

Large Scale Scientific Data Analysis and Visualization

Han-Wei Shen
The Ohio State University

Driven Analysis and Visualization

Driven Analysis and Visualization

Visualization pipeline

Visual Analytic Questions

Visual Analytic Questions

- Data reduction and triage
 - Where are the most salient regions?
 - What resolution to use?
- Feature extraction and tracking
 - How to choose the best algorithm parameters?
 - How much information in the data is being revealed by the visualization?
- Visual mapping and Image Analysis
 - Is this a good view point?
 - Is this a good transfer function?

Information Flow

- Measure the flow of information across the entire data analysis and visualization pipeline
 - Quantify the information content in the data set
 - Measure the amount of information losses in each stage of the visualization pipeline
 - Choose parameters that can minimize the information losses

Visualization pipeline

Information-Driven Analysis and Visualization

Information Complexity

- Treat the vector data as a random variable
- The complexity of a data block can be represented by the distribution of the vectors
- Measure the amount of information contained in the local regions based on entropy measures

Entropy Field and Seeding

Measure the entropy around each point's neighborhood

Vector Field

Entropy field: higher value means more information in the corresponding region

Entropy Field and Seeding

Measure the entropy around each point's neighborhood

Vector Field

Entropy field: higher value means more information in the corresponding region

Conditional Entropy Field and Seeding

Measure the under-represented information in each region

Conditional-entropy-based seeding: Place more seeds on regions with higher under-represented information

Information Convergence

1st iteration: Entropybased seeding 2nd iteration: Cond.entropy-based seeding

Conditional entropy

Information Convergence

1st iteration: Entropybased seeding

2nd iteration: Cond.entropy-based seeding

Conditional entropy

Information Convergence

Conditional entropy

When conditional entropy converges

Application in View Selection

 Parameterize the viewpoint space

Application in View Selection

 Parameterize the viewpoint space

Sample view-dependent entropy

Red: viewpoints w/ high score
Blue: viewpoints w/ low score

Multivariate Analysis

Step-by-Step guidance for multivariate exploration

- Calculate all pair mutual information
- Generate a hierarchical cluster tree

Multivariate Analysis

Step-by-Step guidance for multivariate exploration

- Calculate all pair mutual information
- Generate a hierarchical cluster tree
- Group variables and calculate their relative imp.
- Compute the relationship between variables

■ Surprise:

$$I_1(x;Y) = \sum_{y \in Y} \left(p(y|x) \log \frac{p(y|x)}{p(y)} \right)$$

Predictability:
$$I_2(x;Y) = H(Y) - H(Y|x) = -\sum_{y \in Y} (p(y) \log p(y)) + \sum_{y \in Y} (p(y|x) \log p(y|x))$$

Multivariate Analysis

Step-by-Step guidance for multivariate exploration

- Calculate all pair mutual information
- Generate a hierarchical cluster tree
- Group variables and calculate their relative imp.
- Compute the relationship between variables

Predictability:
$$I_2(x;Y) = H(Y) - H(Y|x) = -\sum_{y \in Y} (p(y) \log p(y)) + \sum_{y \in Y} (p(y|x) \log p(y|x))$$

Distribution-based Visual Analytics

General Steps:

Distribution-based Visual Analytics

General Steps:

- Define the random variable (one or more)
- · Define the states of the random variable
- Calculate the probability of each state
- Calculate the entropy measures for each random variable
 - For multivariate problem, calculate the joint entropy between the variables and study their relationship
- Calculate the information content of each variable and the shared information among the variables
- Maximize the information content displayed in the final visualization

Scientific Data Analytics Pipeline

Conclusions

- Use distributions as a compact representation of data
 - Many statistics about the data can be derived
 - Information flow across the visualization pipeline can be analyzed
 - Regions of high information content can be identified
 - Parameters for various visualization algorithms can be optimized
 - It allows detailed analysis and inferences even in the absence of the raw data

Conclusions

- Use distributions as a compact representation of data
 - Many statistics about the data can be derived
 - Information flow across the visualization pipeline can be analyzed
 - Regions of high information content can be identified
 - Parameters for various visualization algorithms can be optimized
 - It allows detailed analysis and inferences even in the absence of the raw data
- Supports the needs of in situ data analysis
 - Data reduction
 - Data summarization
 - Data triage
 - Feature extraction and indexing

Thank You!