Modeling data on the TCR-frequency distribution of naive T cells

Rob J. de Boer
Theoretical Biology and Bioinformatics Utrecht University

Two PhD students: Peter de Greef \& Bram Gerritsen

Collaboration with group of Benny Chain, UCL.

The immune system is a distributed complex system composed of circulating random detectors

Naive lymphocytes (detectors) circulate (patrol) via blood and lymph.
Naive B lymphocytes are born in the bone marrow and can be triggered to produce antibodies.
Naive T lymphocytes are born and selected in the thymus and can differentiate into helper (CD4) or killer (CD8) T cells.

Each lymphocyte express a randomly generated protein (receptor) that by chance binds a very small fraction ($<10^{-5}$) of the proteins (ligands) in our environment.

After binding cognate ligand, naive cells expand and "decide" on their effector function.

Decisions are remembered because a fraction of the cells persist as "memory" cells (immunity).

10^{11} naive T cells (CD4 and CD8)

Memory T cells

How can 10^{4} genes make 10^{8} proteins?

DNA makes RNA makes protein

Variable (V), diversity (D), joining (J) gene regions each containing many variants: diversity by combinatorics, and random insertions and deletions

DNA fragments recombine in thymus

V_{i}

Formation of T cell receptors: reshuffling of gene segments

Statistical inference of the generation probability of T-cell receptors from sequence repertoires

Anand Murugan ${ }^{\text {a }}$, Thierry Mora ${ }^{\text {b }}$, Aleksandra M. Walczak ${ }^{\text {c }}$, and Curtis G. Callan, Jr. ${ }^{\text {a,d,1 }}$

How is this huge diversity maintained in an "ecosystem" of so many competing populations?

- All naive T cells basically compete for a single resource (IL-7) -> exclusion
- Naive T cells require contacts with cognate self-antigen -> niche differentiation
- At young age populations are maintained by immigration (from the thymus) but this source vanishes after puberty -> late exclusion
- Diversity of TCRs in young and elderly people differs "only" 2-fold
- The time scale of the competitive exclusion depends on cellular lifespans
- Naive T cells are long-lived (5-10 y) \& memory T cells short-lived (6 mo).
- BTW naive and memory T cells compete for different resources.

How long do T cells live in humans?

Deuterium $\left({ }^{2} \mathrm{H}\right)$ and hydrogen are incorporated in DNA upon cell division only

Human naive T cells have an average lifespan of $5-10$ y

Aged (■) and young (\square) volunteers drink deuterated water for $8-9$ weeks.

Estimate thymic output by measuring fraction of T cells with a T-cell receptor excision circle (TREC)

TREC is a DNA circle produced when the TCR re-arranges.
TRECs not duplicated upon division.

Rodewald Nature 1998

TRECs are long-lived: in humans they persist for decades after thymectomy

$$
\begin{aligned}
\frac{\mathrm{d} N}{\mathrm{~d} t} & =s(t)+(p-d) N \\
\frac{\mathrm{~d} T}{\mathrm{~d} t} & =c s(t)-d T
\end{aligned}
$$

Define $A \equiv T / N$:

$$
\begin{aligned}
\frac{\mathrm{d} A}{\mathrm{~d} t} & =\frac{s(t)}{N}(c-A)-p A=0 \\
\frac{A}{c} & =\frac{s(t)}{s(t)+p N(t)}
\end{aligned}
$$

Naive T-cell pool: N

TREC is a marker for a cell originally produced in the thymus (after normalization)

Thymus accounts for <20\% of the production of naive T cells in young humans adults and for $<2 \%$ in healthy elderly
A \rightarrow naive $\mathrm{CD4}^{+} \quad \times \mathrm{SP}$

Consider a highly diverse naive T cell pool in which thymic output is the only source of new clonotypes

Birth, death \& immigration model

Let's start with a "neutral" model where all populations have the same division and death rates

The Unified Neutral Theory of BIODIVERSITY AND BIOGEOGRAPHY

STEPHEN P. HUBBELL

$$
N=10^{11} \text { cells }
$$

A BDI model for naive T-cell dynamics

Event driven dynamics on the level of the full pool: remove a single cell and replace with a new one
Two (known) coming from the thymus (θ) or a division event (1- θ) parameters:
θ and k
$\underset{\text { Production }}{\text { Thymic }} \xrightarrow{\frac{\theta}{k}} \mathrm{TCR} \sigma$ with $\mathcal{P}(\sigma)$

Markov-chain of a single clonotype

Simulate a whole mouse of 10^{7} naive T cells: Clone size distribution approaches steady state

$N=10^{7}$ cells; $\theta=0.1 ; \mathrm{k}=1 ; 10^{9}$ events (θ is a humanized choice here)

Now the data

Amplify TCR mRNA Sequence

Interpretation by modeling

Error correction algorithms

A	B	c	D	E	F	G
TRCV	6001 2001		wind mas	0004	006	ड06
TRCNosococosect Csinik	\％274	2420	12×2	mos	100	$\underbrace{1093}_{202}$
	658	24228	3408	15910	5418	$\times 27$
	443	\％ess	510	6319	9741	1639
ThCN000000688 Cosal	\geqslant	2345	\＄19	T\％	650	5238
TRCNOCOCO64 $7260 \mathrm{wp} \mathrm{\times 2}$	2238	064	3187	mb	3162	2779
acrobecocy 71.10030	。	。	\bigcirc	0		1593
9 TMCNOCOC002／22：0N／22	1	。	－ 0	0	0	1535
	Q	－	18			3 s
	2702	－ 0	170		S007	－ 744
12 TMCY00000072SNEw	3388	38	－ 6	5×54	1018	3194
	－	W\％	－ 0	291	T\％	\bigcirc
Crocococatiznexs	1043		4145	1679		－
	5350	1254			7200	2021
16 TRCW	－		3004	cum	1004	215
17 ThCW500000778 Mest？	－	348	soce	527	15008	1523
1／ThCumococe 142 2 STM1	．	．	0	S00	7	0
	－		－ 4	3	4	3^{3}
$20.18 C N 000000274585 \mathrm{Mk1}$	\bigcirc	\％	\％	${ }^{3}$	${ }^{6}$	3
	14413		54	suem	0	238
	O000	4003	$\square 0$	－	1289	20062

