

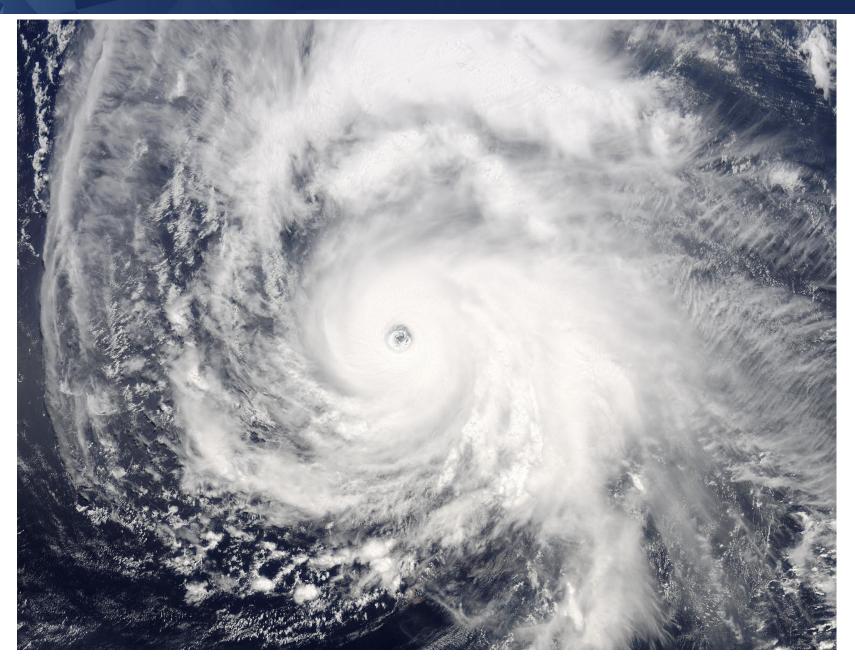
State Estimation for a Filtered Representation of a Chaotic Field

Dan Hodyss¹ and Peter Schwartz²

1. Marine Meteorology Division, Naval Research Laboratory, Monterey, CA

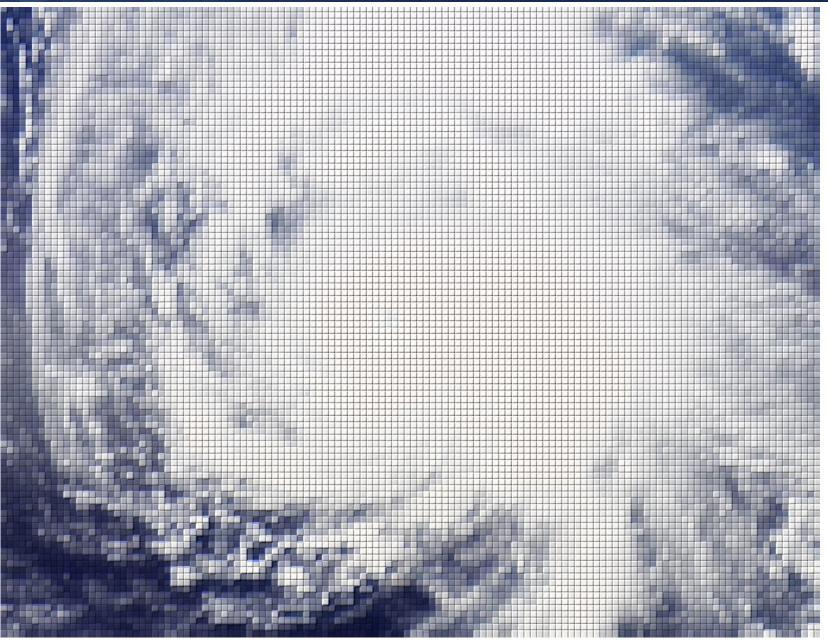
2. Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, Berkeley, CA

Reality is detailed and full of structure ...



