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Goals

Improve the performance of fast matrix multiplication algorithms:
1 Reduce the arithmetic complexity by a constant factor.
2 Reduce the communication costs (within memory hierarchy) by a

constant factor.
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Strassen’s Algorithm

Strassen’s algorithm (1969) was the first sub-cubic matrix
multiplication algorithm. Achieving arithmetic complexity of
O
(
nlog2 7

)
.

Performs 2×2 matrix multiplication using 7 scalar multiplications
and 18 additions instead of 8 scalar multiplications and 4 additions.
Winograd (1971) improved the leading coefficient of its complexity
from 7 to 6 by reducing the number of additions from 18 to 15.
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Lower Bounds on 2×2 matrix multiplication

Theorem (Probert, 1976)

15 additions are necessary to compute 2×2 matrix multiplication using 7
scalar multiplications.

Thus Strassen-Winograd’s algorithm is optimal for 2×2 base case.

Theorem (Karstadt and Schwartz, 2017)

There exists a Strassen-like algorithm with 2x2 base and 7
multiplications, that uses only 12 additions

Contradiction?
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Alternative Basis Strassen

Theorem (Karstadt and Schwartz, 2017)

There exists a Strassen-like algorithm with 2x2 base and 7
multiplications, that uses only 12 additions

Our algorithm seems to contradict Probert’s lower bound. However,
his bound implicitly assumes that input and output are represented
in the standard basis. We utilize this. Namely, we reduce the number
of additions by changing the basis of the input and output matrices.
Bodrato (2010) used a similar method of intermediate representation
of 2×2 matrices for repeated squaring and for chain matrix
multiplication.
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Basis invariant lower bounds

Theorem (Karstadt and Schwartz, 2017)

There exists a Strassen-like algorithm with 2x2 base and 7
multiplications, that uses only 12 additions

We extend Probert’s lower bound to account for alternative bases:

Theorem (Karstadt and Schwartz, 2017)

Irrespective of input/output bases, a Strassen-like algorithm with 2x2
base case and 7 multiplications requires at least 12 additions

This proves that our new algorithm is optimal.
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Strassen’s Algorithm

We refer to U, V as the encoding matrices (of A and B respectively) and
W as the decoding matrix.
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Encoding and Decoding

A matrix multiplication algorithm can be described by three matrices
〈U,V ,W 〉 such that:

−−→
A ·B =W T

(
U · ~A�V · ~B

)
Where ~A is a row-order vectorization of A, � is element-wise
multiplication of vectors and · is a matrix-vector multiplication.
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Strassen’s Algorithm

〈U, V ,W 〉=

〈


1 0 0 1
0 0 1 1
1 0 0 0
0 0 0 1
1 1 0 0
−1 0 1 0
0 1 0 −1


,



1 0 0 1
1 0 0 0
0 1 0 −1
−1 0 1 0
0 0 0 1
1 1 0 0
0 0 1 1


,



1 0 0 1
0 0 1 −1
0 1 0 1
1 0 1 0
−1 1 0 0
0 0 0 1
1 0 0 0


〉

Fact
The number of multiplications performed by a bi-linear algorithm is the number of
rows of the encoding/decoding matrices.

Fact
The number of additions performed by a bi-linear algorithm is

nnz (U)− rows (U)+nnz (V )− rows (V )+nnz (W )−cols (W )
12 / 34
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Encoding/Decoding of Matrix Multiplication

Fact (Triple Product Condition)

Let U, V ,W be matrices of sizes t×m ·n, t×n ·k , t×m ·k respectively.
Then 〈U,V ,W 〉 are encoding/decoding matrices of an
〈m,n,k; t〉-algorithm iff:

∀i1,k1 ∈ [m] , i2, j1 ∈ [n] , j2,k2 ∈ [k]

τ(i1,i2),(j1 ,j2),(k1,k2) =
t

∑
r=1

Ur ,(i1,i2)Vr ,(j1,j2)Wr ,(k1 ,k2) = δi1,k1δi2 ,j1δj2 ,k2

Where δi ,j = 1 if i = j and 0 otherwise.
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Matrix Multiplication Algorithms

Definition (Matrix Multiplication algorithms)

We denote n0×m0 by m0×k0 matrix multiplication using t0 products by
〈m0,n0,k0; t0〉-algorithm.

