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The immune system is a distributed complex system 
composed of circulating random detectors

Naive	lymphocytes	(detectors)	circulate	(patrol)	via	blood	and	lymph.	
Naive	B	lymphocytes	are	born	in	the	bone	marrow	and	can	be	triggered	to	produce	antibodies.	

Naive	T	lymphocytes	are	born	and	selected	in	the	thymus	and	can	differentiate	into	 
helper	(CD4)	or	killer	(CD8)	T	cells.	

Each	lymphocyte	express	a	randomly	generated	protein	(receptor)	that	by	chance	binds	a	very	
small	fraction	(<10-5)	of	the	proteins	(ligands)	in	our	environment.		

After	binding	cognate	ligand,	naive	cells	expand	and	“decide”	on	their	effector	function.			

Decisions	are	remembered	because	a	fraction	of	the	cells	persist	as	“memory”	cells	(immunity).
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Formation of T cell receptors: reshuffling of gene segments
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The	naive	repertoire	is	extremely	diverse	(108	<	R	<	1011	receptors).	
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High-throughput immune repertoire sequencing is promising to lead to new statistical

diagnostic tools for medicine and biology. Successful implementations of these methods

require a correct characterization, analysis, and interpretation of these data sets. We present

IGoR (Inference and Generation Of Repertoires)—a comprehensive tool that takes B or T cell

receptor sequence reads and quantitatively characterizes the statistics of receptor generation

from both cDNA and gDNA. It probabilistically annotates sequences and its modular

structure can be used to investigate models of increasing biological complexity for different

organisms. For B cells, IGoR returns the hypermutation statistics, which we use to reveal co-

localization of hypermutations along the sequence. We demonstrate that IGoR outperforms

existing tools in accuracy and estimate the sample sizes needed for reliable repertoire

characterization.
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Stochastic rearrangement of germline V-, D-, and J-genes to create
variable coding sequence for certain cell surface receptors is at the
origin of immune system diversity. This process, known as “VDJ re-
combination”, is implemented via a series of stochastic molecular
events involving gene choices and random nucleotide insertions
between, and deletions from, genes. We use large sequence reper-
toires of the variable CDR3 region of human CD4+ T-cell receptor
beta chains to infer the statistical properties of these basic bio-
chemical events. Because any given CDR3 sequence can be pro-
duced in multiple ways, the probability distribution of hidden re-
combination events cannot be inferred directly from the observed
sequences; we therefore develop a maximum likelihood inference
method to achieve this end. To separate the properties of the mo-
lecular rearrangement mechanism from the effects of selection, we
focus on nonproductive CDR3 sequences in T-cell DNA.We infer the
joint distribution of the various generative events that occur when
a new T-cell receptor gene is created. We find a rich picture of cor-
relation (and absence thereof), providing insight into themolecular
mechanisms involved. The generative event statistics are consis-
tent between individuals, suggesting a universal biochemical pro-
cess. Our probabilistic model predicts the generation probability of
any specific CDR3 sequence by the primitive recombination pro-
cess, allowing us to quantify the potential diversity of the T-cell
repertoire and to understand why some sequences are shared
between individuals. We argue that the use of formal statistical
inference methods, of the kind presented in this paper, will be es-
sential for quantitative understanding of the generation and evo-
lution of diversity in the adaptive immune system.

convergent recombination ∣ expectation maximization ∣
palindromic nucleotides ∣ insertion/deletion profiles

Receptor proteins on the surfaces of B and T cells in the
immune system interact with pathogens, recognize them

and initiate an immune response. The diversity of these receptors
is the outcome of a remarkable process in which germline DNA is
edited to produce a repertoire of (Tor B) cells with varied antigen
receptor genes (1). The process is called “VDJ recombination”
because the germline contains multiple versions of so-called V-,
D-, and J-genes, particular instances of which are quasi-randomly
selected, stochastically edited, and joined together to produce a
new surface receptor gene each time a new immune system cell is
generated.

The statistical distribution of these biochemical events (and
the resulting receptor coding sequences) in a population of newly
created receptors is an important quantity: It contains informa-
tion about the in vivo functioning of the biochemical editing me-
chanism and provides the baseline for a quantitative assessment
of the downstream workings of selection in the adaptive immune
system. Here, we address the problem of inferring this distribu-
tion from the large T-cell sequence repertoires that are becoming
available via high-throughput sequencing technology (2–5). In
particular, we focus purely on a subset of receptor sequences that
are nonproductive, due to a reading frame shift or an accidental

stop codon to isolate the statistics of the molecular mechanism
from the effects of selection on the functional repertoires.

In the beta chain of human T-cell receptors (the focus of this
work), the germline has 48 different V-genes, 2 D-genes, and 13
J-genes. VDJ recombination proceeds by first joining a D-gene
with a J-gene and then a V-gene with the DJ junction. First, the
recombination activating gene (RAG) protein complex brings
two randomly chosen D- and J-genes together, cuts out the inter-
vening chromosomal DNA, and forms a hairpin loop at the end of
each gene (6, 7). In further steps (8, 9) the hairpin loops are
opened, creating overhangs at the end of both genes that may
eventually survive as P-nucleotides (short inverted repeats of
gene terminal sequence) (10). This is followed by nucleotide de-
letions and insertions at the junctions and ends with ligation. The
process is then repeated between a random V-gene and the DJ
junction. The end product is the so-called CDR3 region of the
receptor gene: a short, highly variable region that plays an essen-
tial role in determining the antigen specificity of the cell.

Each recombined sequence can thus be thought of as the out-
come of a generative event described by several random variables
(Fig. 1): V-, D-, and J-gene choices, deletions of variable numbers
of nucleotides from the selected genes, insertions of random nu-
cleotides between them, and the possible creation of P-nucleo-
tides (short palindromic nucleotides as in Fig. 1A at the 3 0

end of the D-gene). From the set of observed CDR3 sequences,
we wish to infer the underlying probability distribution of these
generative events.

To date, this inference has been done via a deterministic align-
ment procedure that assigns a unique event to each sequence
(2–4). However, because individual CDR3 sequences can arise
in multiple ways (see Fig. 1), this assignment must be done prob-
abilistically. Deterministic alignment introduces spurious biases
and correlations in the statistics of generative events (Fig. 2). Thus,
a statistical inference procedure is needed to accurately infer the
underlying event probability distribution from the data. In this
paper we present such amethod, based on likelihoodmaximization
via an iterative expectation-maximization algorithm (11) and apply
it to recent data on human T-cell receptor sequences.

Analysis
We work with sequence data on CD4+ T-cell beta chain CDR3
regions obtained from nine human subjects by methods described
in refs. 4 and 5 (see Acknowledgments). In these experiments,
Tcells are collected from a blood sample and sorted into “naïve”
(CD45RO−) and “memory” (CD45RO+) compartments, DNA
is extracted, and sequence reads long enough to capture a 5 0
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research, analyzed data, and wrote the paper.
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piece of the J-gene, a 3 0 piece of the V-gene, and the variable
sequence lying in between are obtained.

Each sequence is read multiple times, and a clustering algo-
rithm is used to correct for sequencing error (4, 5). This process
produces a dataset consisting of an average of 232,000 (140,000)
unique CDR3 sequences from the naïve (memory) compartments
for each individual subject. Each unique sequence comes with a
multiplicity reflecting the prevalence of that particular cell type in
the blood sample.

Roughly 14% of the unique CDR3 sequences are “nonproduc-
tive,” i.e., either their J-genes have been shifted out of the correct
reading frame or the CDR3 sequences have a premature stop co-
don. They arise from a recombination event on one of a cell’s two
chromosomes that failed to make a functional receptor, followed
by a successful recombination on the other chromosome. Such
sequences should not be subject to functional selection (5), and
their statistics should reflect only the VDJ recombination process
(see SI Appendix, section 10 for evidence that the non-productive
constraint introduces no bias). Because this is our primary con-
cern, we focus our analysis on the nonproductive CDR3 se-
quences, of which there are an average of 35,000 (22,000) in
the naïve (memory) compartments for each individual subject.
We analyze the naïve and memory data sets separately to be able
to verify the absence of selection effects. Our data sets are avail-
able online (see SI Appendix, sections 1 and 2 for details).