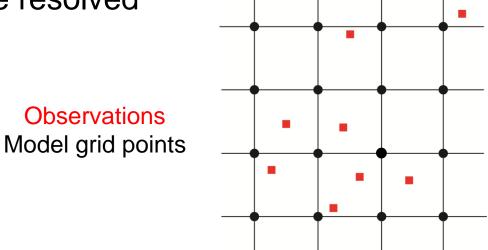
U.S.NAVAL RESEARCH

... but our model simulations are coarse and smoothed.

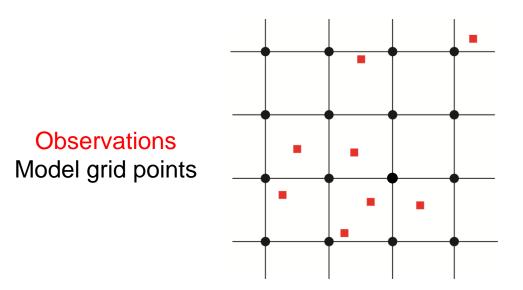


- We have **point** measurements of things like temperature, barometric pressure, wind velocity, etc.
- We have model simulated values of **area-averaged** temperature, barometric pressure, wind velocity, etc.
 - Cannot run PDE solver at a resolution for which all important

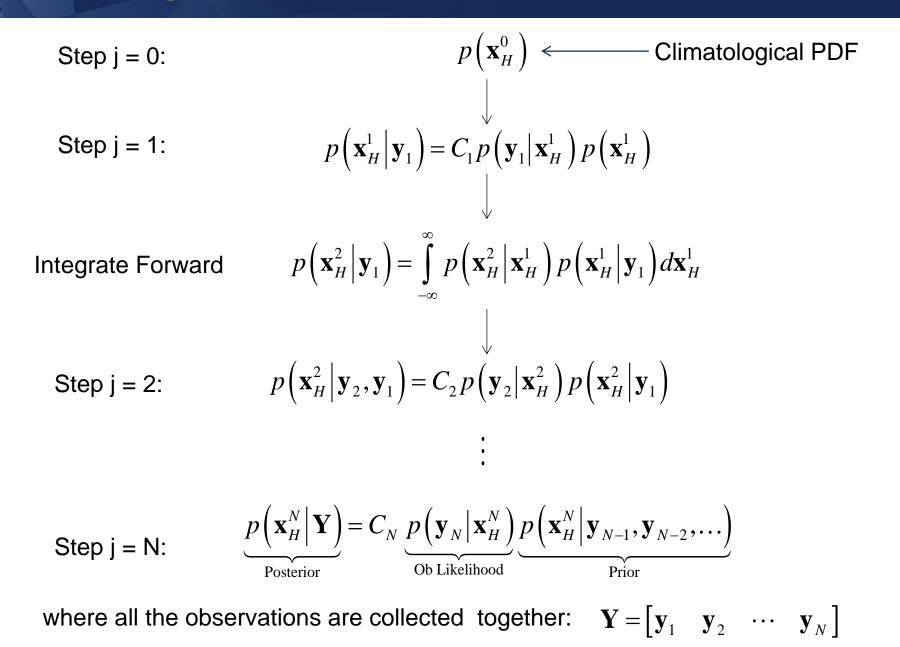
physical processes are resolved



- We have at least two choices:
 - 1. Search for the best estimate of the pointwise values of temperature, winds, etc. at our model grid points
 - 2. Search for the best estimate of the area-averaged values of temperature, winds, etc. in each of our grid cells