Thus Strassen’s and Winograd’s are 〈2,2,2;7〉-algorithms.
When applied recursively, an 〈n0,n0,n0; t0〉-algorithm has arithmetic
complexity of O

(
nlogn0 t0

)
.

Given an 〈m0,n0,k0; t0〉-algorithm, it is easy to derive an〈
m0n0k0,m0n0k0,m0n0k0; t

3
0
〉
-algorithm with arithmetic complexity

O (nω0) for ω0 = logm0n0k0 t
3
0 .
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Leading Coefficient

How does the number of additions affect the leading coefficient?

Lemma

Suppose an 〈n0,n0,n0; t0〉−algorithm performs ` linear operations
(addition/subtraction/scalar multiplication) at the base case. Its
arithmetic complexity is:

F (n) =

(
1+

`

t0−n2
0

)
nlogn0 t0 − `

t0−n2
0
n2
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Alternative-Basis Matrix Multiplication Algorithms

Input: A ∈ Rn×m, B ∈ Rm×k

Output: C ∈ Rn×k such that C = A ·B
1: function ABS(A,B)
2: Ã= φ(A) . Basis transformation
3: B̃ = ψ(B) . Basis transformation
4: C̃ = ALG (Ã, B̃) . an 〈n,m,k; t〉

φ ,ψ,υ -algorithm
5: C = υ−1(C̃ ) . Basis transformation
6: return C

Definition (Alternative Basis Matrix Multiplication algorithms)

We denote n×m by m×k matrix multiplication algorithm that uses t products
and basis transformations φ , ψ, υ by 〈n,m,k;t〉φ ,ψ,υ -algorithm.
When n =m = k and φ = ψ = υ, we write 〈n,n,n;t〉φ -algorithm.
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Matrix Multiplication with Basis Transformation

Lemma (Karstadt and Schwartz, 2017)
Let φ ,ψ,υ be invertible linear transformations. The following are equivalent:

1 The matrices 〈U,V ,W 〉 are encoding/decoding matrices of an
〈m,n,k;t〉-algorithm.

2
〈
Uφ−1,Vψ−1,WυT

〉
are encoding/decoding matrices of an

〈m,n,k;t〉
φ ,ψ,υ -algorithm.

Proof.

−−→
A ·B =WT

(
U · ~A�V · ~B

)
m

υ

(−−→
A ·B

)
=
(
Wυ

T
)T ((

Uφ
−1) ·(φ ~A

)
�
(
Vψ

−1) ·(ψ~B
))
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Improving the Strassen-Winograd Algorithm

To Improve on Strassen-Winograd’s algorithm’s 15 additions, we need an
alternative basis 〈2,2,2;7〉

φ ,ψ,υ -algorithm, namely three matrices
〈U,V ,W 〉 and basis transformation φ ,ψ,υ such that:

1 U,V ,W have fewer non-zeros than those of Strassen-Winograd.
2 The basis transformations φ ,ψ, and υ−1 can be computed fast.

20 / 34



Fast Matrix Multiplication
Perliminaries

Alternative-Basis Matrix Multiplication
Further Applications

Conclusions

General Scheme
Alternative basis for 〈2,2,2;7〉

Outline

1 Fast Matrix Multiplication

2 Perliminaries

3 Alternative-Basis Matrix Multiplication
General Scheme
Alternative basis for 〈2,2,2;7〉

4 Further Applications

5 Conclusions

21 / 34



Fast Matrix Multiplication
Perliminaries

Alternative-Basis Matrix Multiplication
Further Applications

Conclusions

General Scheme
Alternative basis for 〈2,2,2;7〉

Alternative Basis

Define an invertible linear transformation ψ : Rn2 → Rn2
(where n = 2m)

recursively. Let ψ1 : R
4→ R4 (with inverse ψ

−1
1 ):

