First-order Riemannian optimization methods for the Karcher mean

Bruno **Iannazzo**, Università di **Perugia**, **Italy** with Margherita **Porcelli**, Università di **Bologna**, **Italy**

Atlanta, October 26, 2015

The Karcher mean

The Karcher mean of positive definite matrices (\mathcal{P}_n)

$$\mathcal{K}: \mathcal{P}_n^m \to \mathcal{P}_n$$

 $\mathcal{K}(A_1,\ldots,A_m)$ generalizes the **geometric mean** to matrices.

For positive scalars

$$\mathcal{K}(a_1, a_2, \ldots, a_m) = (a_1 a_2 \cdots a_m)^{1/m},$$

and verifies all other properties required by a mean.

Strong averaging and interpolation power → Applications: medical imaging, machine learning, statistic, signal processing...

The Karcher mean

For two matrices there is an explicit expression

$$K(A, B) = A(A^{-1}B)^{1/2}$$
.

For more than two matrices it is defined through a Riemannian structure on \mathcal{P}_n .

Geometry of \mathcal{P}_n

Open subset (cone) of the Euclidean space of Hermitian matrices $(\mathbb{H}_n) \Longrightarrow$ differential structure on \mathcal{P}_n .

One coordinate chart is sufficient: $\varphi : \mathcal{P}_n \to \mathbb{H}_n$ such that $\varphi(A) = A$.

Tangent space: $T_X \mathcal{P}_n \cong \mathbb{H}_n$.

A Riemannian structure is given by :

$$\langle A, B \rangle_X = \operatorname{trace}(AX^{-1}BX^{-1}), \qquad A, B \in \mathbb{H}_n.$$

The Karcher mean

Given A_1, \ldots, A_m in a Cartan-Hadamard manifold, the problem

$$\operatorname{argmin}_{X} \sum_{\ell=1}^{m} \delta^{2}(X, A_{\ell})$$

has a unique solution, said to be barycenter of A_1, \ldots, A_m .

The Karcher mean of A_1, \ldots, A_m is the barycenter in \mathcal{P}_n (the Riemannian manifold of positive definite matrices).

Implicit definition, difficult to be handled. No explicit formula is known for k > 2.

Computing the Karcher mean

For computing the Karcher mean we have two equivalent approaches:

Find the minimum over \mathcal{P}_n of

$$\delta^{2}(X, A_{1}) + \delta^{2}(X, A_{2}) + \cdots + \delta^{2}(X, A_{m}).$$

▶ Find the unique solution in P_n of

$$X \log(X^{-1}A_1) + X \log(X^{-1}A_2) + \cdots + X \log(X^{-1}A_m) = 0.$$

There are other approaches, much less effective or accurate.

Computing the Karcher mean

Find the minimum over \mathcal{P}_n of

$$\delta^{2}(X, A_{1}) + \delta^{2}(X, A_{2}) + \cdots + \delta^{2}(X, A_{m}).$$

Two optimization approaches:

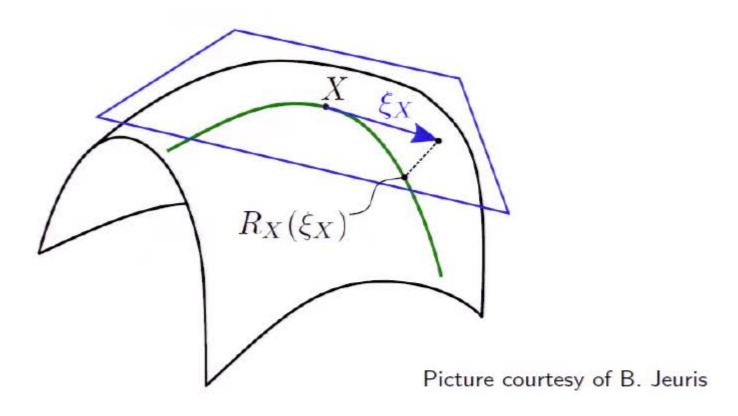
- Standard optimization;
- Riemannian optimization (exploits the structure).

The function is not convex, but it is geodesically convex.

Retraction-based optimization on manifolds

Retraction: approximation of the exponential map $R_x : T_x \mathcal{P}_n \to \mathcal{P}_n$.

