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The Karcher mean

The Karcher mean of positive definite matrices (P,,)

K:P) — Py,
K(A;..... An) generalizes the geometric mean to matrices.
For positive scalars
K(a1, 3, ... y8m) = (aqag <= am)l/m.

and verifies all other properties required by a mean.

Strong averaging and interpolation power — Applications:

medical imaging, machine learning, statistic, signal processing. . .
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The Karcher mean

For two matrices there is an explicit expression
K(A,B) = A(A~1B)/2.

For more than two matrices it is defined through a Riemannian
structure on P,,.




Geometry of P,

Open subset (cone) of the Euclidean space of Hermitian matrices
(H,,) = differential structure on P,,.

One coordinate chart is sufficient: ¢ : P, — H, such that

p(A)=A
Tangent space: TxP, = H,,.

A Riemannian structure is given by :

.D)x = trace . ik ., D € o,.
A. B AXI1BX ! A BcH




The Karcher mean

Given A;7..... A, in a Cartan-Hadamard manifold, the problem

argminy Z 62(X, Ar)

(=1
has a unique solution, said to be barycenter of A;..... Anm.
The Karcher mean of A;...., A, is the barycenter in P, (the

Riemannian manifold of positive definite matrices).

Implicit definition, difficult to be handled. No explicit formula is
known for k > 2.




Computing the Karcher mean

For computing the Karcher mean we have two equivalent
approaches:

» Find the minimum over P,, of
0%(X, A1) + 0%(X, A2) + - - - + 63(X, Am).
» Find the unique solution in P, of
Xlog(X1A;) + Xlog(X1Ay) + -+ + Xlog(X*A,,) = 0.

There are other approaches, much less effective or accurate.
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Computing the Karcher mean

Find the minimum over P,, of

52(X Al) - (52(X. Az) —froeseie ope (52(X Am)

Two optimization approaches:
» Standard optimization;

» Riemannian optimization (exploits the structure).

The function is not convex, but it is geodesically convex.
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Retraction-based optimization on manifolds

Retraction: approximation of the exponential map

R.: T,.P, — P,.

» Projects the tangent space to the manifold;

» Approximates the exponential DR, (0) =identity.

Picture courtesy of B. Jeuris
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Retraction-based optimization on manifolds

Vector transport: approximation of the parallel trasport

T5(&) € Tr (&eyPx for n,€ € T, Py

» Moves vectors from a tangent space to another;

» Linear map.

Picture courtesy of B. Jeuris
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Positive definite matrices and the Karcher mean

Metric: (A, B)x =trace(X"1AX™1B).
Retraction: exponential map, follow geodesics

Ra(X) = Aexp(A~1X).

Vector Transport: parallel transport, based on geodesics
Tase(X) = (A£B)A"XA-(A£B).

where A#B is the Karcher mean of A and B.




Euclidean vs. Riemannian gradient descent

First-order optimization: uses only gradients.

Euclidean:

Xis1 = F(X) =X — tig(Xe),  &(X)=2X"1) log(XA1)

Jj=1

Riemannian:

Xie1 = F(Xi) := X exp(—ti X7 g(Xi)).  g(X) =2X ) log(A7X)
=1
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Euclidean vs. Riemannian gradient descent

2 1 3 1 1 1
(23] o= [22] e[ 2]
Starting with Xy = %(A + B+ C) and tx = 0, = 1/5 we try both
gradient descent algs. and compute

residual = || log(A™X) + log(B~'X) + log(CX)||¢/IIX||F

10°?

Riema_n;lian gradient —
Euclidean gradient

residual

0 50 100

150 200
iter
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Choice of the step-size

Problem of first-order optimization: choose the step-size.

» Armijo’s rule, reduce the step-size until some global
convergence condition is fulfilled.

» Richardson-like iteration, chose the step-size optimal with
respect to the derivative of F(X) [Bini-I, 12].

Richardson-like iteration incorporates second-order information
with no extra cost.

Second-order (Hessian based) optimization not recommended in
this problem because too expensive.
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The Barzilai-Borwein algorithm

Gradient-type algorithm

Xk+1 = Xk — tk8k gk = VI(xk).

Quasi-Newton secant equation

Ak+15k = Yk Sk = Xk+1 — Xk Yk = 8k+1 — 8k-
Imposing A, .1 = o/, we have
SO = Vi

whose least squares solution gives (with xx1q1 # xk, a # 0)

-
BB _ 1 _ S sk
k+1 a S;Z-Yk
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The Riemannian Barzilai-Borwein algorithm

Gradient-type algorithm.
In Euclidean optimization

Xk+1 = Xk — tk8k> 8k = VFf(xx) € R”
In Riemannian optimization

k1 = R (—tigk). gk = VRF(x) € TM,,




The Riemannian Barzilai-Borwein algorithm

Quasi-Newton secant equation.
In Euclidean optimization

Ak+15k = Yk- Sk = Xk+1 — Xk, Yk ‘= 8k+1 — 8k-

In Riemannian optimization, approximation of the Hessian at

TM Xk+1

Ak+15k = Yks Sk = Txeoxipt (—tk8k), Yk = Bk+1—Txe—sxur1 (8k)-
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The Riemannian Barzilai-Borwein algorithm

Least squares solution to sya = yy.