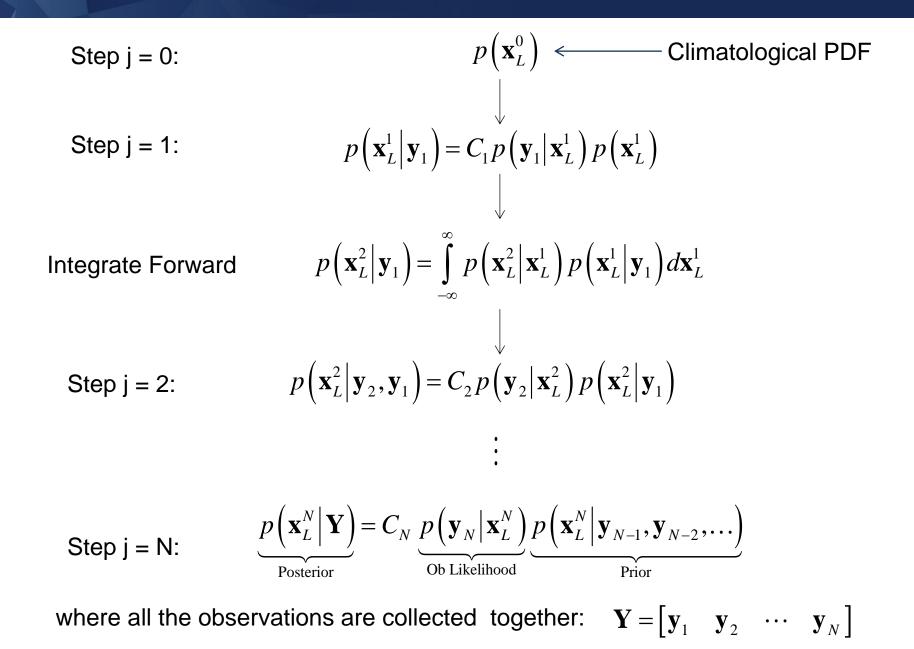


High-Resolution Data Assimilation



U.S. NAVAI

Low-Resolution Data Assimilation



U.S. NAVAI

Low-Resolution Ob Likelihood

A little bit of manipulation with the chain rule of probability finds

$$p(\mathbf{y}_{1}|\mathbf{x}_{L}^{1}) = \int_{-\infty}^{\infty} p(\mathbf{y}_{1}|\mathbf{x}_{H}^{1}) p(\mathbf{x}_{H}^{1}|\mathbf{x}_{L}^{1}) d\mathbf{x}_{H}^{1}$$

High-Resolution
Ob Likelihood
Synchronization Density

U.S.NAVAL

RESEARCH LABORATORY **Synchronization Density**

If the high and low-resolution systems are not synchronized then

$$p\left(\mathbf{x}_{H}^{1} \middle| \mathbf{x}_{L}^{1}\right) = p\left(\mathbf{x}_{H}^{1}\right)$$

which implies

U.S.NAVAL

RESEARCH

$$p\left(\mathbf{y}_{1} | \mathbf{x}_{L}^{1}\right) = \int_{-\infty}^{\infty} p\left(\mathbf{y}_{1} | \mathbf{x}_{H}^{1}\right) p\left(\mathbf{x}_{H}^{1}\right) d\mathbf{x}_{H}^{1} = p\left(\mathbf{y}_{1}\right)$$

Our assimilation of the observation then delivers

$$p\left(\mathbf{x}_{L}^{1} \middle| \mathbf{y}_{1}\right) = C_{1} p\left(\mathbf{y}_{1}\right) p\left(\mathbf{x}_{L}^{1}\right) = p\left(\mathbf{x}_{L}^{1}\right)$$

We note that

$$p\left(\mathbf{x}_{H}^{1} \left| \mathbf{x}_{L}^{1}\right) p\left(\mathbf{x}_{L}^{1}\right) = p\left(\mathbf{x}_{L}^{1} \left| \mathbf{x}_{H}^{1}\right) p\left(\mathbf{x}_{H}^{1}\right)\right)$$

The *converse* synchronization density must satisfy

$$p\left(\mathbf{x}_{L}^{1}\right) = \int_{-\infty}^{\infty} p\left(\mathbf{x}_{L}^{1} \middle| \mathbf{x}_{H}^{1}\right) p\left(\mathbf{x}_{H}^{1}\right) d\mathbf{x}_{H}^{1}$$

Assumption: A map exists between high and low-resolution such that

$$p\left(\mathbf{x}_{L}^{1}\left|\mathbf{x}_{H}^{1}\right)=\delta\left(\mathbf{x}_{L}^{1}-\mathbf{F}\left(\mathbf{x}_{H}^{1}\right)\right)$$

Note that **F** is the mean of

$$p\left(\mathbf{x}_{L}^{1} \middle| \mathbf{x}_{H}^{1}\right) = \delta\left(\mathbf{x}_{L}^{1} - \mathbf{F}\left(\mathbf{x}_{H}^{1}\right)\right)$$