ψ1 =


1 0 0 0
0 1 −1 1
0 0 −1 1
0 1 0 1

 ψ
−1
1 =


1 0 0 0
0 1 −1 0
0 −1 0 1
0 −1 1 1


For convenience, when applying ψ1 to matrices, we omit the
vectorization and write:

ψ1 (A) = ψ1

(
A1,1 A1,2
A2,1 A2,2

)
=

(
A1,1 A1,2−A2,1+A2,2

A21−A2,2 A1,2+A2,2

)
Where Ai ,j can be ring elements or submatrices.
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Alternative Basis Transformation

Let for n = 2k+1 we define ψk+1 : R
n2 → Rn2

be:

ψk+1 (A)=ψ1

(
ψk (A1,1) ψk (A1,2)
ψk (A2,1) ψk (A2,2)

)
ψ
−1
k+1 (A)=ψ

−1
1

(
ψ
−1
k (A1,1) ψ

−1
k (A1,2)

ψ
−1
k (A2,1) ψ

−1
k (A2,2)

)
For convenience, we omit the subscript of ψ when obvious from context.

Lemma

The arithmetic complexity of computing ψ (A) is

Fψ (n) = n2 log2 n

The same holds for computing ψ−1 (A).
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Recursive Alternative-Basis Strassen

Given ψ−1 (A), ψ−1 (B) we use the following bi-linear recursive
algorithm to compute ψ (A ·B):〈

Uopt , Vopt ,Wopt
〉
=

〈


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 1 −1 0
−1 1 0 0
0 −1 0 1


,



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 −1 0 1
0 1 −1 0
−1 1 0 0


,



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
1 1 0 0
0 −1 0 −1
0 1 1 0


〉

Using the formula from before we know the number of additions is:

10︷ ︸︸ ︷
nnz (U)−

7︷ ︸︸ ︷
rows (U)+

10︷ ︸︸ ︷
nnz (V )−

7︷ ︸︸ ︷
rows (V )+

10︷ ︸︸ ︷
nnz (W )−

4︷ ︸︸ ︷
cols (W ) = 12
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Correctness of Encoding/Decoding Matrices

〈
Uopt ·ψopt , Vopt ·ψopt ,Wopt ·ψ−Topt

〉
=

〈


0 1 0 1
0 0 −1 1
0 1 −1 1
1 0 0 0
0 1 0 0
−1 1 −1 1
0 0 1 0


,



0 1 0 1
0 0 −1 1
0 1 −1 1
1 0 0 0
0 0 1 0
0 1 0 0
−1 1 −1 1


,



0 0 1 1
0 −1 0 1
0 1 −1 −1
1 0 0 0
1 1 −1 −1
0 −1 0 0
0 0 −1 0


〉

It is easy to verify that
〈
UABS ·ψ1,VABS ·ψ1,WABS ·ψ−T1

〉
satisfies the

triple product condition.
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Computing Multiplication in Alternative Basis

Lemma (Main Lemma)

The arithmetic complexity of our 〈2,2,2;7〉
ψopt

-algorithm is:

F (n) = 5nlog2 7−4n2+3n2 log2 n

Recently, Cenk and Hasan (2017) showed a clever way to apply
Strassen-Winograd’s algorithm directly to n×n matrices by
forsaking the uniform divide-and-conquer pattern of Strassen-like
algorithms. Their arithmetic complexity is
5nlog2 7+0.5 ·nlog2 6+2nlog2 5−6.5n2. However, this comes at the
cost of increased communication costs and memory footprint.
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〈2,2,2;7〉−Algorithms

Algorithm Additions Arithmetic cost I/O-complexity

Strassen (1969) 18 7nlog2 7−6n2 6 ·
(√

3·n√
M

)log2 7
·M−

18n2 +3M

Winograd (1971) 15 6nlog2 7−5n2 5 ·
(√

3·n√
M

)log2 7
·M−

15n2 +3M

Ours 12
5nlog2 7−4n2 +

3n2 log2 n

4 ·
(√

3·n√
M

)log2 7
·M−

12n2 +5M+3n2 ·
log2

(
·
√

2·n√
M

)
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Strassen-Winograd vs. Our 〈2,2,2;7〉
ψ
-algorithm

