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Control of Mechanical Systems: Two approaches

• by applying external forces

• by directly assigning some of the coordinates, as functions of time

2



Riding on a Swing

r

θθ

1. An external force pushing:

mℓθ̈ = −mgℓ sin θ+ u(t)

t 7→ u(t) is the force, used to control the motion of the swing

2. Changing the position of the barycenter:

r = radius of oscillation θ = angle

Assign the radius directly as function of time r = u(t)

=⇒ the angle t 7→ θ(t) is uniquely determined
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Skier on a narrow trail

θ

h

H(s)

s

s = arc length parameter along trail

h= height of barycenter, along perpendicular line

Assign the height h = u(t) as a function of time

=⇒ the motion t 7→ s(t) along the trail is uniquely determined
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Swim-like motion in a perfect fluid

Consider:

• a deformable body whose shape and internal mass distribution are described
by finitely many parameters

• immersed in a perfect fluid: incompressible, inviscid, irrotational

Assign some of these parameters as functions of time

=⇒ determine the motion
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Controlling a Lagrangian system by applying external forces

Lagrangian variables: q1, . . . , qN

Kinetic energy: T(q, q̇) =
1

2

N∑

i,j=1

gij(q)q̇
iq̇j

Potential energy: V (q)

Lagrangian function: L(q, q̇)
.
= T(q, q̇) − V (q)

Equations of motion:

d

dt

∂L

∂q̇i
−
∂L

∂qi
= φi(q, u(t)) i = 1, . . . , N

t 7→ u(t) = control function, φi(q, u) = components of the external forces
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Some basic literature:

H. Nijmejer and A.J. van der Schaft, Nonlinear Dynamical Control Systems,
Springer-Verlag, New York, 1990.

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-
Verlag, 2004.

A. M. Bloch, Nonholonomic Mechanics and Control, Springer Verlag, 2003.
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Controlling a Lagrangian system by assigning
some of the coordinates as functions of time

Split the coordinates in two groups:

q1, . . . , qn, qn+1, . . . , qn+m

Assign the last m coordinates directly as functions of time

qn+α = uα(t) α = 1, . . . ,m (C)

Find the evolution of the first n coordinates q1, . . . , qn

Splitting of coordinates determines a foliation: F = {Λu ; u ∈ IRm}

Each leaf is a submanifold: Λu = {(q1, . . . , qn, qn+1, . . . , qn+m) ; qn+α = uα }
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At each time t, the assignment

qn+α = uα(t) α = 1, . . . ,m (C)

determines on which leaf the system is located

BASIC ASSUMPTION: the identities (C) are implemented by means of

FRICTIONLESS CONSTRAINTS

the force Φ used to implement the constraints is always
perpendicular to the leaves Λu (w.r.t. the metric given by the kinetic energy)

Φ
Λu

u~
Λ
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Main literature:

Aldo Bressan, Hyper-impulsive motions and controllizable coordinates for La-
grangean systems Atti Accad. Naz. Lincei, Memorie, 8-19 (1990), 197–246.

C. Marle, Géométrie des systèmes mécaniques à liaisons actives, in Symplectic
Geometry and Mathematical Physics, 260–287, P. Donato, C. Duval, J. Elhadad,
and G. M. Tuynman Eds., Birkhäuser, Boston, 1991.

Mechanical applications:

Aldo Bressan, On some control problems concerning the ski or swing, Atti Accad.
Naz. Lincei, Memorie, 9-1 (1991), 147-196.

Geometric structure:

F. Rampazzo, On the Riemannian structure of a Lagrangian system and the
problem of adding time-dependent coordinates as controls. European J. Me-
chanics A/Solids 10 (1991), 405-431.

F. Cardin and M. Favretti, Hyper-impulsive motion on manifolds. Dynam. Con-
tin. Discr. Impuls. Syst. 4 (1998), 1-21.
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Analytical study of the impulsive O.D.E’s:

A. Bressan and F. Rampazzo, On differential systems with vector-valued impul-
sive controls, Boll. Un. Matem. Italiana 2-B, (1988), 641-656.

A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector
fields, J. Optim. Theory & Appl. 71 (1991), 67-84.

A. Bressan and F. Rampazzo, On systems with quadratic impulses and their
application to Lagrangean mechanics, SIAM J. Control Optim. 31 (1993),
1205-1220.

Controllability properties

J. Baillieul, The Geometry of Controlled Mechanical Systems, in Mathematical
Control Theory, J.Baillieul & J.C. Willems, Eds., Springer-Verlag, New York,
1998, 322-354.

A. Bressan and F. Rampazzo, Stabilization of Lagrangian systems by moving
coordinates, Arch. Rational Mech. Anal. (2009).



