We transform the two time equations to spectrum equations

$$S_{xx}(\omega) = \left| \frac{\omega^4}{\{k_1 + \rho_{x,y}k_3 - \omega^2 + j(\lambda\omega)\}\{k_1 + \rho_{x,x}k_3 - \omega^2 - j(\lambda\omega)\}} \right| S_{yy}(\omega)$$

From which we obtain the following constraint:

Dynamic constraint

$$\overline{x^2} = \int_0^\infty \left| \frac{\omega^4}{\{k_1 + \rho_{x,y}k_3 - \omega^2 + j(\lambda\omega)\}\{k_1 + \rho_{x,x}k_3 - \omega^2 - j(\lambda\omega)\}} \right| S_{yy}(\omega) d\omega$$

Step 4: Simultaneous minimization of the two constraints

$$\mathcal{J}(\gamma, \rho_{x,x}) = \left(\overline{x^2} - \int_0^\infty \left| \frac{\omega^4 S_{yy}(\omega)}{\{k_1 + \rho_{x,y} k_3 - \omega^2 + j(\lambda \omega)\}\{k_1 + \rho_{x,x} k_3 - \omega^2 - j(\lambda \omega)\}} \right| d\omega \right)^2 + \left(\overline{x^2} - \frac{\overline{x^4}}{\rho_{x,x}}\right)^2$$

Dynamics constraint

Closure constraint

Notes:

- For the case where the closure constraint is exactly satisfied we recover the statistical (non-) linearization method.
- After we obtain the two unknowns we can go back and recover the correlation functions $C_{xx}(\tau)$ and $C_{xy}(\tau)$

 Using the values of the correlation functions we can find the constant c to obtain the full joint (two-times) pdf:

Full pdf representation

$$f_{x(t)x(t+ au)y(t+ au)}(x,z,y) = rac{1}{\mathcal{R}}f(x;\gamma)f(z;\gamma)g(y)exp(c_1xz+c_2xy+c_3yz)$$

Correlation functions from the pdf...

$$\begin{split} C_{xx}(\tau) &= \iiint xz f_{x(t)x(t+\tau)y(t+\tau)}(x,z,y) dx dy dz = c_1 \left(\bar{x^2}\right)^2 + \mathcal{O}\left(c_1^2\right) \\ C_{xy}(\tau) &= \iiint xy f_{x(t)x(t+\tau)y(t+\tau)}(x,z,y) dx dy dz = c_2 \bar{x^2} \bar{y^2} + \mathcal{O}\left(c_2^2\right) \\ C_{xy}(0) &= \iiint yz f_{x(t)x(t+\tau)y(t+\tau)}(x,z,y) dx dy dz = c_3 \bar{x^2} \bar{y^2} + \mathcal{O}\left(c_3^2\right) \end{split}$$

Application to the Duffing equation under correlated excitation

$$\ddot{x} + \lambda \dot{x} + k_1 x + k_3 x^3 = \ddot{y}$$

excitation is a Gaussian with spectrum

$$S(\omega) = q \, \frac{1}{\omega^5} \exp(-\frac{1}{\omega^4})$$

Application to the Duffing equation under correlated excitation

$$\ddot{x} + \lambda \dot{x} + k_1 x + k_3 x^3 = \ddot{y} \qquad \text{excitation is a Gaussian} \qquad S(\omega) = q \; \frac{1}{\omega^5} \exp(-\frac{1}{\omega^4})$$

$$f_{x(t)x(t+\tau)y(t+\tau)}(x,z,y)$$
 Monte Carlo Simulation MECM Method

Bistable oscillator coupled to an electromechanical harvester

$$\ddot{x} + \lambda \dot{x} + k_1 x + k_3 x^3 + \alpha v = \ddot{y}$$
, excitation is a Gaussian $S(\omega) = q \; \frac{1}{\omega^5} \exp(-\frac{1}{\omega^4})$ with spectrum

Bistable oscillator coupled to an electromechanical harvester

$$\ddot{x}+\lambda\dot{x}+k_1x+k_3x^3+\alpha v=\ddot{y},$$
 excitation is a Gaussian $\dot{v}+\beta v=\delta\dot{x}$ with spectrum

$$S(\omega) = q \, \frac{1}{\omega^5} \exp(-\frac{1}{\omega^4})$$

Bistable oscillator coupled to an electromechanical harvester

$$\ddot{x}+\lambda\dot{x}+k_1x+k_3x^3+\alpha v=\ddot{y},$$
 excitation is a Gaussian $\dot{v}+\beta v=\delta\dot{x}$ with spectrum $S(\omega)=q$ $\frac{1}{\omega^5}\exp(-\frac{1}{\omega^4})$ $f_{x(t)x(t+\tau)y(t+\tau)}(x,z,y)$ Monte Carlo Simulation MECM Method