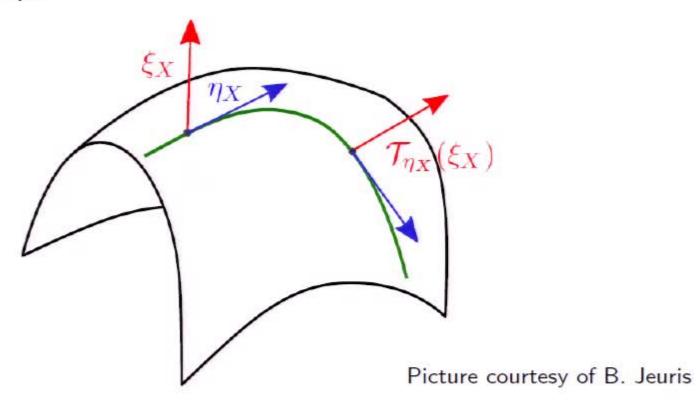
- Projects the tangent space to the manifold;
- ▶ Approximates the exponential $DR_{x}(0)$ =identity.



Retraction-based optimization on manifolds

Vector transport: approximation of the parallel trasport $T_{\eta}(\xi) \in T_{R_x(\xi)} \mathcal{P}_n$ for $\eta, \xi \in T_x \mathcal{P}_n$.

- Moves vectors from a tangent space to another;
- Linear map.



Positive definite matrices and the Karcher mean

Metric: $\langle A, B \rangle_X = \operatorname{trace}(X^{-1}AX^{-1}B)$.

Retraction: exponential map, follow geodesics

$$R_A(X) = A \exp(A^{-1}X).$$

Vector Transport: parallel transport, based on geodesics

$$\mathcal{T}_{A\to B}(X) = (A\#B)A^{-1}XA^{-1}(A\#B),$$

where A # B is the Karcher mean of A and B.

Euclidean vs. Riemannian gradient descent

First-order optimization: uses only gradients.

Euclidean:

$$X_{k+1} = F(X) := X_k - t_k g(X_k), \qquad g(X) = 2X^{-1} \sum_{j=1}^m \log(XA_j^{-1})$$

Riemannian:

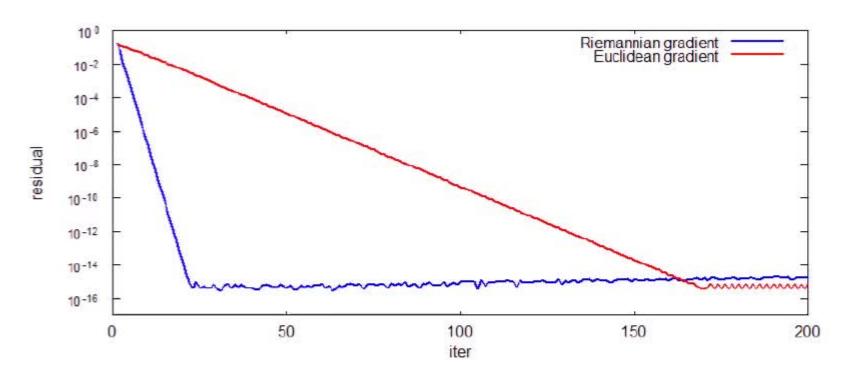
$$X_{k+1} = F(X_k) := X_k \exp(-t_k X_k^{-1} g(X_k)), \quad g(X) = 2X \sum_{i=1}^m \log(A_i^{-1} X)$$

Euclidean vs. Riemannian gradient descent

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix},$$

Starting with $X_0 = \frac{1}{3}(A + B + C)$ and $t_k = \theta_k = 1/5$ we try both gradient descent algs. and compute

residual =
$$\|\log(A^{-1}X) + \log(B^{-1}X) + \log(C^{-1}X)\|_F / \|X\|_F$$



Choice of the step-size

Problem of first-order optimization: choose the step-size.

- Armijo's rule, reduce the step-size until some global convergence condition is fulfilled.
- Richardson-like iteration, chose the step-size optimal with respect to the derivative of F(X) [Bini-I, 12].

Richardson-like iteration incorporates second-order information with no extra cost.