N = 32768

All experiments were conducted on a single compute node of HLRS’s Hazel Hen,
with two 12-core (24 threads) Intel Xeon CPU E5-2680 v3 and 128GB of memory.
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Improved Alternative-Basis Variants
Algorithm Linear

Opera-
tions

Leading
Coeffi-
cient

Alternative-
Basis
Linear
Opera-
tions

Improved
leading
coeffi-
cient

Reduction
Factor

〈3,2,3;15〉
[Ballard and
Benson, 2015]

64 15.06 52 7.94 47.3%

〈2,3,4;20〉
[Ballard and
Benson, 2015]

78 9.96 58 7.46 25.6%

〈3,3,3;23〉
[Laderman,

1976]

87 8.91 75 6.57 26.3%

〈6,3,3;40〉
[Smirnov, 2013]

1246 55.63 202 9.39 83.2%
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Finding Optimal Alternative-Basis Variants

Problem

Matrix Sparsification (MS):
Let U be an m×n matrix of full rank, find an invertible matrix A s.t.

A= argmin
A∈GLn

(nnz (UA))

Finding basis transformations for a Strassen-like algorithm consists of
three independent MS problems. Unfortunately, MS is not only NP-Hard
[McCormick, 1983] to solve, but also NP-Hard to approximate1 [Gottlieb
and Neylon, 2010]

However, since we are interested in small base cases, sparsifying basis
transformations can be found manually, or by computer aided search
heuristics.

1Over Q, assuming NP does not admit quasi-polynomial time deterministic
algorithms} to within a factor of 2log.5−o(1) n
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Conclusion

We obtained a new Strassen-like algorithm, with 2×2 base case,
improving on Strassen-Winograd by factors of 5/6 (arithmetic complexity)
and 4/5 (I/O-Complexity).

This was believed to be impossible due to a lower bound of Probert.
We extend Probert’s lower bound to be applicable to our new
alternative-basis method, proving our algorithm to be optimal.
Our new algorithm is faster in practice even on reasonably small
matrices.
We applied our new alternative-basis method to improve other
Strassen-like algorithm.
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Permutations of Encoding/Decoding Matrices

Definition
Denote the permutation matrix which swaps row-order for column-order
of vectorization of an I ×J matrix by PI×J .

Lemma
Let 〈U,V ,W 〉 be the encoding/decoding matrices of a 〈m,k,n;t〉-algorithm:

〈VPn×k ,UPm×k ,WPm×n〉 are encoding/decoding matrices of a
〈n,k,m;t〉-algorithm.

〈WPm×n,U,VPn×k 〉 are encoding/decoding matrices of a 〈n,m,k;t〉-algorithm.

〈W ,VPn×k ,U〉 are encoding/decoding matrices of a 〈m,n,k;t〉-algorithm.

〈V ,WPm×n,UPm×k 〉 are encoding/decoding matrices of a 〈k,n,m;t〉-algorithm.

〈UPm×k ,W ,V 〉 are encoding/decoding matrices of a 〈k,m,n;t〉-algorithm.

35 / 34



References

Basis Transformation Complexity

Lemma
The IO-complexity of computing ψ (A) is

IOψ (n,M)≤ 3n2 logn0

(√
2

n√
M

)
+2M

Proof.
The basis transformation has 4 recursive calls and requires 4 additions at each step.
With base case occuring when the problem fits entirely in memory, namely 2n2 ≤M.
Each addition requires at most 3 data transfers (one of each input and one for writing
the output). Yielding the recurrence.