Therefore, standard polynomial regression will find F:

$$\mathbf{F}\left(\mathbf{x}_{H}^{1}\right) = \int_{-\infty}^{\infty} \mathbf{x}_{L}^{1} p\left(\mathbf{x}_{L}^{1} | \mathbf{x}_{H}^{1}\right) d\mathbf{x}_{L}^{1} \approx \overline{\mathbf{x}}_{L}^{1} + \mathbf{A}_{1}\left[\mathbf{x}_{H}^{1} - \overline{\mathbf{x}}_{H}^{1}\right] + \dots$$

When we truncate the expansion we no longer have zero variance:

$$p\left(\mathbf{x}_{L}^{1} \left| \mathbf{x}_{H}^{1} \right.\right) = N \exp\left[-\frac{1}{2}\left(\mathbf{x}_{L}^{1} - \hat{\mathbf{F}}\left(\mathbf{x}_{H}^{1}\right)\right)^{T} \mathbf{B}^{-1}\left(\mathbf{x}_{L}^{1} - \hat{\mathbf{F}}\left(\mathbf{x}_{H}^{1}\right)\right)\right]$$

Low-Resolution Ob Likelihood

A little bit of manipulation with the chain rule of probability finds

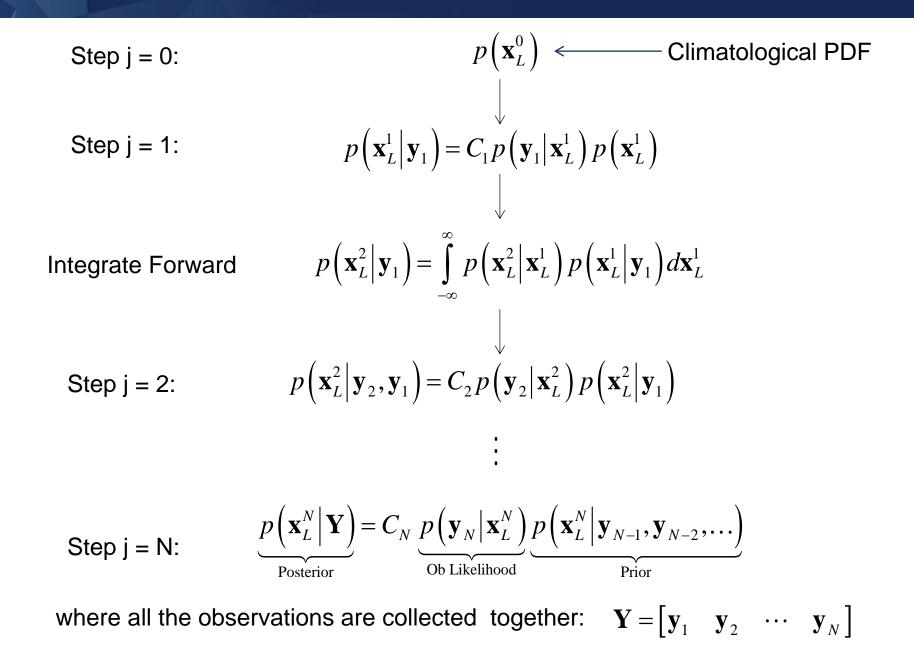
$$p(\mathbf{y}_{1}|\mathbf{x}_{L}^{1}) = \int_{-\infty}^{\infty} p(\mathbf{y}_{1}|\mathbf{x}_{H}^{1}) p(\mathbf{x}_{H}^{1}|\mathbf{x}_{L}^{1}) d\mathbf{x}_{H}^{1}$$

High-Resolution
Ob Likelihood
Synchronization Density

U.S.NAVAL

RESEARCH LABORATORY

Low-Resolution Data Assimilation



U.S. NAVAI

A Test Problem: Solitary Waves in Variable Media

The test problem we will use is a variable-coefficient KdV equation (Hodyss and Nathan 2003, 2006, 2007):