Structure of Recombination Event Distributions. Each CDR3 gener-
ating recombination event can be fully characterized by a set E
of discrete variables comprising: the identities of the V-, D- and
J-genes selected for recombination* (V,D,J); the numbers of
bases deleted from the 3′ end of the V-gene (delV ), the 5′ end
of the J-gene (delJ), and both ends of the D-gene (del5 0D and
del3 0D for the 5′ and 3′ ends, respectively); the number of
palindromic nucleotides at each of the gene ends (palV; palJ;
pal5 0D; pal3 0D); the specific sequence ðx1;…; xinsVDÞ of length
insVD inserted at the VD junction; and the specific sequence,
ðy1;…; yinsDJÞ of length insDJ inserted at the DJ junction (see
Fig. 1). We choose a convention in which both sequences are read
in the 5′ to 3′ direction, but the VD (DJ) inserted sequence is
read from the sense (antisense) strand.

We seek a joint distribution over all of these variables contain-
ing the minimal set of dependences between the variables that
is required to self-consistently capture the observed correlations
in the data. We find that the following factorized form for the

probability of a recombination eventE (defined by specific values
for all the event variables) successfully captures all the significant
correlations between sequence features that are present in the
data (see Fig. 2):

PrecombðEÞ ¼ PðV ÞPðD; JÞ

× PðdelV jV ÞPðdelJjJÞPðdel5 0D; del3 0DjDÞ

× PðinsVDÞ
YinsVD

i¼1

pð2Þ
VDðxijxi−1ÞPðinsDJÞ

YinsDJ

i¼1

pð2Þ
DJ ðyijyi−1Þ: [1]

The various factors are normalized joint or conditional distribu-
tions on their respective arguments. PðV Þ and PðD; JÞ account
for the fact that the various genes have different usage probabil-
ities (and that D- and J-gene usage is correlated). The factors
PðdelV jV Þ, etc., are distributions on the number of nucleotide
deletions, conditioned on the gene being deleted (deletion
profiles turn out to be very gene-dependent). PðinsVDÞ and
PðinsDJÞ give the probabilities of different numbers of nucleo-
tide insertions at each junction. The parameters pð2Þ

VD and pð2Þ
DJ

account for possible nucleotide bias in the insertions: They give
the conditional probabilities of inserting a specific nucleotide
given the identity of the immediately 5′ nucleotide, with x0 refer-
ring to the last nucleotide at the 3′ end of the truncated V-gene on
the sense strand for a VD insertion, or at the end of the truncated
J-gene on the antisense strand for a DJ insertion.

P-nucleotides do not appear explicitly in Eq. 1: we treat them
as “negative” deletions (i.e., a palindrome of half-length 2, as in
Fig. 1A, is counted as a deletion of value −2). This is possible
because we find that when the number of nucleotide deletions is
greater than zero, occurrences of palindromic nucleotides at the
end of the gene segment are completely explained by chance
insertions of the corresponding nucleotides (see SI Appendix,
section 11 and Fig. S10). Thus, true P-nucleotides, not attributa-
ble to chance insertions, only occur in association with zero nu-
cleotide deletions and it is consistent to label them as negative
deletions.

The factors in our equation for PrecombðEÞ [Eq. 1] are probabil-
ity distributions on event variables that take on a finite number of
values. Specifying this joint distribution requires a total of 2,865
probabilities (more than 90% of which are needed for the dele-
tion length probabilities of the individual V-, D- and J-genes).
Despite the large number of probabilities to be inferred, we are
able to determine them accurately and without overfitting. We
emphasize that our goal is to obtain an accurate description of
recombination event statistics, and not (yet) to explain those sta-
tistics mechanistically.

A

B

Fig. 1. A 60 bp CDR3 read (gray box) can be aligned to different genes [nomenclature follows IMGT conventions (24)] with different deletions (white), in-
sertions (yellow), and P-nucleotides (red). (A) Alignment to specific V-, D-, and J-genes with insVD ¼ 13, insDJ ¼ 6, delV ¼ 5, delJ ¼ 6, del5 0D ¼ 6, del3 0D ¼ −2
(in other words, pal3 0D ¼ 2). (B) Alignment of the same read to different V- and D-genes, and with insVD ¼ 15, insDJ ¼ 9, delV ¼ 7, del5 0D ¼ 9, del3 0D ¼ 3 (no
P-nucleotides). Note that the alignment to the V-gene is not maximal in this case. A few heavily penalized mismatches are allowed (in the V-gene in this
example) in order to accommodate a small sequencing error rate. The location of the sequencing primer is indicated: It is chosen to uniquely identify
the start of the CDR3 read within each J-gene.

*Here we distinguish only the genes, not their various alleles. The gene list includes
germline pseudogenes: They cannot produce functioning receptor proteins but, because
we work with non-coding VDJ rearrangements, pseudogene sequences can appear in
the data.

16162 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1212755109 Murugan et al.
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read from the sense (antisense) strand.

We seek a joint distribution over all of these variables contain-
ing the minimal set of dependences between the variables that
is required to self-consistently capture the observed correlations
in the data. We find that the following factorized form for the

probability of a recombination eventE (defined by specific values
for all the event variables) successfully captures all the significant
correlations between sequence features that are present in the
data (see Fig. 2):

PrecombðEÞ ¼ PðV ÞPðD; JÞ

× PðdelV jV ÞPðdelJjJÞPðdel5 0D; del3 0DjDÞ

× PðinsVDÞ
YinsVD

i¼1

pð2Þ
VDðxijxi−1ÞPðinsDJÞ

YinsDJ

i¼1

pð2Þ
DJ ðyijyi−1Þ: [1]

The various factors are normalized joint or conditional distribu-
tions on their respective arguments. PðV Þ and PðD; JÞ account
for the fact that the various genes have different usage probabil-
ities (and that D- and J-gene usage is correlated). The factors
PðdelV jV Þ, etc., are distributions on the number of nucleotide
deletions, conditioned on the gene being deleted (deletion
profiles turn out to be very gene-dependent). PðinsVDÞ and
PðinsDJÞ give the probabilities of different numbers of nucleo-
tide insertions at each junction. The parameters pð2Þ

VD and pð2Þ
DJ

account for possible nucleotide bias in the insertions: They give
the conditional probabilities of inserting a specific nucleotide
given the identity of the immediately 5′ nucleotide, with x0 refer-
ring to the last nucleotide at the 3′ end of the truncated V-gene on
the sense strand for a VD insertion, or at the end of the truncated
J-gene on the antisense strand for a DJ insertion.

P-nucleotides do not appear explicitly in Eq. 1: we treat them
as “negative” deletions (i.e., a palindrome of half-length 2, as in
Fig. 1A, is counted as a deletion of value −2). This is possible
because we find that when the number of nucleotide deletions is
greater than zero, occurrences of palindromic nucleotides at the
end of the gene segment are completely explained by chance
insertions of the corresponding nucleotides (see SI Appendix,
section 11 and Fig. S10). Thus, true P-nucleotides, not attributa-
ble to chance insertions, only occur in association with zero nu-
cleotide deletions and it is consistent to label them as negative
deletions.

The factors in our equation for PrecombðEÞ [Eq. 1] are probabil-
ity distributions on event variables that take on a finite number of
values. Specifying this joint distribution requires a total of 2,865
probabilities (more than 90% of which are needed for the dele-
tion length probabilities of the individual V-, D- and J-genes).
Despite the large number of probabilities to be inferred, we are
able to determine them accurately and without overfitting. We
emphasize that our goal is to obtain an accurate description of
recombination event statistics, and not (yet) to explain those sta-
tistics mechanistically.

