A Functional Analytic Approach to SAR Image Reconstruction

Kaitlyn (Voccola) Muller

Colorado State University
SIAM Conference on Imaging Sciences
May 25, 2016

Synthetic-Aperture Radar

SAR Data Model

- Starting from Maxwell's equations and assuming free space we find that the wave equation is a good model for EM wave propagation:

$$
\begin{gathered}
\left(\nabla^{2}-c_{0}^{-2} \frac{\partial^{2}}{\partial t^{2}}\right) \mathcal{E}^{i n}(t, x)=j(t, x) \\
\left(\nabla^{2}-c^{-2}(x) \frac{\partial^{2}}{\partial t^{2}}\right) \mathcal{E}^{t o t}(t, x)=j(t, x)
\end{gathered}
$$

where

$$
\begin{aligned}
c^{-2}(x) & =c_{0}^{-2}-T(x) \\
\mathcal{E}^{t o t} & =\mathcal{E}^{i n}+\mathcal{E}^{s c}
\end{aligned}
$$

- $T(x)$ is called the reflectivity function and it models the scene of interest
- We seek data of the form $d=\mathcal{F}[T]$
- Combining the two wave equations and using the Green's function for free space we obtain the Lippmann-Schwinger integral equation

$$
\mathcal{E}^{s c}(t, y)=\iint \frac{\delta(t-\tau-|y-x| / c)}{4 \pi|y-x|} T(x) \partial_{t}^{2} \mathcal{E}^{t o t}(\tau, x) d \tau d x
$$

SAR Data Model

- The Born approximated scattered field is given by:

$$
\mathcal{E}_{B}^{s c}(t, y)=\iint \frac{\delta(t-\tau-|y-x| / c)}{4 \pi|y-x|} T(x) \partial_{t}^{2} \mathcal{E}^{i n}(\tau, x) d \tau d x
$$

- The actual data model is written as

$$
d(s, t)=\mathcal{F}[T](s, t)=\int e^{-i \omega(t-\phi(s, x))} A(x, s, \omega) T(x) d x d \omega
$$

where s is the slow-time which parametrizes the antenna trajectory.

- The phase function takes on a different form depending on which SAR modality you consider:

$$
\begin{aligned}
\phi(s, \mathbf{x}) & =r_{s, \mathbf{x}}=2|\gamma(s)-\mathbf{x}| / c_{0} \\
\phi(s, \mathbf{x}) & =r_{s, \mathbf{x}}=\left|\gamma_{T}(s)-\mathbf{x}\right| / c_{0}+\left|\gamma_{R}(s)-\mathbf{x}\right| / c_{0} \\
\phi(s, \mathbf{x}) & =r_{i j}\left(s, s^{\prime}, \mathbf{x}\right)=\left|\mathbf{x}-\gamma_{R_{i}}(s)\right|-\left|\mathbf{x}-\gamma_{R_{j}}\left(s+s^{\prime}\right)\right|
\end{aligned}
$$

where $\gamma(s)$ is the antenna position and x is location of a scatterer.

SAR Imaging - Backprojection

- To form an image we aim to invert by applying an imaging operator \mathcal{K}

$$
\begin{aligned}
I(z)=\mathcal{K}[d](z): & =\int e^{i \omega(t-\phi(s, z))} Q(z, s, \omega) d \omega d(s, t) d s d t \\
& =\int e^{-i \omega \phi(s, z)} Q(z, s, \omega) D(s, \omega) d \omega d s \\
=\mathcal{K} \mathcal{F}[T](z) & =\int e^{i \omega(\phi(s, x)-\phi(s, z))} Q(z, s, \omega) A(x, s, \omega) d \omega d s T(x) d x
\end{aligned}
$$

- $\mathcal{K} \mathcal{F}$ is called the image-fidelity operator and is a pseudodifferential operator \Rightarrow visible singularities are preserved

Filtered backprojection

- We seek a filtered BP type reconstruction method, i.e. our image is of the form:

$$
I(z)=\int e^{-2 i k R_{z, s}} Q(z, s, k) D(s, k) d k d s
$$

where Q is the backprojection filter and D is the 2D Fourier transform of d.