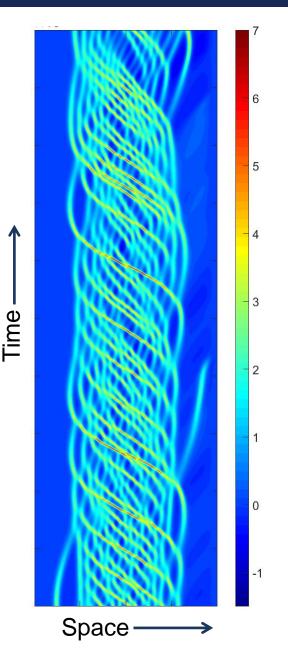
$$\frac{\partial A}{\partial t} + m_d \frac{\partial^3 A}{\partial x^3} + m_p \left(x \right) \frac{\partial A}{\partial x} + m_g \left(x \right) A + m_n A \frac{\partial A}{\partial x} = 0$$

We set the coefficients to:

$$m_d = m_n = -1$$
 $m_p(x) = 1 - e^{-ax^2}$ $m_g(x) = -2axe^{-ax^2}$

Interesting DA problem because:

- Chaotic creation/destruction of solitary waves
- Very large amplitude solitary waves are very narrow
- Large amplitude waves move very fast

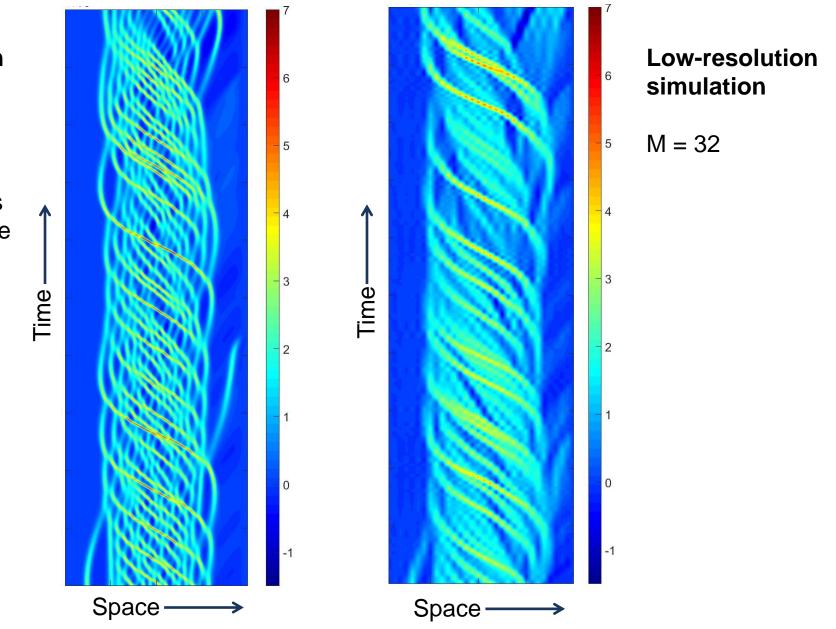


U.S. NAVAL RESEARCH LABORATORY High versus Low Resolution

High-resolution simulation

N = 512

Both simulations will use the same numerical methods



Data Assimilation Problem

• High-resolution - N = 512

U.S. NAVA

- Low-resolution -M = 32
- The locations of the grid points of the low-resolution state vector will be coincident with the high-resolution state-vector subsampled every 16 points.
- Observations will be taken at the location of these overlapping points
- The observation error variance will be R = 0.3, which is approximately 50% of the climatological variance at high-resolution.
- There will be 1 unit of time between observations, which is approximately 1000 (100) time steps at high-resolution (low-resolution).
- We will use 1000 member ensembles
- The contemporary approach is brute-force tuned for best prior and observation inflation parameters
- Note: both methods benefited from some gross localization of the prior covariance matrices

Problem Statement and a Contemporary Approach

- Assume high-resolution reality with state vector of length N.
- Assume low-resolution model state space with state vector of length M.
- We will assume that we can run the model at resolution N, but then must perform our data assimilation at a reduced resolution of length *M*.
- A contemporary (ad hoc) approach using the Ensemble Kalman Filter
- The ensemble update step uses the stochastic observation approach (Evenson 2003)