A

B

Fig. 1. A 60 bp CDR3 read (gray box) can be aligned to different genes [nomenclature follows IMGT conventions (24)] with different deletions (white), in-
sertions (yellow), and P-nucleotides (red). (A) Alignment to specific V-, D-, and J-genes with insVD ¼ 13, insDJ ¼ 6, delV ¼ 5, delJ ¼ 6, del5 0D ¼ 6, del3 0D ¼ −2
(in other words, pal3 0D ¼ 2). (B) Alignment of the same read to different V- and D-genes, and with insVD ¼ 15, insDJ ¼ 9, delV ¼ 7, del5 0D ¼ 9, del3 0D ¼ 3 (no
P-nucleotides). Note that the alignment to the V-gene is not maximal in this case. A few heavily penalized mismatches are allowed (in the V-gene in this
example) in order to accommodate a small sequencing error rate. The location of the sequencing primer is indicated: It is chosen to uniquely identify
the start of the CDR3 read within each J-gene.

*Here we distinguish only the genes, not their various alleles. The gene list includes
germline pseudogenes: They cannot produce functioning receptor proteins but, because
we work with non-coding VDJ rearrangements, pseudogene sequences can appear in
the data.

16162 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1212755109 Murugan et al.



How is this huge diversity maintained in an 
“ecosystem” of so many competing populations? 

• All	naive	T	cells	basically	compete	for	a	single	resource	(IL-7)	->	exclusion	
• Naive	T	cells	require	contacts	with	cognate	self-antigen	->	niche	differentiation	
• At	young	age	populations	are	maintained	by	immigration	(from	the	thymus)	
but	this	source	vanishes	after	puberty	->	late	exclusion		

• Diversity	of	TCRs	in	young	and	elderly	people	differs	“only”	2-fold	
• The	time	scale	of	the	competitive	exclusion	depends	on	cellular	lifespans	
• Naive	T	cells	are	long-lived	(5-10	y)	&	memory	T	cells	short-lived	(6	mo).	
• BTW	naive	and	memory	T	cells	compete	for	different	resources.



How long do T cells live in humans?

T cells

urine

Deuterium (2H) and hydrogen are incorporated in DNA upon cell division only 
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Human naive T cells have an average lifespan of 5-10 y

Aged (n) and young (n) volunteers drink deuterated water for 8-9 weeks.  
By mass spec we track the enrichment in DNA of naive T cells. Modeling translates this into a life span

increased exponentially when the percentage of naive T cells in the

CD8+ T-cell pool dropped below 4% (Cicin-Sain et al., 2007), support-

ing the idea that a certain pool size threshold may exist below which

compensatory mechanisms get activated. In humans, Naylor et al.

(2005) reported an increase in CD4+ T-cell division rates after the age of

70, and Sauce et al. (2012) observed a direct association between

decreased naive T-cell numbers and increased frequencies of Ki-67+

naive T cells in healthy elderly individuals aged 76 and older. Although

such correlations may be suggestive for the occurrence of homeostatic

proliferation, it is in fact not clear whether increased cell division rates

are induced by low cell numbers. What may be interpreted as a

favorable homeostatic response to low cell numbers may alternatively

reflect a different, perhaps even maleficent proliferative process. In fact,

a third factor (related to aging) may induce both cell loss and increased

lymphocyte turnover, or increased lymphocyte proliferation could even

be driving cell loss. Increased levels of proliferation observed in HIV and

SCT patients, for example, turned out to be related to immune

activation or clinical events, rather than to reflect a homeostatic

response to low cell numbers (Hazenberg et al., 2000b, 2002). Likewise,

a chronic inflammatory state associated with aging (Macaulay et al.,

2013) may drive increased lymphocyte proliferation and lymphocyte

loss.

We found a reduced pool size and an increased turnover rate of naive

CD8+ T cells in the aged, which was accompanied by the relative

abundance of cycling CD95+ T cells. As expression of CD95 has been

shown to be upregulated in response to IL-7 in vitro (Cimbro et al.,

2012), and IL-7 is known to play a key role in regulating proliferative

responses in vivo (Takada & Jameson, 2009), these CD95+ cells could in

Time (days) Time (days)

(A)

(B)

(C)

(D)

Fig. 3 Analysis of 2H enrichment and
CD95 expression within the naive T-cell
pools. (A) Best fits of the mixed effect multi-
exponential model (see Data S1; Supporting
information) to 2H enrichment in the DNA
of naive CD4+ and CD8+ T cells from young
[(Vrisekoop et al., 2008), gray symbols and
curve] and elderly individuals (black symbols
and curve). Label enrichment was scaled
between 0 and 100% by normalizing for
the maximum enrichment in granulocytes.
(B, C) The expression of CD95 on naive
CD4+ (left) and CD8+ (right) T cells was
determined in elderly males (black symbols)
of the 2H2O labeling study and in other
healthy donors of varying ages (open
symbols, n = 41). The percentage of CD95+

naive T cells was plotted against age (B) and
against the number of naive CD4+ or CD8+

T cells per ml blood (C). The elderly male
who tested seropositive for CMV is
depicted by a semi-filled diamond (B+C).
The lines in panels (C) and (D) represent
linear regression analyses. (D) Ki-67
expression was measured within the
CD95! and CD95+ fractions of naive CD4+

and CD8+ T cells in elderly males of our
labeling study (n = 4). The median is
represented by a horizontal line. Different
symbols indicate different individuals.
Asterisks mark significant differences
(P-value < 0.05).

Lymphocyte turnover in young and aged individuals, L. Westera et al. 5
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Rodewald Nature 1998

Thymus

Naive T-cell pool: N

Estimate thymic output by measuring fraction of T cells  
with a T-cell receptor excision circle (TREC)

TREC	is	a	marker	for	a	cell	originally	
produced	in	the	thymus	

(after	normalization)

TRECs are long-lived:  
in humans they persist for decades after thymectomy

TREC	is	a	DNA	circle	
produced	when  

the	TCR	re-arranges.		
TRECs	not	duplicated	

upon	division.
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Naive T-cell pool: N

TREC	is	a	marker	for	a	cell	originally	
produced	in	the	thymus	

(after	normalization)
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Thymus accounts for <20% of the production of naive T 
cells in young humans adults and for <2% in healthy elderly

RESULTS

Contribution of ThymicOutput to theHumanNaive TCell
Pool
To quantify the relative contribution of thymic output in humans,
we measured the TREC content of naive CD4+ T cells in healthy
individuals of different ages (Figure 1A). We have previously
argued that TREC contents cannot be used as a measure for
daily thymic output because the TREC content of a T cell popu-
lation increases with thymic output and with cell loss and
declines with cell division (De Boer, 2006; Dutilh and de Boer,
2003; Hazenberg et al., 2000). Given that TRECs are not copied
during peripheral proliferation, each TREC remains a truemarker
of thymic origin, and the number of TREC-positive cells in a pop-
ulation reflects the number of cells that were produced by the
thymus at any point in time and that are still present in the
periphery. Conversely, the number of TREC-negative naive
T cells reflects the number of cells in the population that have
been produced by peripheral proliferation. The average TREC
content of a naive T cell population can therefore be used to esti-
mate the fraction of cells that were originally produced by the
thymus.
One complication is that only a fraction of the cells leaving the

thymus is actually carrying a TREC. To estimate the fraction of
cells that originated from the thymus, one therefore has to
normalize the observed TREC content by the average TREC

Figure 1. Quantification of the Contribution
of Thymic Output in Humans
(A) TREC content of naive CD4+ T cells as a func-

tion of age (n = 45).

(B) Percentage of naive CD4+ T cells that were

originally produced in the thymus, calculated by

normalizing the TREC content of peripheral naive

CD4+ T cells by the TREC content of SP CD4+

thymocytes (n = 45).

(C) The percentage of CD31+ T cells within the

naive CD4+ T cell pool of healthy individuals (n =

76) decreased significantly (Rp =!0.72, p < 0.001)

with age.

(D) TREC contents of CD31+ (;) and CD31! (,)

naive CD4+ T cells in healthy donors (n = 18) of

different ages. The TREC content of both CD31+

naive CD4+ T cells (Rs = !0.78, p < 0.001) and

CD31! naive CD4+ T cells (Rs = !0.80, p < 0.001)

declined significantly with age; their slopes were

not significantly different (p = 0.25). TREC contents

of CD31+ cord blood CD4+ T cells (n = 3) were

similar to TREC contents of single-positive

CD4+CD8! thymocytes (n = 4, p = 0.86).