Second-order (Hessian based) optimization not recommended in this problem because too expensive.

The Barzilai-Borwein algorithm

Gradient-type algorithm

$$x_{k+1} = x_k - t_k g_k, \qquad g_k = \nabla f(x_k).$$

Quasi-Newton secant equation

$$A_{k+1}s_k = y_k,$$
 $s_k := x_{k+1} - x_k,$ $y_k := g_{k+1} - g_k.$

Imposing $A_{k+1} = \alpha I$, we have

$$s_k \alpha = y_k$$

whose least squares solution gives (with $x_{k+1} \neq x_k$, $\alpha \neq 0$)

$$t_{k+1}^{BB} = \frac{1}{\alpha} = \frac{s_k^T s_k}{s_k^T y_k}.$$

Gradient-type algorithm.

In Euclidean optimization

$$x_{k+1} = x_k - t_k g_k, \qquad g_k = \nabla f(x_k) \in \mathbb{R}^n$$

In Riemannian optimization

$$x_{k+1} = R_{x_k}(-t_k g_k), \qquad g_k = \nabla^{(\mathcal{R})} f(x_k) \in T\mathcal{M}_{x_k}$$

Quasi-Newton secant equation.

In Euclidean optimization

$$A_{k+1}s_k = y_k,$$
 $s_k := x_{k+1} - x_k,$ $y_k := g_{k+1} - g_k.$

In Riemannian optimization, approximation of the Hessian at $T\mathcal{M}_{x_{k+1}}$

$$A_{k+1}s_k = y_k, \quad s_k := \mathcal{T}_{x_k \to x_{k+1}}(-t_k g_k), \quad y_k := g_{k+1} - \mathcal{T}_{x_k \to x_{k+1}}(g_k).$$

Least squares solution to $s_k \alpha = y_k$.

In Euclidean optimization

$$t_{k+1}^{BB} = \frac{1}{\alpha} = \frac{s_k^T s_k}{s_k^T y_k}.$$

In Riemannian optimization

$$t_{k+1}^{BB} = \frac{1}{\alpha} = \frac{\langle s_k, s_k \rangle_{x_{k+1}}}{\langle s_k, y_k \rangle_{x_{k+1}}}.$$

Gradient-type algorithm

$$x_{k+1} = R_{x_k}(-t_k g_k), \qquad g_k = \nabla^{(\mathcal{R})} f(x_k) \in T\mathcal{M}_{x_k}$$

Quasi-Newton secant equation

$$A_{k+1}s_k = y_k, \quad s_k := \mathcal{T}_{x_k \to x_{k+1}}(-t_k g_k), \quad y_k := g_{k+1} - \mathcal{T}_{x_k \to x_{k+1}}(g_k).$$

Imposing $A_{k+1} = \alpha I$, we have

$$s_k \alpha = y_k$$

whose least squares solution gives (with $x_{k+1} \neq x_k$, $\alpha \neq 0$)

$$t_{k+1}^{BB} = \frac{1}{\alpha} = \frac{\langle s_k, s_k \rangle_{x_{k+1}}}{\langle s_k, y_k \rangle_{x_{k+1}}}.$$

Global convergence

Armijo's line search. Given t_k , $\sigma, \gamma \in (0,1)$ choose the smallest nonnegative h such that

$$f(R_{x_k}(\sigma^h t_k g_k)) \leq f(x_k) + \gamma \sigma^h t_k \langle g_k, g_k \rangle_{x_k}.$$

Armijo's line search reduces BB to steepest descent.

Nonmonotone line search. Require decrease not of f but of the maximum of f over the last M > 1 steps.

$$f(R_{x_k}(\sigma^h t_k g_k)) \leq f_{\max} + \gamma \sigma^h t_k \langle g_k, g_k \rangle_{x_k},$$

where $f_{\max} = \max_{1 \le i \le \min\{M, k+1\}} \{f(x_{k+1-i})\}.$

Global convergence theorem

Theorem

Under the assumptions

- 1. f is bounded on $\{x \in \mathcal{M} : f(x) \leq f(x_0)\}$;
- 2. the domain of the retraction R is the whole tangent bundle.

Let $\{x_k\}$ be generated by the BB algorithm with nomonotone line search. Every limit point of the sequence is stationary.