Low-Resolution Update

$$\overline{\mathbf{x}}_{L}^{c} = \overline{\mathbf{x}}_{L} + \mathbf{G}^{c} \left[\mathbf{v}_{L} - \left\langle \mathbf{v}_{L} \right\rangle \right]$$

$$\mathbf{G}^{c} = \mathbf{P}_{L} \mathbf{H}_{L}^{T} \left[\mathbf{H}_{L} \mathbf{P}_{L} \mathbf{H}_{L}^{T} + \overline{\mathbf{R}}_{c} \right]^{-1}$$

$$\overline{\mathbf{R}}_{c} = \mathbf{R}_{ins} + \mathbf{R}_{c}$$

$$\mathbf{v}_{L} = \mathbf{y} - \mathbf{H}_{L} \overline{\mathbf{x}}_{L}$$

$$\left\langle \mathbf{v}_{L} \right\rangle = \mathbf{H}_{H} \overline{\mathbf{x}}_{H} - \mathbf{H}_{L} \overline{\mathbf{x}}_{L}$$

High-Resolution Update $\overline{\mathbf{x}}_{H}^{c} = \overline{\mathbf{x}}_{H} + \hat{\mathbf{F}}^{\dagger} \mathbf{G}^{c} \left[\mathbf{v}_{L} - \left\langle \mathbf{v}_{L} \right\rangle \right]$ $\mathbf{G}^{c} = \mathbf{P}_{L} \mathbf{H}_{L}^{T} \left[\mathbf{H}_{L} \mathbf{P}_{L} \mathbf{H}_{L}^{T} + \overline{\mathbf{R}}_{c} \right]^{-1}$ $\overline{\mathbf{R}}_{c} = \mathbf{R}_{ins} + \mathbf{R}_{c}$ $\mathbf{v}_{L} = \mathbf{y} - \mathbf{H}_{L} \overline{\mathbf{x}}_{L}$ $\left\langle \mathbf{v}_{L} \right\rangle = \mathbf{H}_{H} \overline{\mathbf{x}}_{H} - \mathbf{H}_{L} \overline{\mathbf{x}}_{L}$

U.S. NAVAL

A Multi-Resolution Kalman Filter

- A multi-resolution Kalman filter approach will make use of the same Ensemble (Monte-Carlo) Kalman Filter framework (Hodyss and Nichols, 2015; Tellus A)
- The ensemble update step uses the stochastic observation approach (Evenson 2003)

Low-Resolution Update

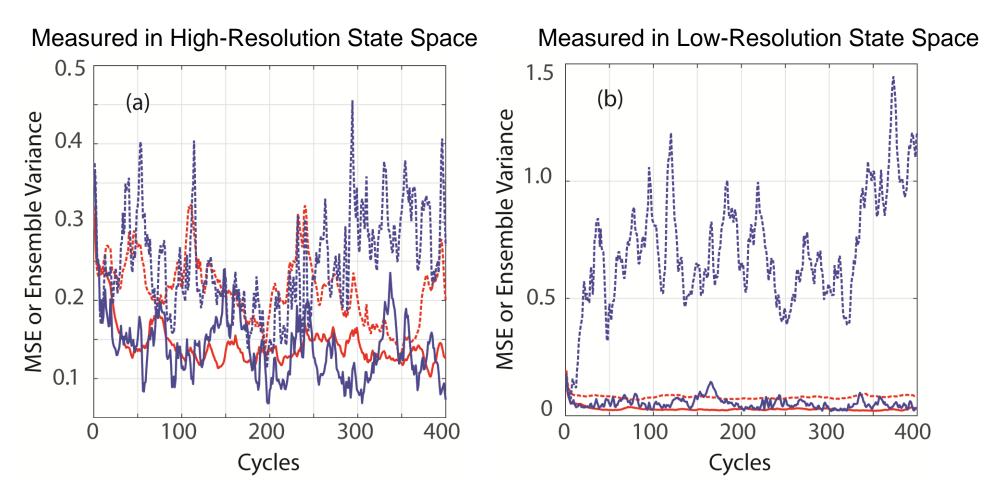
$$\begin{aligned} \overline{\mathbf{x}}_{L}^{b} &= \overline{\mathbf{x}}_{L} + \mathbf{G} \left[\mathbf{v}_{L} - \left\langle \mathbf{v}_{L} \right\rangle \right] \\ \mathbf{G} &= \left[\mathbf{P}_{L} \mathbf{H}_{L}^{T} + \mathbf{P}_{LH} \right] \left[\mathbf{H}_{L} \mathbf{P}_{L} \mathbf{H}_{L}^{T} + \overline{\mathbf{R}}_{L}^{*} \right]^{-1} \\ \mathbf{P}_{LH} &= \hat{\mathbf{F}} \mathbf{P}_{H} \left(\mathbf{H}_{H} - \mathbf{H}_{L} \hat{\mathbf{F}} \right)^{T} \\ \overline{\mathbf{R}}_{L}^{*} &= \mathbf{R}_{ins} + \mathbf{H}_{H} \mathbf{P}_{H} \mathbf{H}_{H}^{T} - \mathbf{H}_{L} \mathbf{P}_{L} \mathbf{H}_{L}^{T} \\ \mathbf{v}_{L} &= \mathbf{y} - \mathbf{H}_{L} \overline{\mathbf{x}}_{L} \\ \left\langle \mathbf{v}_{L} \right\rangle &= \mathbf{H}_{H} \overline{\mathbf{x}}_{H} - \mathbf{H}_{L} \overline{\mathbf{x}}_{L} \end{aligned}$$