(E) The percentage of CD31+ naive CD4+ T cells

that were originally produced in the thymus,

calculated by normalizing the TREC content of

CD31+ naive CD4+ T cells in the blood by the TREC

content of SP CD4+ thymocytes (n = 18).

content of a recent thymic emigrant
(RTE). Thanks to the fact that the average
TREC content of thymocytes does not
decrease with age (Jamieson et al.,
1999), we could estimate the TREC

content of RTEs by measuring TRECs in single positive (SP)
thymocytes from children who underwent cardiac surgery. Along
with these samples, we measured TRECs in naive CD4+ T cells
from healthy volunteers of different ages. When these peripheral
TREC contents were normalized to the average TREC contents
of CD4+ SP thymocytes, we found that the median fraction of
naive CD4+ T cells that were originally produced by the thymus
in adults was 11% (see Figure 1B). Thus, "90% of the naive
T cell pool in these adults had been formed by peripheral naive
T cell proliferation.

Contribution of Peripheral Proliferation to the Human
CD31+ Naive CD4+ T Cell Pool
Naive CD4+ T cells expressing CD31 (PECAM-1) are thought to
be enriched in cells that were produced by the thymus (Kimmig
et al., 2002; Kohler et al., 2005). In agreement with previous
studies (Kilpatrick et al., 2008; Kimmig et al., 2002; Kohler
et al., 2005), we found that the fraction of CD31+ T cells within
the naive CD4+ T cell pool of healthy individuals decreased
substantially—and almost linearly—with age (Figure 1C) and
that the CD31+ naive CD4+ T cell population always had a higher
TREC content than the CD31- population. The average TREC
contents of CD31+ and CD31! naive CD4+ T cells declined
substantially and at similar rates with age (Figure 1D), confirming
that even CD31+ naive CD4+ T cells are in part produced by
peripheral T cell division (Kilpatrick et al., 2008).

Immunity

Naive T Cell Maintenance in Mouse and Man

Immunity 36, 288–297, February 24, 2012 ª2012 Elsevier Inc. 289

A

c
=

s(t)

s(t) + pN(t)

Westera et al Immunity 2012

Donna	Farber:		
s(t)=0	when	t	>	40y	
Review	in	Immunity	

2018

naive T cells divide



Consider a highly diverse naive T cell pool in which 
thymic output is the only source of new clonotypes

wisegeek.org,	bioninja.com.au,	daviddarling.info,	Immunology	insight
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Birth,	death	&	immigration	model



Let’s start with a “neutral” model where all 
populations have the same division and death rates

wisegeek.org,	bioninja.com.au,	daviddarling.info,	Immunology	insight
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A BDI model for naive T-cell dynamics
Event	driven	dynamics	on	the	level	of	the	full	pool:	
remove	a	single	cell	and	replace	with	a	new	one	

coming	from	the	thymus	(θ)	or	a	division	event	(1-θ)

Markov-chain	of	a	single	clonotype
TCR    with

Clonotype    
with   cells Exit by death

or activation
Thymic

Production

Naïve T-cell pool

TCR    with

Clonotype    
with   cells Exit by death

or activation
Thymic

Production

Naïve T-cell pool

Figure 2: A neutral model describes dynamics of näıve T-cells. Top: Schematic represen-
tation of the dynamics on a pool level. Each event consists of the exit of one of the N cells and the
replacement by peripheral division of another cell (probability 1� ✓) or thymic production: with
probability ✓/k, the thymus will export a clonotype of k cells, with TCR-sequence � depending
on generation probability P(�). Bottom: Markov-chain representation of the model, in which the
states represent the size of a single clonotype. P(�)✓/k is the probability the thymus will produce
k cells of clonotype � (causing the clonotype to move from state i to i + k), (1 � ✓)/N and 1/N
are the per cell birth- and death rates, respectively.

2.2 A simple mathematical model describing näıve T-cell dynamics

To explicitly test if di↵erential generation probabilities can explain the observed size di↵erences
between näıve clonotypes, we developed a simple mathematical model (Fig. 2A). We consider a
pool of N T-cells, from which cells are removed by cell death or activation. The pool size stays
constant, as cells are replaced by either thymic production (with probability ✓) or peripheral divi-
sion of a randomly chosen T-cell (with probability 1� ✓). Because T-cells divide a few times after
rearrangement in the thymus, clonotypes are released at size k. The thymus produces clonotypes
with P(�) derived from IGoR [29]. Note that this Markov Chain model (Fig. 2B) is a stochastic
birth-death process similar to Hubbell’s Neutral Community Model (if the thymic release size k is
set to 1). The model is considered “neutral” because all individual cells have equal probabilities
to exit the pool or divide, i.e., we do not include TCR-specific fitness di↵erences. To analyse the
e↵ect of P(�) on clone-sizes, we parameterise the model in three ways: (1) using IGoR-derived
generation probabilities only, (2) adding a simple from of thymic selection on these clonotypes
(accounting for the ⇠ 5% thymocytes that survive both positive and negative selection) and (3)
setting generation probabilities to 0 (i.e., each clonotype produced by the thymus is unique). Ad-
ditionally, we set the pool size N to 7.5⇥1010 (CD4+) or 2.5⇥1010 (CD8+), the thymic release size
k to 10 or 100 for the ↵- and �-chain, respectively (because the �-chain rearranges first), and the
contribution of thymic output ✓ to 1%, 10% or 50%.

After many births and deaths, the clone-size distribution will approach a “steady state”. We
use the solution of this steady-state (SI 4.4) to predict the clone-size distribution of the näıve T-cell
pool as a function of N , k, ✓ and P(�). From these in silico distributions, we sample cells, similar
to the process of taking a blood sample. We first sample a small fraction of cells from the pool,
resembling the T-cells that are FACS-sorted as näıve (using the true number of cells reported
by the FACS-sorter). Because individual cells may contribute multiple TCRA and/or TCRB
mRNA-molecules, we use the distribution of a binomial sample from this cell-sample (sampling
the total number of distinct UMIs that were observed, see Methods in SI 4.5) to predict the
number of ancestral mRNA-molecules that were sequenced for each clonotype, and compare our
model predictions with the sequencing data (see Fig. 3A).

4

Two	(known)	
parameters:	
θ	and	k



Simulate a whole mouse of 107 naive T cells:  
Clone size distribution approaches steady state

Initial	condition:all	cells	of	clone	size	one Initial	condition:	exponential	distribution

N	=	107	cells;	θ	=	0.1;k=1;	109	events	(θ	is	a	humanized	choice	here)
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A simple neutral model for a naive lymphocyte repertoire

Consider a fixed pool size of N naive T (or B) cells, and a stochastic process killing one
randomly chosen cell, and replacing it either with a new unique cell from the thymus (or
bone marrow) with probability ✓, or by allowing one of the N � 1 cells to divide (with
probability 1 � ✓). Each cell produced by the thymus is assumed to express a unique
novel TCR, and hence forms a new clone (of clone size one). Let Fi be the number of
clones of clone size i, and hence Ni = iFi be the total number of cells in all clones of clone
size i (i.e., N =

P
i Ni). Since the model is completely neutral, the probability that the

random death event will kill a cell from a clone of size i is Ni/N .

Simple model. Clones are lost from the repertoire when a cell from a clone of size one
dies, which happens with probability N1/N . A novel clone is born with probability ✓. At
steady state the loss and gain of clones from the repertoire has to balance, i.e.,

✓ =
N1

N
or N1 = ✓N . (1)

A steady state distribution of the number of clones at each particular size requires that
the loss of clones at a particular size i (by death of a cell at rate Ni/N and by division
at a rate (1� ✓)Ni/(N � 1)) balances the entry of a clone from size i� 1 (by division at
a rate (1 � ✓)Ni�1/(N � 1)) plus the loss of a clone from size i + 1 (by death at a rate
Ni+1/N). This translates in the classical steady state equation for random birth death
processes

Ni

N
+

(1� ✓)Ni

N
=

(1� ✓)Ni�1

N
+

Ni+1

N
for i = 2, 3, . . . ,1 , (2)

where we simplify using the fact that N is large (i.e., N � 1 ' N). Note that this is a
chain with a uniform birth rate � = (1 � ✓)/N and death rate µ = 1/N . Since clones of
size zero are not defined, we write for the first equation

N1

N
+

(1� ✓)N1

N
= ✓ +

N2

N
or N2 = (1� ✓)N1 , (3)

By induction we arrive at

Ni = (1�✓)Ni�1 = ✓N(1�✓)i�1 =
✓N

1� ✓
(1�✓)i and Fi =

Ni

i
=

✓N

i(1� ✓)
(1�✓)i . (4)

for i = 1, 2, . . . ,1.