Computation: basic operations

1. Function of simmetric matrices (F)

$$Af(A^{-1}B)$$
,

with $A \in \mathcal{P}_n$ and $B \in \mathbb{H}_n$.

Using the Cholesky factorization $A = R^*R$, and using the spectral decomposition of $R^{-*}BR^{-1} = UDU^*$

$$Af(A^{-1}B) = R^*U \operatorname{diag}(f(d_{11}), \dots, f(d_{nn}))U^*R$$

Costs $12.6n^3$ ops (reduced to $12.3n^3$ ops for $B \in \mathcal{P}_n$)

Computation: basic operations

2. Riemannian distance (D)

$$\|\log(A^{-1/2}BA^{-1/2})\|_F$$

with $A, B \in \mathcal{P}_n$.

By a similar idea can be computed with $2.6n^3$ ops.

Computation

Gradient computation	mF	12.3 <i>mn</i> ³ <i>ops</i>
Retraction	1 <i>F</i>	12.6 <i>n</i> ³ ops
Parallel transport	1 <i>F</i>	12.6 <i>n</i> ³ <i>ops</i>
Cost function evaluation	mD	2.6 <i>mn</i> ³ ops

m = number of matrices;

n = size of matrices;

F = function of symmetric matrices;

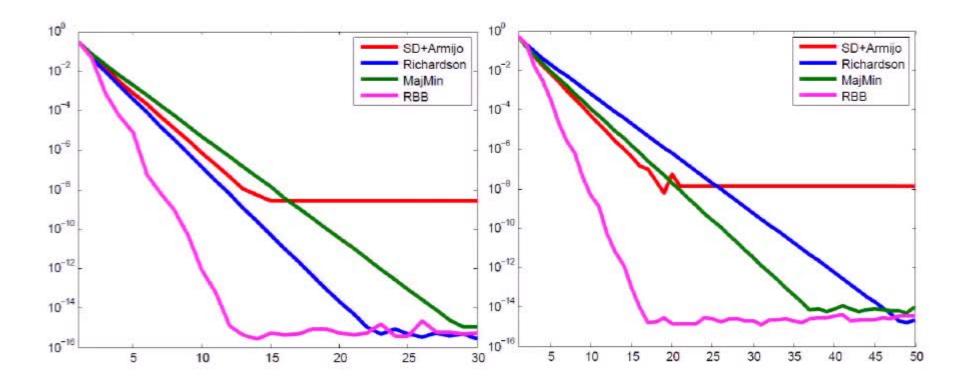
D = distance.

Computational costs

Algorithm	One step	Backtracking
SD + Armijo's rule [1,2]	(m+1)F	mD
Richardson-like [3]	(m+1)F	
MajMin [4]	(m+2)F	
BB nonmonotone	(m+2)F	mD
BB	(m+2)F	

References

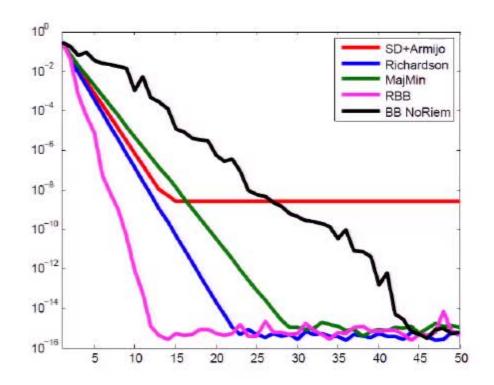
- [1] Geomean by Jeuris-Vandebril-Vandereycken
- [2] ManOpt by Boumal-Mishra-Absil-Sepulchre
- [3] MMToolbox by Bini-lannazzo
- [4] find_mean_MM by Zhang



