イロト 不同下 イヨト イヨト

1/39

Thermoacoustic Tomography in Bounded Domains

Yang Yang Purdue University

joint work with: Plamen Stefanov, Purdue University

SIAM Conference on Imaging Science New Mexico, May 24, 2016

Outline

2 TAT: models

- In \mathbb{R}^n
- In Ω: Full Data
- In Ω: Partial Data

TAT: models

Stand-alone medical imaging modalities

• High contrast modalities:

- Optical Tomography (OT);
- Electrical Impedance Tomography (EIT);
- Elastographic Imaging (EI).
- High resolution modalities:
 - Computerized Tomography (CT);
 - Magnetic Resonance Imaging (MRI);
 - Ultrasound Imaging (UI).

 \implies low resolution

 \implies sometimes low contrast.

Coupled physics medical imaging modalities

Idea: use physical mechanism that couples two modalities to *improve resolution while keeping the high contrast capabilities.*

High Contrast	High Resolution	Hybrid Inverse Problems
Optical - OT (non-linear)		Photo-acoustic tomography - PAT
	Ultrasound (non-linear)	Thermo-acoustic tomography - TAT
		Ultrasound modulates optical tomography - UMOT or Acoustic optic tomography - AOT
	MRI (linear)	
Electrical - EIT (non- linear)	Ultrasound (non-linear)	Ultrasound modulated electrial impedance tomography - UMEIT or Electro acoustic tomography - EAT
	MRI (linear)	Magnetic resonance electrical impedance tomography - MREIT and Current density impedance imaging - CDII
Elastic	Ultrasound (non-linear)	Transient elastography - TE
	MRI (linear)	Magnetic resonance elastography - MRE

Photo-acoustic effect

Photo-acoustic effect:

Graham Bell: When rapid pulses of light are incident on a sample of matter they can be absorbed and the resulting energy will then be radiated as heat. This heat causes detectable sound waves due to pressure variation in the surrounding medium.

TAT: models

Experimental result

Courtesy UCL (Paul Beard's Lab).

Model in \mathbb{R}^n

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with supp $f \subset \Omega$. Assume the speed c(x) is variable and known in Ω . For T > 0, let u solve the problem

$$\begin{cases} (\partial_t^2 - c^2(x)\Delta)u = 0 & \text{in } (0,T) \times \mathbb{R}^n \\ u|_{t=0} = f \\ \partial_t u|_{t=0} = 0. \end{cases}$$

Measurement: $\Lambda f := u|_{[0,T] \times \partial \Omega}$.

Inverse Problem: recover f from Λf .

Literature in \mathbb{R}^n

Previous Results: Agranovsky, Ambartsoumian, Anastasio et. al., Burcholzer, Cox et. al., Finch, Grun, Haltmeier, Hofer, Hristova, Jin, Kuchment, Nguyen, Kunyansky, Paltauff, Patch, Rakesh, <u>Stefanov, Uhlmann,</u> Wang, Xu, ...

For the Riemannian manifold $(\overline{\Omega}, c^{-2}dx^2)$, let

 $T_0 := \max_{\overline{\Omega}} \operatorname{dist}(x, \partial \Omega).$

 $T_1 :=$ length of longest geodesic in $\overline{\Omega}$.

Theorem (Stefanov and Uhlmann, 2009)

- $T < T_0 \Rightarrow$ no uniqueness;
- $T_0 < T < \frac{T_1}{2} \Rightarrow$ uniqueness, no stability;
- $\frac{T_1}{2} < T \Rightarrow$ stability and explicit reconstruction.

