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Control of Mechanical Systems: Two approaches

e by applying external forces

e by directly assigning some of the coordinates, as functions of time



Riding on a Swing

1. An external force pushing:
meél = —mglsin 6 + u(t)

t — u(t) is the force, used to control the motion of the swing

2. Changing the position of the barycenter:
r = radius of oscillation 6 — angle
Assign the radius directly as function of time r = u(t)

— the angle t — 0(t) is uniquely determined



Skier on a narrow trail

HE

s = arc length parameter along trail

h=— height of barycenter, along perpendicular line

Assign the height h = u(¢) as a function of time

—= the motion t — s(t) along the trail is uniquely determined



Swim-like motion in a perfect fluid

Consider:

e a deformable body whose shape and internal mass distribution are described
by finitely many parameters

e immersed in a perfect fluid: incompressible, inviscid, irrotational

Assign some of these parameters as functions of time

— determine the motion

< = >
T =)




Controlling a Lagrangian system by applying external forces

Lagrangian variables: ¢!,...,q"

N
1 o
L . N L ()
Kinetic energy: T(q,q) = 22_ 9ii(q9)q'q

Potential energy: V(q)
Lagrangian function: L(q,q) = T(q,q) — V(q)

Equations of motion:

d 0L 0L
dt 0¢* 0Oq

= ¢i(q,u(t)) i=1,...,N

t — u(t) = control function, 0i(q,u) = components of the external forces
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Controlling a Lagrangian system by assigning
some of the coordinates as functions of time

Split the coordinates in two groups:

q17"'7qn7 qn+17"‘7qn+m

Assign the last m coordinates directly as functions of time

q”+a=ua(t) a=1,....m (C)

Find the evolution of the first n coordinates ¢!,...,¢"

Splitting of coordinates determines a foliation: F = {A,; u € R™}

Each leaf is a submanifold: A, = {(¢%,...,¢%q" T ...,¢" ™), ¢"T* = u,}



At each time t, the assignment
¢t = un(t) a=1,...,m (C)

determines on which leaf the system is located

BASIC ASSUMPTION: the identities (C) are implemented by means of

FRICTIONLESS CONSTRAINTS

the force ® used to implement the constraints is always
perpendicular to the leaves A, (w.r.t. the metric given by the kinetic energy)
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Equations of motion (without additional forces)

n—+m
1 y
Hamiltonian:  H(g,p) = = > ¢7(a)pir;
1,7=1
: oT ~ 3 ij -1
conjugate momenta: p; = 5 = > gi(a)d, (g7) = (gi7)
i=1
i __  OH
T = op
1=1,....n
pZ - 3qi
‘n+oa — OH
q T 8pn+a
a=1, , 1M
pn—|—a - - 3(Zia + cboa(t)
For o« = 1,...,m, determine the components of the forces ®,(t)

due to the constraints, so that ¢"T(t) = ua(t)
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q1 . gt q""‘1 q""'m
pP1L ... DPn Pn+1 -+ Pndm

variables:

{ q' S (a,p)

. _ OH 1 =1 n
pi = —5:(ap) s
Solve for ¢t,...,q", pi,...,pn, inserting the values
qn+a = uqa(t) qn+a = uqa(t)
a=1,
pn-l-a — pn—l—a(plp e 7pn7 q'n+l’ sy qn—l—m)
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Analytic form of the equations

Kinetic energy matrix: G = ( Gu G2 ) — ( (9i5) (9in+5) )

Go1 G2 (In+aj) (Gnta,n+p)
A= (a")=(Gu)™',  K=(k,)=-AG12,  B=(bap) = G2 —G21AG1
Equations of motion for the free variables ¢ = (¢,...,q¢"), p= (p1,...,pn)
q Ap K o)
~ 1, 10A T 0K @+ 4l 108 u,
p —§pT3—qp + F —Poq 29q
u = (u1,...,un) = control function F = additional forces

No need to explicitly compute the forces &, produced by the constraints !
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Classification

q Ap K o)
- 1 _+9A OK i+ al 10B it
p —§pT3—qp _pa_q 29q

1. General form - quadratic w.r.t. «

Possible input functions:

u(-) € Wh? = {absolutely continuous functions with @ € L?}

2. Fit for jumps - affine w.r.t. u, if 0B/0q =0
Possible input functions:

u(-) € BV = {functions with bounded variation}

(assigning the path taken by the control across each jump)
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Equivalent properties

e The hyper-impulsive system is fit for jumps, namely dB/0q = 0 and the
equations are affine w.r.t. .

e The foliation {A,; wu € IR™} is bundle like, i.e. leaves remain at constant
distance from each other (B. Reinhart, Ann. Math. 1959).

e Any geodesic v that starts perpendicularly to one of the leaves, remains per-
pendicular to every other leaf it meets.

fit for jJumps not fit for jumps
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Continuity of the input-to-trajectory map (for systems “fit for jumps")

:.C — f(x7u) + Z ga(:c,u)u (CB,U)(O) — (57'&)

a=1

go POSsibly non-commuting vector fields

e H.J.Sussmann: On the gap between deterministic and stochastic ODE's
Ann. Probability 1978

o A.B. & F. Rampazzo, On differential systems with vector-valued impulsive
controls. Boll. Unione Mat. Italiana, 1988