The total number of clones (i.e., the richness) in the steady state repertoire is simply the
sum over all clone numbers, Fi,

F =
1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)

and the Simpson diversity, 1/
P1

j (Nj/N)2 where Nj is the number of cells comprising
clone j, is given by summing over all clone sizes, i.e.,

S = 1/
1X

i=1

Fi

✓
i

N

◆2

= ✓N = N1 , (6)
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at a rate (1� ✓)Ni/(N � 1)) balances the entry of a clone from size i� 1 (by division at
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Ni
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=

(1� ✓)Ni�1
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Ni+1

N
for i = 2, 3, . . . ,1 , (2)
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N
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for i = 1, 2, . . . ,1.
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1X

i=1

Fi =
✓N ln ✓

✓ � 1
, (5)
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P1

j (Nj/N)2 where Nj is the number of cells comprising
clone j, is given by summing over all clone sizes, i.e.,

S = 1/
1X

i=1

Fi

✓
i

N

◆2

= ✓N = N1 , (6)
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Abstract

Motivation: High Throughput Sequencing (HTS) has enabled researchers to probe the human T
cell receptor (TCR) repertoire, which consists of many rare sequences. Distinguishing between true
but rare TCR sequences and variants generated by polymerase chain reaction (PCR) and sequenc-
ing errors remains a formidable challenge. The conventional approach to handle errors is to
remove low quality reads, and/or rare TCR sequences. Such filtering discards a large number of
true and often rare TCR sequences. However, accurate identification and quantification of rare TCR
sequences is essential for repertoire diversity estimation.
Results: We devised a pipeline, called Recover TCR (RTCR), that accurately recovers TCR se-
quences, including rare TCR sequences, from HTS data (including barcoded data) even at low
coverage. RTCR employs a data-driven statistical model to rectify PCR and sequencing errors in an
adaptive manner. Using simulations, we demonstrate that RTCR can easily adapt to the error pro-
files of different types of sequencers and exhibits consistently high recall and high precision even
at low coverages where other pipelines perform poorly. Using published real data, we show that
RTCR accurately resolves sequencing errors and outperforms all other pipelines.
Availability and Implementation: The RTCR pipeline is implemented in Python (v2.7) and C and is
freely available at http://uubram.github.io/RTCR/along with documentation and examples of typical
usage.
Contact: b.gerritsen@uu.nl

1 Introduction

T cells are crucial to the adaptive immune system, enabling it to rec-

ognize almost any pathogen that infects the host while remaining

tolerant to many self-antigens. The recognition of antigens by T cells

is mediated by the T cell receptor (TCR). Through random genetic

recombination, the immune system can potentially equip every T

cell with a different TCR, allowing it to bind different antigens than

other T cells. The different T cells together form a T cell repertoire,

which due to its pivotal role in the immune response, is studied ex-

tensively in areas such as infectious diseases, cancer, autoimmunity

and ageing (Bolotin et al., 2012; Suessmuth et al., 2015;

Woodsworth et al., 2013).

Classical TCRs are heterodimers, consisting of ab protein chains.

The genes encoding the a and b chains are generated via somatic sto-

chastic DNA rearrangements, in which germline variable (V), diver-

sity (D) and joining (J) gene segments recombine (Bassing et al.,

2002). Random deletions and non-templated nucleotide insertions

occur at the V(D)J junctions, which together with the random selec-

tion of gene segments is responsible for generating a full repertoire

of TCRs. Theoretically, !5" 1011 different TCR b chains are
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Sequencing of TCR mRNA involves two sampling steps

	

	

	

A	few	cells	may	contribute	several	mRNAs	and	then	seem	to	represent	large	clonotypes



• 4	data	sets	(A	&	B	chain	x	CD4	and	CD8)	
of	about	105	reads	(Illumina	MiSeq)	

• correct	for	impurities	by	removing	
reads	overlapping	with	memory	cells	

• reads	are	error	corrected	by	UMIs	and	
by	correcting	UMIs

TCRA	and	TCRB	mRNA	from	naive	CD4+	and	CD8+	T	cells	
sampled	from	blood	in	two	healthy	adult	volunteers
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Figure 1: Larger näıve T-cell clonotypes tend to have a higher generation probability

than smaller näıve T-cell clonotypes. Left: Clone-size distributions of näıve and memory
clonotypes in the NGS-samples for the two volunteers (clone-sizes are log2-binned). Distributions
of näıve samples are depicted with red squares and blue circles for volunteer 1 and 2, respectively,
grey diamonds represent sequences observed in memory samples. Right: For every TCR sequence,
�, the generation probability, P (�), was calculated using IGoR [29]. The median P (�) is shown
for all observed clone-sizes (log2-binned) of näıve and memory T-cell clonotypes. Symbol sizes
represent numbers of clonotypes in each size bin. Error bars represent the 25% and 75% quartiles,
solid lines indicate linear regression between clone-size and P (�), weighted by the number of
clonotypes of that size.

unique molecular identifiers (UMIs) were attached, followed by PCR-amplification and sequencing
on an Illumina MiSeq platform. Sequence reads were processed using a customized version of the
Decombinator pipeline [31], with an improved error-correction on UMIs to more reliably estimate
the frequency of clonotypes in the samples. Finally, to enrich the näıve TCR-datasets for truly
näıve TCR-sequences, we removed TCR-sequences that also occurred in the memory subsets from
the CD27+CD45RAhigh sequence data. In this highly purified näıve subset, we nevertheless expect
antigen-experienced, and hence expanded, clonotypes to be present, since memory cells expressing
a näıve phenotype have been described in several studies [32–36].

Within the näıve T-cell subsets, the vast majority of clonotypes was observed as singletons,
with clone-sizes typically ranging between 1 and 5 (Fig. 1A). Memory clonotypes, on the other
hand, were present at much higher frequencies, with ↵- and �-chains observed up to > 5000
times. Using the VDJ-recombination model of Marcou et al. [29], we calculated the generation
probabilities P(�) of all TCR-sequences in our datasets. Frequencies of clonotypes in all purified
näıve subsets show a strong positive correlation with the probability of being produced by VDJ-
recombination (Fig. 1B). On average for our näıve T-cell samples, the median P(�) of the TCRs
that were sequenced at least three times was 88-fold higher than for the clonotypes that have only
been observed once. This trend was much weaker for memory subsets (⇠ 1.5-fold). The result
that VDJ-recombination probabilities correlate strongly with näıve clone-sizes is unexpected, if
TCR-specific competition would largely determine survival and division rates of näıve T-cells in
the periphery.
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• Some	TCRs	are	made	much	
more	easily	than	others	

• Generation	probabilities	of	 
all	TCRA	and	TCRB	sequences	 
determined	with	IGoR	 
(Marcou,	Nat.	Comm.	2018)
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Large	naive	clonotypes	have	high	production	probabilities
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High-throughput immune repertoire sequencing is promising to lead to new statistical

diagnostic tools for medicine and biology. Successful implementations of these methods

require a correct characterization, analysis, and interpretation of these data sets. We present

IGoR (Inference and Generation Of Repertoires)—a comprehensive tool that takes B or T cell

receptor sequence reads and quantitatively characterizes the statistics of receptor generation

from both cDNA and gDNA. It probabilistically annotates sequences and its modular

structure can be used to investigate models of increasing biological complexity for different

organisms. For B cells, IGoR returns the hypermutation statistics, which we use to reveal co-

localization of hypermutations along the sequence. We demonstrate that IGoR outperforms

existing tools in accuracy and estimate the sample sizes needed for reliable repertoire

characterization.
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Supports neutrality: if TCR-based competition (niches) would 
dominate naive T-cell dynamics, one would not expect this.