Stefanov and Uhlmann's Time Reversal

Define $A(\Lambda f) := v(0, \cdot)$ (pseudo-inverse of Λ) where v solve the backward problem

$$\begin{array}{rcl} (\partial_t^2 - c^2(x)\Delta)v &=& 0 & \text{ in } (0,T) \times \Omega \\ v|_{t=T} &=& \phi \\ \partial_t v|_{t=T} &=& 0 \\ v|_{[0,T] \times \partial \Omega} &=& \Lambda f \end{array}$$

where ϕ solves

Stefanov and Uhlmann's Time Reversal

Denote the error operator by

 $Kf := f - A(\Lambda f)$

or equivalently

 $(I-K)f = A(\Lambda f).$

Stefanov and Uhlmann showed that ||K|| < 1 when $T > \frac{T_1}{2}$. This leads to the Neumann series reconstruction:

$$f = (I - K)^{-1}A(\Lambda f) = \sum_{m=0}^{\infty} K^m A(\Lambda f)$$

In Ω: Full Data

Outline

TAT: models

In Ω: Partial Data

 In Ω : Full Data

Model in Ω

Motivation: placing reflectors around the patient to enhance waves.

Assume the speed c(x) is variable and known in Ω . For T > 0, let u solve the problem

$$\begin{cases} (\partial_t^2 - c^2(x)\Delta)u &= 0 \quad \text{in } (0,T) \times \Omega \\ u|_{t=0} &= f \\ \partial_t u|_{t=0} &= 0 \\ \partial_\nu u|_{(0,T) \times \partial\Omega} &= 0. \end{cases}$$

Measurement: $\Lambda f := u|_{[0,T] \times \partial \Omega}$.

Inverse Problem: recover f from Λf .

In Ω : Full Data

Literature in Ω

Previous Results: Kunyansky, Holman, Cox, Acosta, Montalto, Nguyen.

For the Riemannian manifold $(\overline{\Omega}, c^{-2}dx^2)$, let

 $T_0 := \max_{\overline{\Omega}} \operatorname{dist}(x, \partial \Omega).$

 $T_1 :=$ length of longest geodesic in $\overline{\Omega}$.

Theorem (Stefanov and Y., 2015)

- $T < T_0 \Rightarrow$ no uniqueness;
- $T_0 < T < \frac{T_1}{2} \Rightarrow$ uniqueness, no stability;
- $\frac{T_1}{2} < T \Rightarrow$ stability and explicit reconstruction.

14/39

TAT: models

In Ω: Full Data

Time reversal in Ω fails!

Let v solve the problem

$$\begin{cases} (\partial_t^2 - c^2(x)\Delta)v &= 0 \quad \text{in } (0,T) \times \Omega \\ v|_{t=T} &= \phi \\ \partial_t u|_{t=T} &= 0 \\ u|_{(0,T) \times \partial \Omega} &= \Lambda f. \end{cases}$$

Define the error operator Kf := f - v(0), but ||K|| = 1!

In Ω: Full Data

TAT: models

Time reversal in Ω fails!

Figure: Failure of the time reversal to resolve all singularities. $T = 0.9 \times \text{diagonal}, c = 1$. Increasing T does not help!

TAT: models

In Ω : Full Data

Propagation of singularities

Figure: Propagation of singularities in $[0, T] \times \Omega$ for the positive speed only with Neumann boundary conditions (left) and time reversal with Dirichlet ones (right). In the latter case, the sign changes at each reflection.

In Ω: Full Data

Main idea: averaged time reversal

This leads to the following idea: i

Average with respect to T!

Then the error will average as well and some of the positive and negative contributions will cancel out. This will make the error operator a microlocal contraction.

Let $A(\tau)$ be the time reversal over $[0, \tau]$. Define the averaged time reversal operator as

$$\mathcal{A}_0 := \frac{1}{T} \int_0^T A(\tau) \, d\tau.$$

In Ω: Full Data

Averaging works!

TAT: models

Figure: Averaged time reversal. $T = 0.9 \times \text{diagonal}, c = 1$. This is not our inversion yet!

TAT: models

In Ω: Full Data

Comparison with non-averaged time reversal

Figure: For comparison: Failure of the time reversal to resolve all singularities. $T = 0.9 \times \text{diagonal}, c = 1$.

In Ω : Full Data

Explicit Inversion

Let T_1 be the length of the longest geodesic in $(\overline{\Omega}, c^{-2}dx^2)$.