In Euclidean optimization

T
1 5 SkTYk

In Riemannian optimization

i, = L, S,
8 & (T W frges
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The Riemannian Barzilai-Borwein algorithm

Gradient-type algorithm

Xk+1 = Ry (—tk8k): g = VP (x) e TM,,

Quasi-Newton secant equation
Axpik =Yk, Sk = Bosmiald— 8k )y Yk = 8ke1=Txs%.41(8k)-
Imposing A, ; — 1/, we have
Sk = Y
whose least squares solution gives (with x,.1 # Xk, o # 0)

toty = 1 _ Sl
REE - R - TE% .
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Global convergence

Armijo's line search. Given ti, 0,7 € (0,1) choose the smallest
nonnegative h such that

f(Ro (0" tigi)) < F(xi) + Yo"t {8k 8k ) -
Armijo’s line search reduces BB to steepest descent.

Nonmonotone line search. Require decrease not of f but of the
maximum of f over the last M > 1 steps.

F(Re (0"tigi)) < frnax + 70 i (k. k) xe -

where fmax = maxlgigmin{M.kH}{f(Xk+1—i)}-
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Global convergence theorem

Theorem

Under the assumptions
1. f is bounded on {x € M : f(x) < f(x0)},
2. the domain of the retraction R is the whole tangent bundle.

Let {xx} be generated by the BB algorithm with nomonotone line
search. Every limit point of the sequence is stationary.




Computation: basic operations

1. Function of simmetric matrices (F)
Af(A_lB),
with A€ P, and B € H,,.

Using the Cholesky factorization A = R*R, and using the spectral
decomposition of R~*BR~! = UDU*

Af(A~1B) = R*Udiag(f(d11). .. .. f(dun))U*R

Costs 12.6n° ops (reduced to 12.3n> ops for B € P,)
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Computation: basic operations

2. Riemannian distance (D)
| log(A=Y/2BAY2) ||
with A. B € P,,.

By a similar idea can be computed with 2.6n> ops.
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Computation

Gradient computation mF | 12.3mn?ops
Retraction 1F 12.6n%0ps
Parallel transport IF 12.6n°ops
Cost function evaluation | mD | 2.6mn> ops

m = number of matrices;

n = size of matrices:

F = function of symmetric matrices;
D = distance.




Computational costs

Backtracking

Algorithm One step

SD + Armijo’s rule [1,2] | (m+1)F
Richardson-like [3] (mr--1)F
MajMin [4] (m+2)F

BB nonmonotone (m+2)F
BB (m+2)F
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Experiments: random matrices

10° 10’ ,
— SD+Armijo — SD+Amijo

1072 == Richardson || 452 | m—— Richardson | |
s 1] Ml m— | jMin
— e RBB

107! 10"

10° 107

10° 10°°

107} 1071

102: 1077

10 107

107" . 107" ‘ : A ‘ . ‘ ,

= 10 15 20 25 30 10 15 20 25 35 40 45 50

Left. m=3, n=3.

Right. m =10, n = 10.

Xo 1s the arithmetic mean.




Experiments: random matrices

10°
— SD+Armijo
1072 w— Richardson | |
MajMin
. e RBB

10 — B8 NoRiem
10°

10°°

107}

10

10}

10"

5 10 15 20 25 30 35 40 45 50

Comparison with standard (non-Riemannian) Barzilai-Borwein.
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Experiments: random matrices

1

10° |

10

1077}

10°

10° |
10}

10 =}

Inital value: arithmetic mean, cheap mean (near to the Karcher

',3.

— SD+AmMijo
— Richardson
— MajMin

— RBB

10
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-

—SD+Amijo
— Richardson
— MajMin

10
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107 ¢+

10'%}

107"}

10”

107}
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107"}

— SD+Amijo
— Richardson
w— \ajMin
— RBB

10

—SD+Armijo
— Richardson
— MajMin

10 15 20 25 30

mean), random matrix, ill-conditioned random matrix.




Experiments:

random matrices

10°

w— SD+Armijo

102 - — Richardson |
w—MajMin

107 ¢

10°

10°

107"

10~

10-14 |

10—1-:-

— SD+Amijo
— Richardson
m— MajMin

= RBB

15

Left. m= 100, n = 5.
Right. m =5, n = 100.

25 30

35

10
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Experiments: ill-conditioned matrices

10" - —7110° :
— Sp+AmliJo — SD+ArMIjO

102l — Rlc_ha_rdson 102 | — Richardson | |
m— MajMin — A ajMin

A w— RBB — REE

10°

10°

10"

10772

10 20 30 40 50 80 70 80 90

Left. Matrices with condition number 10>, m = 10, n = 10.
Right. Matrices very near to each other, and far from identity,

m = 10, n =10,
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Conclusions

We have adapted the Barzilai-Borwein method to retraction-based
Riemannian optimization, with a globalization strategy.
» Requires only first-order information;

» it is faster than existing algorithms for the Karcher mean.

Open problem

» Explain why the proposed algorithm does not require
globalization in practice.