High-Resolution Update

$$\begin{aligned} \mathbf{\bar{x}}_{H}^{c} &= \mathbf{\bar{x}}_{H} + \mathbf{\hat{F}}^{\dagger} \mathbf{G} \left[\mathbf{v}_{L} - \left\langle \mathbf{v}_{L} \right\rangle \right] \\ \mathbf{G} &= \left[\mathbf{P}_{L} \mathbf{H}_{L}^{T} + \mathbf{P}_{LH} \right] \left[\mathbf{H}_{L} \mathbf{P}_{L} \mathbf{H}_{L}^{T} + \mathbf{\bar{R}}_{L}^{*} \right]^{-1} \\ \mathbf{P}_{LH} &= \mathbf{\hat{F}} \mathbf{P}_{H} \left(\mathbf{H}_{H} - \mathbf{H}_{L} \mathbf{\hat{F}} \right)^{T} \\ \mathbf{\overline{R}}_{L}^{*} &= \mathbf{R}_{ins} + \mathbf{H}_{H} \mathbf{P}_{H} \mathbf{H}_{H}^{T} - \mathbf{H}_{L} \mathbf{P}_{L} \mathbf{H}_{L}^{T} \\ \mathbf{v}_{L} &= \mathbf{y} - \mathbf{H}_{L} \mathbf{\overline{x}}_{L} \\ \left\langle \mathbf{v}_{L} \right\rangle &= \mathbf{H}_{H} \mathbf{\overline{x}}_{H} - \mathbf{H}_{L} \mathbf{\overline{x}}_{L} \end{aligned}$$