Equations of motion (without additional forces)

Hamiltonian: H(q, p) =
1

2

n+m∑

i,j=1

gij(q)pipj

conjugate momenta: pi =
∂T

∂q̇i
=

n+m∑

j=1

gij(q)q̇
j, (gij) = (gij)

−1





q̇i = ∂H
∂pi

ṗi = − ∂H
∂qi

i = 1, . . . , n






q̇n+α = ∂H
∂pn+α

ṗn+α = − ∂H
∂qn+α + Φα(t)

α = 1, . . . ,m

For α = 1, . . . ,m, determine the components of the forces Φα(t)
due to the constraints, so that qn+α(t) = uα(t)
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variables:
q1 . . . qn

p1 . . . pn

qn+1 . . . qn+m

pn+1 . . . pn+m

{
q̇i = ∂H

∂pi
(q, p)

ṗi = − ∂H
∂qi

(q, p)
i = 1, . . . , n

Solve for q1, . . . , qn, p1, . . . , pn, inserting the values





qn+α = uα(t) q̇n+α = u̇α(t)

pn+α = pn+α(p1, . . . , pn, q̇
n+1, . . . , q̇n+m)

α = 1, . . . ,m
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Analytic form of the equations

Kinetic energy matrix: G =

(
G11 G12

G21 G22

)
=

(
(gij) (gi,n+β)

(gn+α,j) (gn+α, n+β)

)

A =
(
aij

) .
= (G11)

−1 , K =
(
kiα

) .
= −AG12 , B =

(
bα,β

) .
= G22 −G21AG12

Equations of motion for the free variables q = (q1, . . . , qn), p = (p1, . . . , pn)




q̇

ṗ


 =




Ap

−1
2
p†∂A

∂q
p+ F


 +




K

−p∂K
∂q


 u̇ + u̇†




0

1
2
∂B
∂q


 u̇ ,

u = (u1, . . . , um) = control function F = additional forces

No need to explicitly compute the forces Φα produced by the constraints !
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Classification




q̇

ṗ


 =




Ap

−1
2
p†∂A

∂q
p


 +




K

−p∂K
∂q


 u̇ + u̇†




0

1
2
∂B
∂q


 u̇ ,

1. General form - quadratic w.r.t. u̇

Possible input functions:

u(·) ∈W 1,2 = {absolutely continuous functions with u̇ ∈ L
2}

2. Fit for jumps - affine w.r.t. u̇, if ∂B/∂q ≡ 0

Possible input functions:

u(·) ∈ BV = {functions with bounded variation}

(assigning the path taken by the control across each jump)
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Equivalent properties

• The hyper-impulsive system is fit for jumps, namely ∂B/∂q ≡ 0 and the
equations are affine w.r.t. u̇.

• The foliation {Λu ; u ∈ IRm} is bundle like, i.e. leaves remain at constant
distance from each other (B. Reinhart, Ann. Math. 1959).

• Any geodesic γ that starts perpendicularly to one of the leaves, remains per-
pendicular to every other leaf it meets.

not fit for jumps

γ

Λu

γ

Λ u

fit for jumps
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Continuity of the input-to-trajectory map (for systems “fit for jumps”)

ẋ = f(x, u) +

m∑

α=1

gα(x, u)u̇ (x, u)(0) = (x̄, ū)

gα possibly non-commuting vector fields

• H.J.Sussmann: On the gap between deterministic and stochastic ODE’s
Ann. Probability 1978

• A.B. & F. Rampazzo, On differential systems with vector-valued impulsive
controls. Boll. Unione Mat. Italiana, 1988

Solution is well defined also for discontinuous controls u(·) ∈ BV , given a graph
completion

u2

1u

τ t

u(t)

γ
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To solve ẋ = f(x, u) +

m∑

α=1

gα(x, u)u̇

- reparametrize the graph in a Lipschitz continuous way s 7→ (t(s), u(s))

- solve the O.D.E.
d

ds
x(s) = f(x, u)

dt

ds
+

m∑

α=1

gα(x, u)
duα

ds

v

0 T

u

Distance between two graph completions:

minimize the C0 distance over all couples of reparametrizations
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Controlling a general system (not fit for jumps)

Interplay between linear and quadratic terms:




q̇

ṗ



 =




Ap

−1
2
p†∂A

∂q
p+ F



 +




K

−p∂K
∂q



 u̇ + u̇†




0

1
2
∂B
∂q



 u̇ , (1)

Reduced dynamics (neglecting linear terms):



q̇

ṗ


 ∈




Ap

−1
2
p†∂A

∂q
p+ F


 + V , V

.
= co




w
†




0

∂B
∂q


w ; w ∈ IRm





(2)

Every trajectory of (2) can be uniformly approximated by trajectories of (1)

V = cone of impulses generated by control vibrations
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Example: pendulum with fixed length, moving pivot

h = u(t) = height of the pivot

θ

g

h

V

θ      = angle

V = cone of impulses generated by control vibrations

Can be stabilized at any angle
π

2
< θ <

3π

2
by vertical vibrations of the pivot
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A first order reduction (slow dynamics: p ≈ 0)




q̇

ṗ



 =




Ap

−1
2
p†∂A

∂q
p



 +




K

−p†∂K
∂q



 u̇ + u̇†




0

1
2
∂B
∂q



 u̇ (1)

q̇ ∈ K(q, u)u̇+ Γ(q, u) , (q, u)(0) = (q̄, ū) (2)

Γ(q, u)
.
= co

{
A(q, u)

(
w†∂B

∂q
(q, u)w

)
; w ∈ IRm

}
= AV

Theorem (A.B. - Z.Wang, 2008). Let t 7→ (q∗(t), u∗(t)) ∈ IRn+m be a trajectory
of the differential inclusion (2), defined for t ∈ [0,1].