Theorem (Stefanov-Y., 2015)

Let $(\Omega, c^{-2}e)$ be non-trapping, strictly convex, and let $T > T_1$. Let $\Omega_0 \Subset \Omega$. Then $\mathcal{A}_0 \Lambda = Id - \mathcal{K}_0$ on $H_D(\Omega_0)$, where $\|\mathcal{K}_0\|_{\mathcal{L}(H_D(\Omega_0))} < 1$. In particular, $Id - \mathcal{K}_0$ is invertible on $H_D(\Omega_0)$, and the inverse problem has an explicit solution of the form

$$f = \sum_{m=0}^{\infty} \mathcal{K}_0^m \mathcal{A}_0 h, \quad h := \Lambda f.$$

TAT: models

In Ω : Full Data

Neumann series inversion

Figure: Full data Neumann series inversion, 10 terms, T = 5, on the square $[-1,1]^2$, variable $c = 1 + 0.3 \sin(\pi x^1) + 0.2 \cos(\pi x^2)$. The artifacts are mainly due to the presence of corners. The L^2 error on the left is about 1.2%; and on the right.

In Ω: Partial Data

Outline

TAT: models

(ロ) (四) (三) (三) (三)

23 / 39

- In Rⁿ
 In Ω: Full Data
- In Ω: Partial Data

In Ω: Partial Data

Partial data

Assume the speed c(x) is variable and known in Ω . For T > 0, let u solve the problem

$$\begin{cases} (\partial_t^2 - c^2(x)\Delta)u &= 0 \quad \text{in } (0, T) \times \Omega \\ u|_{t=0} &= f \\ \partial_t u|_{t=0} &= 0 \\ \partial_\nu u|_{(0,T) \times \partial\Omega} &= 0. \end{cases}$$

Partial Data Measurement: $\Lambda f := u|_{[0,T] \times \Gamma}$ where Γ is an open subset of $\partial \Omega$.

Inverse Problem: recover f from Λf .

TAT: models

イロト 不得 とくほと くほとう ほ

25 / 39

In Ω : Partial Data

Partial data: uniqueness

Uniqueness: follows from unique continuation. Let

$$T_0 := \max_{\overline{\Omega}} \operatorname{dist}(x, \Gamma).$$

Theorem (Uniqueness)

 $\Lambda f = 0$ for some $f \in H_D(\Omega)$ implies f(x) = 0 for $dist(x, \Gamma) < T$. In particular, if $T \ge T_0$, then f = 0.

In Ω : Partial Data

Partial data: stability

Stability: follows from boundary control by Bardos-Lebeau-Rauch.

Theorem (Stability)

If each broken geodesic $\gamma(t)$ hits Γ for $|t| \leq T \implies$ stability. If some does not hit $\overline{\Gamma} \implies$ no stability.

Figure: Bardos-Lebeau-Rauch condition: Left: unstable. Right: stable : 🛌 🔊 ५ ८

TAT: models

In Ω : Partial Data

Partial data: smooth wave speed reconstruction

Figure: Partial data inversion with data on the indicated part of $\partial\Omega$. Neumann series inversion with 10 terms, T = 5, $\Omega = [-1, 1]^2$. Left: constant speed c = 1, L^2 error = 0.7%. Right: variable speed $c = 1 + 0.3 \sin(\pi x^1) + 0.2 \cos(\pi x^2)$, L^2 error = 2%. Again, the most visible artifacts can be explained by the presence of corners.

27 / 39

TAT: models

In Ω: Partial Data

Partial data: discontinous speed

It works well with the following discontinuous speed AND partial data.

28 / 39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 0

► = ∽ < < < 29 / 39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 1

E → E → Q (~ 30 / 39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 2

■ ■
 > ■
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 3

▲ ■ ▶ ■ かへで 32/39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 4

(■) ■ のへ(?) 33/39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 5

■ ■ つへで 34/39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 6

(■ ▶ ■ *-* クへ(?) 35 / 39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 7

▲ E ▶ E かへで 36 / 39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 8

≣ ▶ ≣ ৩৭.৫ 37/39

TAT: models

In Ω: Partial Data

Partial data: discontinuous speed, Iteration = 9

<目> 目 のへの 38/39

In Ω: Partial Data