Solution is well defined also for discontinuous controls u(-) € BV, given a graph

completion
u2
u(t) /

s
7 ! O'///
/‘ 1o'
P |
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! Y

7\
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To solve 2= f(x,u) + Z ga(z,u)u

a=1

- reparametrize the graph in a Lipschitz continuous way s +— (t(s), u(s))

d dt d Q
- solve the O.D.E. $CB(8) = f(z,u) -+ Zga(x,U)%

Distance between two graph completions:

minimize the CO distance over all couples of reparametrizations
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Controlling a general system (not fit for jumps)
Interplay between linear and quadratic terms:

q Ap K o)
+ e |t ul Lo | (1)
p ——pT p—|—F —Poq 29q

Reduced dynamics (neglecting linear terms):

q Ap o)
= +V, Y =co{ w' w; we R™
p 501 G+ F &

Every trajectory of (2) can be uniformly approximated by trajectories of (1)

VYV = cone of impulses generated by control vibrations
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Example: pendulum with fixed length, moving pivot

h = u(t) = height of the pivot
0 =angle

V = cone of impulses generated by control vibrations

3
Can be stabilized at any angle g < 0 < g by vertical vibrations of the pivot
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A first order reduction (slow dynamics: p =~ 0)

q Ap K 0
- 1. +0A T oK u T ! 1B u (1)
p —§PTa—qP —pTa—q 29q
q € K(qg,u)u+T(q,u), (q,u)(0) = (q,u) (2)

0B

8q(q,u)w); wE]Rm} = AV

Mg, u) = E{A(q,u) (w

Theorem (A.B. - Z.Wang, 2008). Let t — (q*(t),u*(t)) € R*™™ be a trajectory
of the differential inclusion (2), defined for t € [0, 1].

For every € > 0, there exists a smooth control u(-) defined on some interval [0, T]
such that then the corresponding solution of (1) with initial data

(g,u)(0) = (¢*(0),u"(0)), p(0) =0

satisfies
sup [p(t)| <e, sup |q(t) — ¢ ((1))| <e, sup |u(t) —u(¥(t))| <e,
te[0,T] te[0,7T7] te[0,7T7]

for some increasing diffeomorphism ) : [0,T] — [O, 1]
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Example: bead sliding without friction along a rotating bar

q(t) = r = radius u(t) = 0 = controlled angle
A\ — Moo 242 _8_T_ - r = p/m,
T(r,0,7,6) = (2 + r26%) =20 = i {r 2o

Every solution ¢t — (r*(t),0*(t)) of the differential inclusion 7*(¢) >0

can be traced by a solution of the original system, starting at rest.

(r.0)

-
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Locomotion in a Perfect Fluid

qg=(q,...,¢") = Lagrangian parameters, describing the position,
mass distribution and shape of the body

£ +— DI(¢) is a volume preserving diffeomorphism

Q = reference configuration. ®4"(Q) = region occupied by the body at time ¢.

//\

For n+m = N, we assign the last m coordinates as functions of time, by means
of frictionless constraints

¢ T = ua(t) a=1,....m
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N
Kinetic energy of the body: 7P°¥(q,q) = Z Gz-j(q)qiqj
ij=1

v(2)|?
2

dx

Kinetic energy of the surrounding fluid: 774 = /
R\D(R2)

v = v(x) the velocity of the fluid at the point x

Key fact: for an incompressible, non-viscous, irrotational fluid,
the velocity v is entirely determined by the finitely many parameters gq,q.

N
Kinetic energy of the fluid: 7M9(q, 4) = Z Gii(Q)q'¢
i =1

The previous theory applies, with 7 = 7Pody | 7fluid
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Main difficulty: computing the kinetic energy 74 of the fluid.

Special case: body is the union of finitely many rigid components.

— possible expansion in powers of e = 1/r

C. Grotta Ragazzo: On the motion of molids through an ideal liquid:
Approximated equations for many body systems. SIAM J. Appl. Math. 2003.

24



Geometry of swim-like motion

Theorem. Assume that there exists a symmetry group G
which preserves the metric g;; and whose orbits are the leaves Ay .
Then the system is fit for jumps.

distance between leaves is constant < fit for jumps
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Take G = group of translations and rigid rotations

Variable splitting: ¢ = (¢t,...,q", ¢"T1,...,¢™)

e If the controlled variables ¢"T1, ... ¢"t™ entirely determine the shape of the
body and the distribution of masses, up to a translation and a rigid rotation,
then the system [body + surrounding fluid] is fit for jumps

e In general, if the controlled variables ¢"t1, ... ¢"T™ do not entirely determine
the shape of the body, then the system [body + surrounding fluid] is not fit for
jumps

- in the presence of freely flapping fins
- two or more swimmers

- fluid confined to a bounded domain, or in the presence of point vortices

(A. Arsié, A.B. and F. Cardin, work in progress)
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Example 1 (Kozlov & al., 2000 - 2003)
A point mass moving inside a rigid shell, immersed in a perfect fluid.

Assign the relative position of the point mass: P = u(t) € IR?

e fit for jumps

e controllable (generating Lie brackets...)
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Example 2 (Kanso, Marsden, Rowley, Melli-Huber, 2005)
Snake-like chain of three ellipses, in a perfect fluid.

Assign: t — (a(t),B(t)) = angles between joints.

e System is fit for jumps

e Completely controllable
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1.

2.

Two systems not fit for jumps

A piston connecting two flapping fins. Here «, 3 are free angles

A chain of buoys pulled from a point P = u(t) € IR?
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Additional non-holonomic constraints
(A.B. - F. Rampazzo, work in progress)

q=1(q"...,¢" " ...,¢"T™)
active constraints: gV T = u(t), a=1,....,m
n+m
additional non-holonomic constraints:  » wgi(¢)d =0 B=1,...,v
=1

e structure of the equations of motion
e systems “fit for jumps’ : d'Alembertian vs. vakonomic case

e controllability properties, stabilization
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