PCR amplification protocol

Bioinformatics

Each cDNA is identified with a "barcode": UMI

RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data

Bram Gerritsen ${ }^{1, *}$, Aridaman Pandit ${ }^{1}$, Arno C. Andeweg ${ }^{2}$ and Rob J. de Boer ${ }^{1}$

Sequencing of TCR mRNA involves two sampling steps

Naive T-cell pool

A few cells may contribute several mRNAs and then seem to represent large clonotypes

TCRA and TCRB mRNA from naive CD4+ and CD8+ T cells

 sampled from blood in two healthy adult volunteers- 4 data sets (A \& B chain \times CD4 and CD8) of about 10^{5} reads (Illumina MiSeq)
- correct for impurities by removing reads overlapping with memory cells
- reads are error corrected by UMIs and by correcting UMIs

Large naive clonotypes have high production probabilities

- Some TCRs are made much more easily than others
- Generation probabilities of all TCRA and TCRB sequences determined with IGoR (Marcou, Nat. Comm. 2018)

High-throughput immune repertoire analysis with IGoR

Supports neutrality: if TCR-based competition (niches) would dominate naive T-cell dynamics, one would not expect this.

To what extent can generation probabilities explain clone-sizes of naïve T-cells?

Competition for IL7 modulated by self-pMHC?

Naïve Volunteer $1 \underset{\square}{T}$

A BDI model for naive T-cell dynamics

Event driven dynamics on the level of the full pool: remove a single cell and replace with a new one
Two (known) coming from the thymus (θ) or a division event (1- θ) parameters:
θ and k
$\underset{\text { Production }}{\text { Thymic }} \xrightarrow{\frac{\theta}{k}} \mathrm{TCR} \sigma$ with $\mathcal{P}(\sigma)$

Markov-chain of a single clonotype

Steady-state solution of the model allows us to predict the full clone-size distribution

$$
S_{i} i \frac{1}{N}=S_{i-1}(i-1) \frac{1-\theta}{N}+\mathcal{P}(\sigma) \frac{\theta}{k} \sum_{j=\max (i-k, 0)}^{i-1} S_{j}, \quad \text { for } 1 \leq i \leq N
$$

Clone size in full pool

Sequencing of TCR mRNA involves two sampling steps

Naive T-cell pool

$\sim 10^{11}$ cells

Model

Binomial sample

Cells in FACS-sorted sample

Binomial sample

mRNA-molecules sequenced

A few cells may contribute several mRNAs and then seem to represent large clonotypes

Neutral BDI model predicts the distribution of TCRA-clonotypes well, but TCRB-clonotypes appear larger than predicted

So a few clones are very large.

Is this true? Circumvent the mRNA problem by taking 3 subsamples before RNA-extraction

- Use the number of sub-samples a clonotype appears in (incidence) to estimate its clone-size
- Single cells can only contribute mRNA to a single subsample

Solve the mRNA problem by making 3 sub-samples before RNA-extraction

- TCRA-clonotypes appear in multiple subsamples as a result of their high generation probability (blue colors)
- TCRB-clonotypes are larger than predicted, but for another reason (not blue)

Incidence
2

Study aging by NGS sequencing of TCR repertoire

Richness during aging not at steady state

Humanized mouse simulation:
$N=10^{7}$ cells, $k=1$, red: solution.

Thymic output θ initially 0.2
5% decrease thymic output/year cells live 10 y : a year is 10^{6} events

Steady state repertoire is aging

- steady state diversity declines
- largely because small clones tend to go extinct
- middle-sized clones fill in and become larger
- large clones remain the same

Steady state repertoire is aging

- Blue clones (high $P(\sigma)$) remain large
- The yellow-red clones (low P(σ)) that survive become larger
- immune responses in elderly biased toward high P(σ)?
- prediction to be tested with Igor
- back to germline?

Conclusions

Most naive clones are expected to be very small, but a few are very large.
Large clonotypes tend to have high generation probabilities
A neutral BDI model is sufficient to explain the TCRA data and most of the TCRB data
VDJ-recombination probabilities dominate over TCR-dependent fitness differences in shaping the naive T -cell pool. Tonic signaling is neutral.

> Repertoire diversity erodes by aging, but very slowly.

Aging enriches for easy-to-make clones (testable prediction)

$\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination shapes the distribution of TCR chains in the naive T-cell repertoire

Acknowledgements

Peter de Greef
Bram Gerritsen
Rutger Hermsen
Laurens Krah

= $\quad \square \square$

Benny Chain Theres Oakes James Heather

José Borghans
Julia Drylewicz
Kiki Tesselaar
Nienke Vrisekoop Ineke den Braber
Vera van Hoeven
Liset Westera

CD4

Enrich for naive clones by removing all naive TCRs also occurring in any of the non-naive subsets. Correct for mutations in barcodes.