To what extent can generation probabilities explain clone-sizes of naïve T-cells?
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Competition	for	IL7	
modulated	by	self-pMHC?



A BDI model for naive T-cell dynamics
Event	driven	dynamics	on	the	level	of	the	full	pool:	
remove	a	single	cell	and	replace	with	a	new	one	

coming	from	the	thymus	(θ)	or	a	division	event	(1-θ)

Markov-chain	of	a	single	clonotype
TCR    with

Clonotype    
with   cells Exit by death

or activation
Thymic

Production

Naïve T-cell pool

TCR    with

Clonotype    
with   cells Exit by death

or activation
Thymic

Production

Naïve T-cell pool

Figure 2: A neutral model describes dynamics of näıve T-cells. Top: Schematic represen-
tation of the dynamics on a pool level. Each event consists of the exit of one of the N cells and the
replacement by peripheral division of another cell (probability 1� ✓) or thymic production: with
probability ✓/k, the thymus will export a clonotype of k cells, with TCR-sequence � depending
on generation probability P(�). Bottom: Markov-chain representation of the model, in which the
states represent the size of a single clonotype. P(�)✓/k is the probability the thymus will produce
k cells of clonotype � (causing the clonotype to move from state i to i + k), (1 � ✓)/N and 1/N
are the per cell birth- and death rates, respectively.

2.2 A simple mathematical model describing näıve T-cell dynamics

To explicitly test if di↵erential generation probabilities can explain the observed size di↵erences
between näıve clonotypes, we developed a simple mathematical model (Fig. 2A). We consider a
pool of N T-cells, from which cells are removed by cell death or activation. The pool size stays
constant, as cells are replaced by either thymic production (with probability ✓) or peripheral divi-
sion of a randomly chosen T-cell (with probability 1� ✓). Because T-cells divide a few times after
rearrangement in the thymus, clonotypes are released at size k. The thymus produces clonotypes
with P(�) derived from IGoR [29]. Note that this Markov Chain model (Fig. 2B) is a stochastic
birth-death process similar to Hubbell’s Neutral Community Model (if the thymic release size k is
set to 1). The model is considered “neutral” because all individual cells have equal probabilities
to exit the pool or divide, i.e., we do not include TCR-specific fitness di↵erences. To analyse the
e↵ect of P(�) on clone-sizes, we parameterise the model in three ways: (1) using IGoR-derived
generation probabilities only, (2) adding a simple from of thymic selection on these clonotypes
(accounting for the ⇠ 5% thymocytes that survive both positive and negative selection) and (3)
setting generation probabilities to 0 (i.e., each clonotype produced by the thymus is unique). Ad-
ditionally, we set the pool size N to 7.5⇥1010 (CD4+) or 2.5⇥1010 (CD8+), the thymic release size
k to 10 or 100 for the ↵- and �-chain, respectively (because the �-chain rearranges first), and the
contribution of thymic output ✓ to 1%, 10% or 50%.

After many births and deaths, the clone-size distribution will approach a “steady state”. We
use the solution of this steady-state (SI 4.4) to predict the clone-size distribution of the näıve T-cell
pool as a function of N , k, ✓ and P(�). From these in silico distributions, we sample cells, similar
to the process of taking a blood sample. We first sample a small fraction of cells from the pool,
resembling the T-cells that are FACS-sorted as näıve (using the true number of cells reported
by the FACS-sorter). Because individual cells may contribute multiple TCRA and/or TCRB
mRNA-molecules, we use the distribution of a binomial sample from this cell-sample (sampling
the total number of distinct UMIs that were observed, see Methods in SI 4.5) to predict the
number of ancestral mRNA-molecules that were sequenced for each clonotype, and compare our
model predictions with the sequencing data (see Fig. 3A).

4

Two	(known)	
parameters:	
θ	and	k
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Sequencing of TCR mRNA involves two sampling steps

	

	

	

A	few	cells	may	contribute	several	mRNAs	and	then	seem	to	represent	large	clonotypes

Model

Binomial sample

Binomial sample



1 100 10000

1

100

104

106

108

1

100

104

106

108

1

100

104

106

108

1

100

104

106

108

Number of cells in pool

N
um

be
r o

f c
lo

no
ty

pe
s

1 10 100

1

100

104

106

1

100

104

106

1

100

104

106

1

100

104

106

Number of cells in FACS−sorted sample

C
D

4
�

C
D

4
⇥

0 5 10 >10

1

100

104

106

1

100

104

106

1

100

104

106

1

100

104

106

Number of mRNAs sequenced

1 100 10000

1

100

104

106

108

1

100

104

106

108

1

100

104

106

108

1

100

104

106

108

Number of cells in pool

N
um

be
r o

f c
lo

no
ty

pe
s

1 10 100

1

100

104

106

1

100

104

106

1

100

104

106

1

100

104

106

Number of cells in FACS−sorted sample
0 5 10 >10

1

100

104

106

1

100

104

106

1

100

104

106

1

100

104

106

Number of mRNAs sequenced

Neutral BDI model predicts the distribution of  
TCRA-clonotypes well, but TCRB-clonotypes 

appear larger than predicted

?



• Use	the	number	of	sub-samples	a	
clonotype	appears	in	(incidence)	to	
estimate	its	clone-size	

• Single	cells	can	only	contribute	
mRNA	to	a	single	subsample
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So a few clones are very large. 

Is this true? Circumvent the 
mRNA problem by taking 3 sub-
samples before RNA-extraction



Solve the mRNA problem by making 
3 sub-samples before RNA-extraction
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• TCRA-clonotypes	appear	in	multiple	
subsamples	as	a	result	of	their	high	
generation	probability	(blue	colors)	

• TCRB-clonotypes	are	larger	than	
predicted,	but	for	another	reason	(not	
blue)
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Study aging by NGS sequencing of TCR repertoire

Estimating the lower bound for total individual TCR b CDR3
diversity

Analysis of species accumulation curves (Fig. 2B) showed that the
number of TCR b clonotypes detected in each donor sample in-
creased proportionally with the number of cDNA molecules an-
alyzed, with an almost direct relation. The species accumulation
curves were similar within age-groups but differed between them.
For young individuals, each additional 100,000 cDNA molecules
analyzed consistently yielded ∼60,000 additional TCR b CDR3
clonotype variants. In general, most curves remained far from sat-
uration, confounding estimation of total TCR b diversity.
To estimate the lower bound of total TCR b diversity for the

studied donors, we applied an unseen species model (see Materials
and Methods). For young cohort (group 1), the estimated lower
bound on total TCR b diversity was ∼7 3 106 different clonotypes,

and this estimate declined to ∼4 3 106 for middle-aged individuals.
In group 3, the lower bound was ∼2.4 3 106, significantly lower
than that of group 2 (1.6-fold, p = 0.001) (Fig. 2C).
It should be noted that this is only the lower bound estimate,

which would be predicted to increase with greater sampling
depth. To verify this, we further analyzed two independent replicas
consisting of 1 3 106 unique cDNA reads each from two donors
from our study, aged 25 and 87, whose blood samples contained
44 and 15% naive T cells, respectively (starting from the same
blood draw, cells separated at the level of purified PBMC). These
additional replicas, which were added to the full analysis pipe-
line starting from joint reads, increased the directly observed di-
versity 1.91- and 1.74-fold, and increased the lower-bound estimate
for total TCR b diversity 2.3 6 0.4- and 2.4 6 0.1-fold for young
and long-lived donors, respectively, confirming that determination

FIGURE 2. Age-dependent trends in TCR repertoire diversity. (A) The number of unique TCR b CDR3 clonotypes per 106 T cells is shown as a function
of donor age. Observed diversity declines roughly linearly with age (R = 20.75). The trend is significant (p , 0.0001; Kruskal–Wallis test). **p , 0.01;
two-tailed t test. (B) Species accumulation curves for TCR b clonotypes for all four age groups. We analyzed subsets of a sample of 106 cDNA molecules in
increments of 1 3 105. Plots show the average number of unique clonotypes obtained from random samplings (n = 5) of cDNA molecules from each donor.
(C) Estimates of the lower bound of total TCR b diversity in human donors. See Materials and Methods for details.