For every ε > 0, there exists a smooth control u(·) defined on some interval [0, T ]
such that then the corresponding solution of (1) with initial data

(q, u)(0) = (q∗(0), u∗(0)), p(0) = 0

satisfies

sup
t∈[0,T ]

|p(t)| < ε, sup
t∈[0,T ]

|q(t) − q∗(ψ(t))| < ε, sup
t∈[0,T ]

|u(t) − u∗(ψ(t))| < ε,

for some increasing diffeomorphism ψ : [0, T ] 7→ [0,1]
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Example: bead sliding without friction along a rotating bar

q(t) = r = radius u(t) = θ = controlled angle

T(r, θ, ṙ, θ̇) =
m

2
(ṙ2 + r2θ̇2) p =

∂T

∂ṙ
= mṙ

{
ṙ = p/m ,
ṗ = mru̇2 .

Every solution t 7→ (r∗(t), θ∗(t)) of the differential inclusion ṙ∗(t) ≥ 0

can be traced by a solution of the original system, starting at rest.

θ

O

r

θ

(r,  )θ

B

A
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Locomotion in a Perfect Fluid

q = (q1, . . . , qN) = Lagrangian parameters, describing the position,
mass distribution and shape of the body

ξ 7→ Φq(ξ) is a volume preserving diffeomorphism

Ω = reference configuration. Φq(t)(Ω) = region occupied by the body at time t.

Ω

b θ

Φ (Ω)
q

For n+m = N , we assign the last m coordinates as functions of time, by means
of frictionless constraints

qn+α = uα(t) α = 1, . . . ,m
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Kinetic energy of the body: T body(q, q̇) =

N∑

i,j=1

Gij(q)q̇
iq̇j

Kinetic energy of the surrounding fluid: T fluid =

∫

IRd\Φq(Ω)

|v(x)|2

2
dx

v = v(x) the velocity of the fluid at the point x

Key fact: for an incompressible, non-viscous, irrotational fluid,
the velocity v is entirely determined by the finitely many parameters q, q̇.

Kinetic energy of the fluid: T fluid(q, q̇) =

N∑

i,j=1

G̃ij(q)q̇
iq̇j

The previous theory applies, with T = T body + T fluid
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Main difficulty: computing the kinetic energy T fluid of the fluid.

Special case: body is the union of finitely many rigid components.

=⇒ possible expansion in powers of ε = 1/r

r

C. Grotta Ragazzo: On the motion of molids through an ideal liquid:
Approximated equations for many body systems. SIAM J. Appl. Math. 2003.
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Geometry of swim-like motion

Theorem. Assume that there exists a symmetry group G

which preserves the metric gij and whose orbits are the leaves Λu .

Then the system is fit for jumps.

~

G

ΛΛu u

distance between leaves is constant ⇐⇒ fit for jumps
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Take G = group of translations and rigid rotations

Variable splitting: q = (q1, . . . , qn, qn+1, . . . , qm)

• If the controlled variables qn+1, . . . , qn+m entirely determine the shape of the
body and the distribution of masses, up to a translation and a rigid rotation,
then the system [body + surrounding fluid] is fit for jumps

• In general, if the controlled variables qn+1, . . . , qn+m do not entirely determine
the shape of the body, then the system [body + surrounding fluid] is not fit for
jumps

- in the presence of freely flapping fins

- two or more swimmers

- fluid confined to a bounded domain, or in the presence of point vortices

(A. Arsié, A.B. and F. Cardin, work in progress)
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Example 1 (Kozlov & al., 2000 - 2003)

A point mass moving inside a rigid shell, immersed in a perfect fluid.

Assign the relative position of the point mass: P = u(t) ∈ IR2

P

• fit for jumps

• controllable (generating Lie brackets. . .)
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Example 2 (Kanso, Marsden, Rowley, Melli-Huber, 2005)

Snake-like chain of three ellipses, in a perfect fluid.

Assign: t 7→ (α(t), β(t)) = angles between joints.

βα

• System is fit for jumps

• Completely controllable
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Two systems not fit for jumps

1. A piston connecting two flapping fins. Here α, β are free angles

β

r = u(t)

α

2. A chain of buoys pulled from a point P = u(t) ∈ IR2

γ
P(t)

α
β
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Additional non-holonomic constraints
(A.B. - F. Rampazzo, work in progress)

q = (q1, . . . , qn, qn+1, . . . , qn+m)

active constraints: qn+α = uα(t), α = 1, . . . ,m

additional non-holonomic constraints:

n+m∑

i=1

ωβi(q) q̇
i = 0 β = 1, . . . , ν

• structure of the equations of motion

• systems “fit for jumps” : d’Alembertian vs. vakonomic case

• controllability properties, stabilization
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