Mean-Squared Error and Ensemble Variance

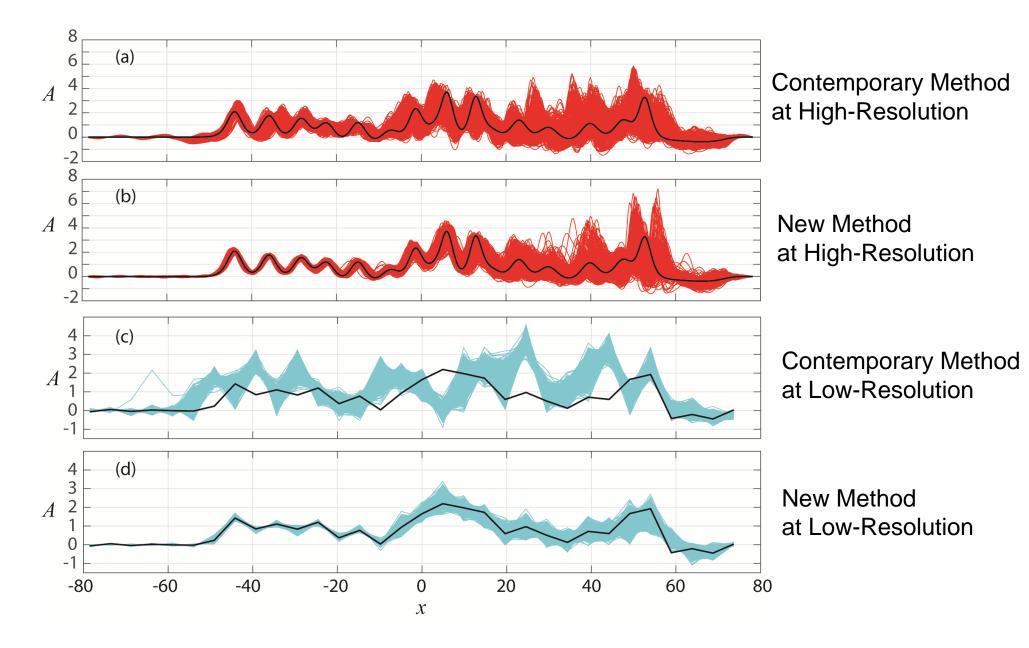
Solid – Multi-Resolution Kalman Technique Dashed – Contemporary (ad hoc) approach Blue – Mean-Squared Error (MSE) Red – Ensemble Variance



U.S.NAVAL

RESEA

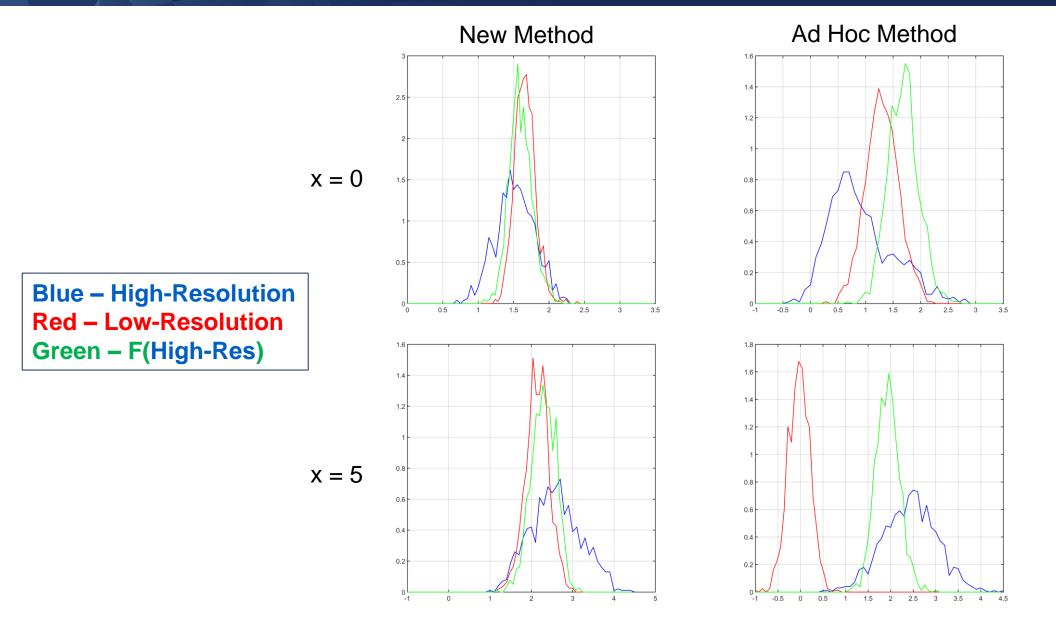
Let's see what's happening on the 400th cycle ...



U.S. NAVAL RESEARCH

LABORATORY

How good was F at t = 400?



U.S.NAVAL

RESEARCH

- We described a new framework to understand and account for the coarseness of typical model simulations in the data assimilation process.
- The most important component is the estimation of the correct mapping function from high to low-resolution.
- Presently, we are working on several adaptive methods that update the F relationship at each cycle of the data assimilation to account for the new information available.

Hodyss, D. and N. Nichols, 2015: The error of representation: Basic understanding. Tellus, **67A**, 24822.