IOALG (n,M)≤

4 · IOψ

(
n
n0

,M
)
+3 ·4 ·

(
n
n0

)2
2n2 >M

2M otherwise

The same holds for computing ψ−1 (A).
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Computing Multiplication in Alternative Basis

Lemma
The I/O-complexity of our 〈2,2,2;7〉

ψOPT
-algorithm is:

IO (n,M)≤ 4
3

(
M

(√
3 · n√

M

)log2 7
−3n2

)
+3M

Proof.
The recursive bi-linear part has 7 recursive calls and requires 12 additions at each step.
With base base occuring when the problem fits entirely in memory, namely 3n2 ≤M.
Each addition requires at most 3 data transfers (one of each input and one for writing
the output). Yielding the recurrence

IOALG (n,M)≤

7 · IOψ

(
n
n0

,M
)
+3 ·12 ·

(
n
n0

)2
3n2 >M

3M otherwise
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Constrictions on Multiplicands

Lemma
[Hopcroft and Kerr 1971]If an algorithm for 2×2 matrix multiplication has k
left (right) hand multiplicands of forms A1,1,

(
A1,2+A2,1

)
and(

A1,1+A1,2+A2,1
)

(where additions are done mod 2) then it requires at least
6+k multiplications.

Lemma
[Hopcroft and Kerr 1971]If an algorithm for 2×2 matrix multiplication has
k left (right) hand multiplicands of one of the following groups (where
additions are done mod 2) then it requires at least

⌈
6+ k

2

⌉
multiplications.

1 A1,1, A1,2, (A1,1+A1,2)

2 A2,1, A2,2, (A2,1+A2,2)
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Constrictions on Multiplicands Cont.

Lemma
[Hopcroft and Kerr 1971] If an algorithm for 2×2 matrix multiplication has
k left (right) hand multiplicands of one of the following groups (where
additions are done mod 2) then it requires at least 6+k multiplications.

1 (A1,1+A2,1) ,(A1,2+A2,1+A2,2) ,(A1,1+A1,2+A2,2)

2 (A1,1+A1,2) ,(A1,2+A2,1+A2,2) ,(A1,1+A2,2+A2,2)

3 (A1,1+A1,2+A2,1+A2,2) ,(A1,2+A2,1) ,(A1,1+A2,2)

4 A2,1,(A1,1+A2,2) ,(A1,1+A2,1+A2,2)

5 (A2,1+A2,2) ,(A1,1+A1,2+A2,2) ,(A1,1+A1,2+A2,1)

6 A1,2,(A1,1+A2,2) ,(A1,1+A1,2+A2,2)

7 (A1,1+A2,2) ,(A1,1+A2,1+A2,2) ,(A1,1+A1,2+A2,1)

8 A2,2,(A1,2+A2,1) ,(A1,2+A2,1+A2,2)

39 / 34



References

Lower Bound on Additive Complexity

Using the previous results, Proberts used a counting argument to
show that any 〈2,2,2;7〉 algorithm requires at least 15 additions.

Lemma

[Probert, 1976] Each encoding of a 〈2,2,2;7〉-algorithm requires at least
4 additions.

Lemma

[Probert, 1976] The decoding of a 〈2,2,2;7〉-algorithm requires at least 7
additions.

From this, Probert’s theorem follows.
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Basis Invariant Lower Bound on Additive Complexity

Corollary

Any 2×2 matrix multiplication algorithm where a left hand (or right
hand) multiplicand appears at least twice (modulu 2) requires 8 or more
multiplications.

Fact
A simple counting argument shows that any 7×4 binary matrix with less
than 10 non-zero entries has a duplicate row (modulu 2) or a zeroed out
row.

Lemma
Irrespective of basis transformations φ , ψ, υ , the encoding matrices U, V ,
of a 〈2,2,2;7〉-algorithm have no duplicate rows or zeroed out rows.
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Basis Invariant Lower Bound on Additive Complexity

Lemma
Irrespective of basis transformations φ , ψ, υ , the encoding matrices
U, V , of a 〈2,2,2;7〉

φ ,ψ,υ -algorithm have at least 10 non-zero entries.

Lemma
Irrespective of basis transformations φ , ψ, υ , the decoding matrix W of
an 〈2,2,2;7〉

φ ,ψ,υ -algorithm has at least 10 non-zero entries.

The basis invariant lower bound is an immediate Corollary of these
Lemmas.
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