4 MEASURING AGE-RELATED DECREASE IN TCR DIVERSITY
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The current study was designed explicitly to improve estima-
tion of the TCR repertoire richness of stringently defined naïve
and memory T cells. By sequencing multiple replicate TCRB li-
braries of cells from each T-cell subset and applying nonparametric
statistical analysis, we find that human TCR repertoires are an
order of magnitude more diverse than previously estimated.
Despite significant age-related decreases in richness, humans
maintain high diversity during healthy aging. Strikingly, we find
age-associated changes in the distribution of clonal sizes, in
particular in the naïve compartment, which may reflect un-
evenness of homeostatic expansion with clonal expansion of
some naïve T cells that equal or exceed clonal sizes of memory T
cells. The inequalities in clonal sizes could compromise the im-
mune response to the majority of antigenic epitopes while
causing an increased responsiveness to selected few epitopes.

Results
Gene Segment Use and CDR3 Features in Young and Elderly TCRB
Rearrangements. In initially evaluating TCRB repertoires in
young and elderly subjects we compared the composition of
TCRB gene rearrangements at the level of TCRBV and TCRBJ
gene segment use and the features of the CDR3-encoding
junctional nucleotides. Apheresis lymphocytes were obtained
from four 20- to 35- and five 70- to 85-y-old healthy adults who
were regular platelet donors. Naïve CD4 and CD8 T cells were
purified by cell sorting. We used a stringent definition of naïve
cells (CD3+CD4+ or CD8+CCR7+CD45RAhighCD28+) and very
restrictive gating to ensure purity. Approximately 1.5–3 million
sequence reads were obtained for each T-cell subset of each
donor (Table S1). TCRBV and TCRBJ gene segments were used
at comparable frequencies in the repertoires of naïve CD4 and
CD8 T cells in young and old individuals (Fig. S1A), whereas the
memory repertoires of CD4 and, particularly, CD8 T cells show
variable and individual-specific gene segment use frequencies
(Fig. S1B). CDR3 sequences in the young and elderly were
comparable in length and did not show any definitive age-related
features (Fig. S1 C and D).

High Richness of Naïve CD4 and CD8 TCRB Repertoires in Young and
Elderly Adults. To obtain sequence data to estimate global TCRB
repertoire richness we used the experimental design of analyzing
a series of replicate libraries from independent cell aliquots from
each T-cell subset in each individual. These replicates allowed us to
calculate repertoire richness by applying the “Chao2” estimator,
a nonparametric estimator of unseen species (14). The approach
allows estimation of the extent to which the full repertoire is cov-
ered and use of this information to determine a lower bound of the
total number of species in the repertoire. Because the Chao2 esti-
mator requires only a binary characterization of presence or ab-
sence of each clone in each replicate library, it circumvents the
challenges that arise in experimental designs using only a single
library and avoids confusing the effects of PCR amplification with
the presence of expanded T-cell clones. To not count possible se-
quencing errors as independent sequences, we rejected single se-
quences as erroneous if a highly similar clone of greater frequency
was identified in the same library (seeMaterials and Methods for the
definition of similarity).
The lower bounds on TCRB gene richness obtained with this

approach yielded higher estimates than previous studies (Fig. 1).
Young adults carried an estimated 60–120 million different
TCRB genes, both in the CD4 and CD8 naïve T-cell repertoires.
This high diversity in nucleotide sequences was reflected in a
large functional repertoire of TCR β chains with a lower boundary
of ∼20 million different amino acid sequences. To determine the
robustness of our estimates, we used two approaches to estimate
confidence intervals. We applied the BCa variant of bootstrapping
that is designed for obtaining confidence intervals when the un-
derlying bootstrap distribution is not symmetric about its center

(15). Second, we estimated the confidence intervals using the ap-
proach originally developed by Chao (16). The 95% confidence
intervals with both methods were very narrow (Table S2).
Naïve TCRB repertoire richness declined significantly in the

70- to 85-y-old adults to a lower bound richness of 8–57 million
different nucleotide sequences encoding ∼5–15 million TCR
β-chain amino acid sequences (P = 0.008, Fig. 1 A and B). In-
terestingly, the estimates in elderly CD4 and CD8 naïve T cells
were similar despite the greater decline in CD8 compared with
CD4 naïve T-cell numbers with aging (17, 18).

CD4 and CD8 Memory T Cells Differ in TCRB Richness Independent of
Age. Memory cells have been selected from the naïve repertoire
and clonally expanded in response to antigen and are therefore
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Fig. 1. Age is associated with a modest decrease in diversity of the TCRB reper-
toire.TCRBsequenceswereobtainedfromreplicate samplesofnaïve (AandB) and
memory (C and D) CD4 and CD8 T cells. A lower bound of TCRB richness was esti-
mated by applying nonparametric statistics using the Chao2 estimator. Results are
shown for nucleotide (A and C) and derived amino acid sequences (B and D).
Estimates were compared byWilcoxon–Mann–Whitney test. Increase in age is as-
sociated with a decline in richness of naïve CD4 and CD8 T cells; however, the
repertoire in the elderly remains highly diverse. Richness in CD4 and CD8memory
T cells markedly differed, whereas the impact of age was negligibly small.
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Richness during aging not at steady state

Humanized	mouse	simulation:	
N	=	107	cells,	k=1,	red:	solution.	

Thymic	output	θ	initially	0.2	
5%	decrease	thymic	output/year	
cells	live	10y:	a	year	is	106	events



Steady	state	repertoire	is	aging
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Figure 4: Subsampling cells confirms the existence of large näıve T-cell clonotypes

with high generation probabilities. Comparison between observed clonal incidence and the
incidences predicted by the model. Bars are colored proportional to the number of clonotypes
having the corresponding P(�) (note that P(�) could not be determined for some TCR-sequences
and is not included in the model with P(�) = 0). The scale of the vertical axis is linear between
values 0 and 1, and logarithmic for values higher than 1.
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Conclusions
Most	naive	clones	are	expected	to	be	very	small,	but	a	few	are	very	large.	

Large	clonotypes	tend	to	have	high	generation	probabilities	

A	neutral	BDI	model	is	sufficient	to	explain	the	TCRA	data	and	most	of	the	TCRB	data	

VDJ-recombination	probabilities	dominate	over	TCR-dependent	fitness	differences	in	
shaping	the	naive	T-cell	pool.	Tonic	signaling	is	neutral.	

Repertoire	diversity	erodes	by	aging,	but	very	slowly.	

Aging	enriches	for	easy-to-make	clones	(testable	prediction)			
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V(D)J recombination shapes the distribution of

TCR chains in the naive T-cell repertoire
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The human naive T-cell receptor (TCR) repertoire is extremely diverse
and accurately estimating its distribution is challenging. We address
this challenge by combining a quantitative sequencing protocol of
TCRA and TCRB sequences with computational modeling. We ob-
served the vast majority of TCR chains only once in our samples,
confirming the enormous diversity of the naive repertoire. However,
a substantial number of sequences were observed multiple times
within samples, and we confirmed that this was due to high abun-
dance in the naive pool, rather than high levels of TCRA and TCRB
mRNA. We observed a strong relationship between the frequency of
TCR – chains of naive T cells in blood samples and their probability
of being generated by V(D)J recombination, and a similar but less
strong trend for — chains. This was unexpected, given that the vast
majority of naive T cells in human adults are produced by peripheral
division rather than thymic generation. A full scale stochastic model
of T-cell repertoire genesis and maintenance predicted both high di-
versity and the presence of substantial numbers of highly abundant
TCR chains. In the context of a neutral model of T-cell homeostasis,
differential generation probabilities for individual TCR chains were
both necessary and sufficient to predict the observed frequency dis-
tribution of – chains, without the need for any TCR-driven selection.
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T

