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SHE WORKS HARD FOR THE MONEY

1.This will be an index 



WHY BAYES? 
WHITHER BAYES? 

WHEREFORE BAYES?



BAYESIAN JUSTIFICATION (FT. NATE DOGG)  



BAYESIAN JUSTIFICATION (NOT FT. NATE DOG)

➤ ?: If regularisation isn’t the key word, what is the advantage 
of Bayesian thinking here? 

➤ !: Building a Bayesian model forces you to build a model for 
how the data is generated 

➤ We often think of Bayesian modelling as specifying a prior 
and a likelihood as if these are two separate things. 

➤ They. Are. Not.



A BAYESIAN MODELLER COMMITS TO AN A PRIORI  JOINT DISTRIBUTION

Data

Latent Gaussian  
(Finn’s stuff + covariates + 
design effects +++  
all shoved into one vector)

Parameters



➤ This decomposes the joint distribution into three parts: 

➤ The marginal likelihood (ie the density of the data under 
the prior model) 

➤ The marginal posterior for the parameters 

➤ The full conditional for the latent field 

➤ The last of these is almost Gaussian

HIDING ALL AWAY



LEWIS TAKES OFF HIS SHIRT

➤ The most important distribution is the marginal likelihood 
p(y), which tells us how well the model can capture the data 

➤ Simulations from the marginal likelihood are the prior 
predictions 

➤ If none of these look like  
plausible data, there’s trouble 

➤ But wait: We don’t know it!



THE MAJESTY OF GENERATIVE MODELS

➤ If we disallow improper priors, then Bayesian modelling is 
generative. 

➤ In particular, we have a simple way to simulate from  

➤ Simulate 

➤ Simulate 

➤ Simulate



➤ Consider the following priors (we’ll fix the observation noise for 
now: 

➤   

➤   

➤

WHY DO WE CARE?
➤ Consider a cartoon model for estimating global PM2.5 

concentration based on (good) Ground Monitor 
measurements and (noisy) satellite estimates
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WHAT DOES THIS LOOK LIKE?



WHAT DO WE NEED IN OUR PRIORS?

➤ This suggests we need containment: Priors that keep us inside 
sensible parts of the parameter space 

➤ The prior for the range: 

➤ Needs to not have too much mass on smaller ranges than 
the data observations 

➤ A inverse-Gamma tuned so that                                    is good  

➤ The prior for the standard deviation: 

➤ Not the variance or the precision! 

➤ Again, an exponential or half-t so that 



LESSON FOR BAYESIAN UNCERTAINTY QUANTIFICATION

➤ You need to check how your priors interact with each other 
and the likelihood in order to assess if they’re sensible. 

➤ Hence, an important step in any sort of data assimilation / 
backwards uncertainty quantification is forwards uncertainty 
quantification 

➤ It alerts us if we’ve accidentally put too much weight on 
unphysical model configurations



CAN WE EVEN DO 
BAYES?



WHAT DO WE DO ABOUT PARAMETERS?

➤ We need to construct a principled way to deal with the 
parameters  

➤ In theory this is straightforward. If 

➤ Then the to the log-posterior is

(Red is the colour of pain)



HOW DO YOU COMPUTE A DETERMINANT?

➤ With a Cholesky factorization.  

➤ If                      then 

➤ This only works if you can actually compute the the 
Cholesky 

➤ For a dense matrix, this costs 

➤ For a sparse matrix this costs 

➤ If you can write your model in state space form it’s  

➤   This really hurts!



ONE POSSIBLE WAY THROUGH

➤ Note that 

➤ z is a vector of iid zero mean, unit variance random variables 

➤ This requires the computation of a matrix logarithm 

➤ There are some clever tricks!  

➤ In the name of all that is holy, do not re-sample z!
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REAL TALK

➤ Honestly, I’ve never got this stable. 

➤ Michael Jordan (and others) may be extolling the virtues of 
Stochastic optimization, but that only works when you can 
control the noise 

➤ We found that really hard to do 

➤ So, the point where you can no longer compute a Cholesky 
(or something similar) is the point where you can’t compute 
the likelihood 

➤ (Let us not speak of pseudomarginal methods. They do not 
work for this problem)



THE THREE STAGES OF MODELLING

➤ Formulation 

➤ Hi Finn! 