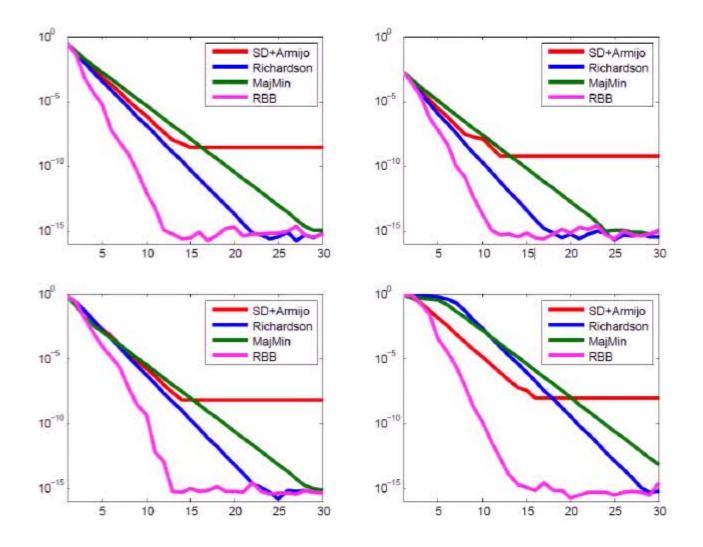
Left. m = 3, n = 3.

Right. m = 10, n = 10.

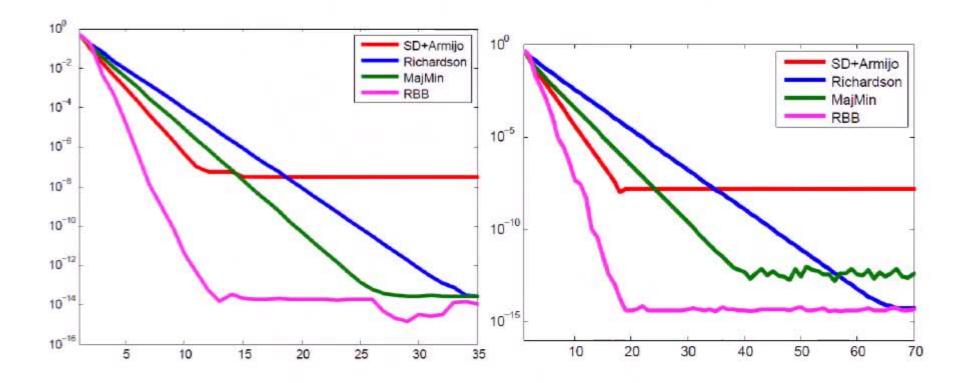
 X_0 is the arithmetic mean.



Comparison with standard (non-Riemannian) Barzilai-Borwein.

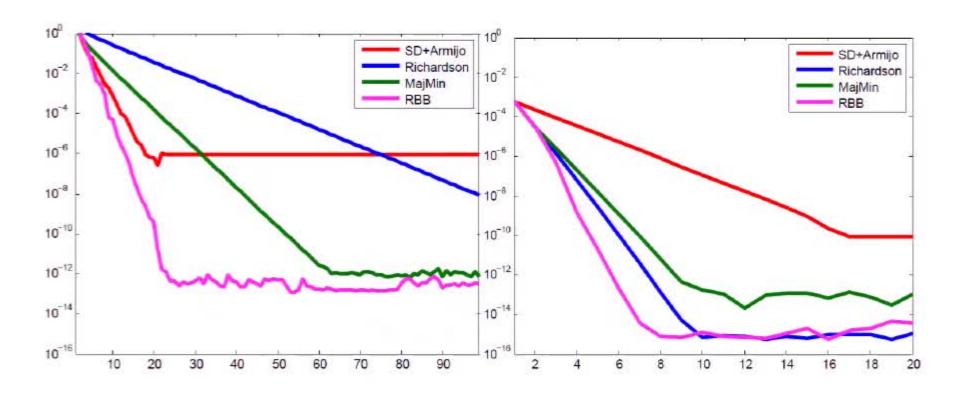


Inital value: arithmetic mean, cheap mean (near to the Karcher mean), random matrix, ill-conditioned random matrix.



Left. m = 100, n = 5. Right. m = 5, n = 100.

Experiments: ill-conditioned matrices



Left. Matrices with condition number 10^5 , m = 10, n = 10. Right. Matrices very near to each other, and far from identity, m = 10, n = 10.

Conclusions

We have adapted the Barzilai-Borwein method to retraction-based Riemannian optimization, with a globalization strategy.

- Requires only first-order information;
- it is faster than existing algorithms for the Karcher mean.

Open problem

Explain why the proposed algorithm does not require globalization in practice.