he human adaptive immune system employs a vast num-1

ber (> 1011 (1)) of T lymphocytes, or T cells, to detect2

and dispose of pathogens. Most T cells express a single T-cell3

receptor (TCR) variant, which binds antigen in the form of4

a short peptide presented by the Major Histocompatibility5

Complex (pMHC) (2). The TCR has to be specific to distin-6

guish between self- and non-self-pMHC, but due to the large7

number of possible foreign antigens (> 209) a specific TCR is8

nevertheless expected to bind many di�erent pMHC (which is9

measured as their cross-reactivity) (3, 4). The actual diversity10

of the TCR repertoire is unknown, but with improved sequenc-11

ing techniques, estimates have risen by orders of magnitude12

from 106 (5), 107 (6), to over 108 (7).13

Generation of –— T-cell diversity happens in the thymus,14

where thymocytes randomly rearrange gene segments to gen-15

erate a TCR (8). This heterodimer is generated by random16

recombination of Variable, Diversity, and Joining (V, D and17

J) segments for TCRB, and V and J segments for TCRA se-18

quences (2). Most variability arises due to random nucleotide19

insertions and deletions where the segments are joined (9).20

Recent estimates of the potential number of TCRs produced21

by this V(D)J-recombination process range from > 1020 (10)22

to 1061 (11), which vastly outnumbers the number of distinct23

TCRs present in a human body. After generation of the TCR,24

T cells undergo positive and negative selection, which selects25

those T cells that have su�cient, but not too high, a�nity 26

for any self-pMHC (12). About 3-5% of thymocytes survive 27

selection (13) and enter the periphery as T cells that have not 28

yet encountered foreign cognate antigen, i.e. naive T cells. 29

Since lack of repertoire diversity may allow pathogens to 30

remain undetected (8, 14, 15), an important question is how 31

repertoire diversity is maintained throughout life. The to- 32

tal number of CD4+ naive T cells stays relatively stable in 33

absence of cytomegalovirus (CMV) infection (16), while the 34

CD8+ naive pool size declines substantially, irrespective of 35

CMV status (16). At the same time, thymic output of new T 36

cells decreases because of thymic involution, making peripheral 37

division of existing cells the main source of naive T cells from 38

early adulthood onwards in humans (17, 18). In the periph- 39

ery, T cells compete for cytokines, such as IL-7, and need 40

to interact with self-pMHC to survive (19, 20). Competition 41

between T-cell specificities may reduce repertoire diversity 42

when cells with some TCRs become more frequent and out- 43

compete others (21). T-cell dynamics lead to di�erences in 44

the abundance of TCRs, which determines the frequency dis- 45

tribution of TCRA and TCRB sequences. Hence, frequency 46

distributions of TCR chains inform us about T-cell dynamics 47

and how diverse repertoires are maintained. 48

To explain why some TCRs are more abundant in the naive 49
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Receptors on the T-cell surface recognize foreign antigens
and a diverse repertoire of such receptors is needed to de-
fend the human body against pathogens. New receptors are
generated in the thymus, and although the production rate
is markedly decreased in human adults, we show that the
repertoire contains very abundant receptor sequences and that
those are repeatedly generated in the thymus. We combine
high-throughput sequencing data and mathematical modeling
to show that thymic generation probabilities explain most of the
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receptors is largely shaped by biases in receptor production,
and therefore predictable.
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Figure 2: Filtering of data reduces variation in naive clone sizes. A. Comparison between UMI-
correction strategies. The distribution of Hamming distances between UMIs within clones before
correction (red), after default correction (orange) and after improved (green) correction are shown
in comparison to that of randomly selected (black) and generated barcodes (blue). B. Clone
size distributions of CD4� naive clones before (red), after default (orange) and after improved
(green) UMI-correction. C. Overlap between naive and non-naive CD4�-samples with expected
size of non-naive clones occuring in the naive sample as a result of contamination (orange dashed
line) with 95% CI (blue solid lines). Based on this, clones likely to be the result of non-naive
contamination (red shaded region) were classified as being not truly naive. Strictest cleaning only
treats non-overlapping clones as naive (green indicated). Points may represent more than one clone
with identical counts. Axes are log-scaled, with values 0 added at the beginning of the axes. D.
CD4 �-clone-size distributions before cleaning (black), after cleaning of expected contamination
(red) and after strictest cleaning (green).

the probability that there will be similar UMIs, the current correction method does not
take this number into account. For doubletons for example, the default threshold is too
conservative because even nearby UMIs are unexpected (i.e. too few barcodes are deleted),
while for large clones too many UMIs will be removed. We developed an improved correc-
tion method, by calculating the expected distribution of Hamming Distances between UMIs
associated with a clone of a particular size. We removed UMIs within a distance that was
very unlikely (p < 0.05) to occur for a clone of this size (see SI Methods for more detailed
description of the algorithm). After correction, the distribution of Hamming Distances was
much more similar to that of randomly generated sequences and that between clones (Fig.
2A). Corrected UMIs within and between clones yielded a similar distribution, indicating
that most erroneous UMIs were deleted. This yielded improved ↵- and �-clone-size distri-
butions, being enriched for singletons and having a decreased variation between clone sizes
within naive samples (Fig. 2B, S6).

4

N
ai
ve
	(C

D4
5R

A+
,C
D2

7+
)

1 100 10000

1
10

0
10

00
0

Naive CD4β

N
um

be
r o

f c
lo

ne
s

Clone size
1 100 10000

1
10

0
10

00
0

CM CD4β

N
um

be
r o

f c
lo

ne
s

Clone size
1 100 10000

1
10

0
10

00
0

EM CD4β

N
um

be
r o

f c
lo

ne
s

Clone size
1 100 10000

1
10

0
10

00
0

EMRA CD4β

N
um

be
r o

f c
lo

ne
s

Clone size
1 100 10000

1
10

0
10

00
0

NN CD4β

N
um

be
r o

f c
lo

ne
s

Clone size

A

B

Figure 1: Clone-size distributions show large variations in sizes. A. Flow cytometry plots of
the FACS-sorting of CD4 T-cells, which were sorted into naive, EM, EMRA and CM T-cells. B.
�-clone-size distributions of the CD4 T-cell subsets. Clone sizes are depicted on the horizontal
axis, with the number of clones having these sizes on the vertical axis. In the non-naive (NN)
panel, identically annotated EM, EMRA and CM sequences were collapsed into single non-naive
�-clones.

Results

Naive and non-naive samples show a large variation between clone sizes. T-
lymphocytes were obtained from two healthy volunteers (30-40 years old), and the naive,
central memory (CM), e↵ector memory (EM) and RA-positive e↵ector memory (EMRA)
CD4 and CD8 T-cells were purified using FACS-sorting. We used a CD27+CD45RAhigh

definition for naive cells (Fig. 1A). Using TCR↵- or TCR�-specific primers, RNAs coding
for either the ↵- or �-chain were converted to cDNA molecules and attached to unique
molecular identifiers (UMIs) of 12 nucleotides. These were PCR-amplified and sequenced
on an Illumina Miseq platform, whereby the barcodes were used to correct for (unequal)
amplification, and error-correction of reads. Approximately 1-3 million sequence reads were
obtained for each subset of T-cells for both donors. Sequence reads were processed using the
Decombinator pipeline [13], which collapses sequences by their UMIs, annotating and error-
correcting the reads. The observed clone-size distribution was power-law shaped for each
of the non-naive, but less clear for naive samples (Fig. 1B, S4, S5). Within naive samples,
the smallest average clone sizes were observed, followed by CM, EM and EMRA. A large
variation in clone sizes between clones was found within the non-naive samples, but also
naive ↵- and �-clones di↵ered over a 100-fold in size. To exclude or confirm experimental
issues as source of this variation, we performed a number of filtering techniques.

Improved UMI-correction shows overestimation of clone sizes. During the an-
notation and error-correction process, sequence reads are collapsed by their UMI, because
the number of distinct UMIs should reflect the original number of cDNA molecules in the
sample. Additional UMIs, introduced by PCR and sequencing errors, likely overestimate
the true abundance of clones in the sample. By default, the Decombinator pipeline corrects
for this by merging all UMIs of an annotated clone with only one or two dissimilar nu-
cleotides in the barcode. Although the number of unique UMIs of a single clone influences
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