➤ Approximation 

➤ SPDEs 

➤ Other dimension-reduction techniques 

➤ Desperation



EMPIRICAL BAYES: THE LAST HOPE OF THE HOPELESS

➤ Replace the good thing with the cheap thing: 

➤ This is a one-point integration rule, so it’s pretty important to 
choose the one point correctly! 

➤ You want  

➤ (or some appropriate approximation to it)



BUT SHIRLEY THIS IS JUST AS BAD

➤ Instead of computing a log-determinant, this requires its 
derivative  

➤ This is much easier to compute! 

➤ And amenable to the tricks Finn mentioned! 

➤ You can use all your fancy linear solvers here!



WHAT HAVE WE LOST?

➤ The uncertainty intervals for u will be wrong 

➤ When there isn’t very much information about    in the data, 
you will sometimes over-fit. 

➤ This is kinda common.



ALL THIS WORK, BUT DID 
I ACTUALLY COMPUTE 

THE RIGHT THING?



WE HAVE COMPUTED SOME THINGS

➤ Depending on what is possible, we’ve computed one of these 
approximate posteriors: 

➤   

➤   

➤   

➤ One thing to ask is “did we do a good job?” 



HOW CAN WE TELL IF AN ALGORITHM ACTUALLY WORKS?

➤ Idea: Run the algorithm on simulated data. 

1. Pick a parameter value  

2. Generate data from  

3. Fit model to data 

4. Compare the posterior to the known true value

✓0

p(y | ✓0)



OKAY! IS THIS RIGHT?



ONCE MORE WITH FEELING

➤ Maybe we should check more than one point! 

➤ How do we do that?   

➤ We want to check all reasonable values of 

➤ Idea: Simulate multiple               and check the fit 

➤ How do we check the fit?  

➤ Big idea: Look at where the true parameter lies in a bag of L 
posterior samples

✓

✓ ⇠ p(✓)



SINGLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



MULTIPLE RECOVERY

Pr(✓ < ✓0)Rank



THAT LOOKS MIGHTY UNIFORM…

➤ Why is this uniform? 

➤ Maths. 

➤ It turns out that ranks are uniformly distributed because 
when you average the posterior over data generated from 
p(y), you get the prior back! 

➤ Better yet, deviations from uniformity are meaningful!



POSTERIOR TOO WIDE

Prior

Computed
Data-Averaged Posterior

f(θ)



POSTERIOR TOO NARROW

Prior

Computed
Data-Averaged Posterior

f(θ)



POSTERIOR BIASED TOWARDS LARGER VALUES

Prior
Computed

Data-Averaged Posterior

f(θ)



IT’S IMPORTANT TO USE ALMOST INDEPENDENT SAMPLES

 0  2  4  6  8  10
Rank Statistic

➤ Draws from MCMC will usually 
be strongly correlated. 

➤ This is bad! 

➤ The theory only works for  
independent posterior samples 

➤ Solution: Thin your Markov chain



THIS IS ALL A BIT ONE-DIMENSIONAL
➤ Everything here has been predicated on a one-dimensional 

parameter 

➤ If we can compute the marginal posterior quantiles, we can 
check the univariate calibration for each parameter 

➤ The system still works for functions  

➤ We recommend checking the marginals, functionals of interest, 
and a collection of random linear functionals 

➤ This should be sufficient to see if things have worked 

➤ (NB: The cost of checking a new functional is usually 
dominated by computing the posterior, so the more the 
merrier)

f(✓)



YES BUT DOES YOUR 
MODEL ACTUALLY FIT?



LOOKING AT SIMULATED DATA WAS USEFUL, WHAT ABOUT THE REAL STUFF?

➤ Looking at simulated data was a good “sense check” for our 
algorithms. 

➤ But if we want to see if our model has actually done an ok job, 
we need to do something similar for real data 

➤ Idea: What if we look at the rank of a single data point 
in a bag of samples from the posterior predictive 

➤ Here         is all of the data points except  



WE GET THE SAME HISTOGRAMS!



SOME CONCLUDING 
THOUGHTS



FINAL THOUGHTS

➤ Complex, multiresolution space-time models are hard to 
formulate and harder to fit 

➤ There are a lot of traps you can fall into 

➤ Meaningful priors are important. Don’t just slap any old gaff 
on 

➤ We really don’t know how to compute big likelihoods, but 
empirical Bayes will fail for uniformed parameters 

➤ Finally, it’s best to think of Bayesian analysis as a workflow 
rather than a single magical thing that you only do once. 
Check your model before, during, and after your analysis!
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