- Note our image of the form:

$$
I(z)=\int K(z, x) T(x) d x
$$

- K is called the point-spread function, given below:

$$
K(z, x)=\int e^{-2 i k\left(R_{z, s}-R_{x}, s\right)} Q(z, s, k) A(x, s, k) d k d s
$$

Imaging Continued

- Ideally K would be of the form:

$$
\int e^{i(z-x) \cdot \xi} d \xi
$$

- We perform the Stolt change of variables $(s, k) \rightarrow \boldsymbol{\xi}$ where

$$
\boldsymbol{\xi}=\boldsymbol{\Xi}(x, z, s, k)=\left.\int_{0}^{1} \nabla f\right|_{x+\mu(x-z)} d \mu
$$

where $f(x)=-2 k R_{x, s}$.

- After performing symbol calculus we obtain the following expression for K :

$$
K \approx \int e^{i(z-x) \cdot \boldsymbol{\xi}} Q(z, \boldsymbol{\xi}) A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi}) d \boldsymbol{\xi}
$$

- Therefore we choose Q as below:

$$
Q(z, \boldsymbol{\xi})=\frac{\chi_{\Omega}(z, \boldsymbol{\xi})}{A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi})}
$$

where $\chi_{\Omega}(z, \boldsymbol{\xi})$ is a smooth cut-off function that prevents division by zero and η is the Jacobian resulting from a Stolt change of variables.

BLUE

- We now calculate the best linear unbiased estimate of the reflectivty function from the collected data:

$$
D(s, \omega)=\int e^{2 i k r_{s, x}} A(\omega, s, x) T(x) d x+n(s, \omega)
$$

where we assume n is zero-mean independently, identically distributed noise in s and ω, i.e. we assume

$$
\begin{aligned}
E[n(s, \omega)] & =0 \\
E\left[n(s, \omega) \overline{n\left(s^{\prime}, \omega^{\prime}\right)}\right] & =\sigma^{2} \delta\left(s-s^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right)
\end{aligned}
$$

where σ^{2} is the variance of the noise for a single value of s and ω and δ is the Dirac delta function.

- We aim to estimate $T(x)$ from measurements $D(s, \omega)$ via a linear estimator

$$
\widehat{T}(z)=\int Q(z, s, \omega) D(s, \omega) d s d \omega .
$$

BLUE continued

- In BLUE we aim to minimize variance while also forcing the estimator to be unbiased.
- We seek to find the weights or filter Q such that the following functional is minimized

$$
\mathcal{J}(Q)=E\left[|\widehat{T}(z)-E[\widehat{T}(z)]|^{2}\right]+\lambda(E[\widehat{T}](z)-T(z))
$$

- After some calculations and the Stolt change of variables the functional simplifies to

$$
\begin{aligned}
\mathcal{J}(Q) & =\int|Q(z, \boldsymbol{\xi})|^{2} \sigma^{2} \eta(z, \boldsymbol{\xi}) d \boldsymbol{\xi} \\
& +\lambda\left(\int\left[Q(z, \boldsymbol{\xi}) e^{i x \cdot \boldsymbol{\xi}} A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi})-e^{i(x-z) \cdot \boldsymbol{\xi}}\right] d \boldsymbol{\xi}\right) .
\end{aligned}
$$

BLUE continued

- To find the minimizer we seek Q such that the variational derivative of $\mathcal{J}(Q)$ with respect to Q is zero and that the derivative of $\mathcal{J}(Q)$ with respect to λ is also zero

$$
\begin{aligned}
\left.\frac{d}{d \epsilon}\left(\mathcal{J}\left(Q+\epsilon Q_{\epsilon}\right)\right)\right|_{\epsilon=0} & =2 \operatorname{Re}\left[\int \sigma^{2} Q_{\epsilon}(z, \boldsymbol{\xi}) \bar{Q}(z, \boldsymbol{\xi}) \bar{\eta}(z, \boldsymbol{\xi}) d \boldsymbol{\xi}\right] \\
& +\lambda \int Q_{\epsilon}(z, \boldsymbol{\xi}) A(z, \boldsymbol{\xi}) e^{i x \cdot \boldsymbol{\xi}} d \boldsymbol{\xi}=0 .
\end{aligned}
$$

- Taking the derivative of $\mathcal{J}(Q)$ with respect to λ we obtain

$$
\frac{d \mathcal{J}}{d \lambda}=\int\left[Q(z, \boldsymbol{\xi}) e^{i x \cdot \boldsymbol{\xi}} A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi})-e^{i(x-z) \cdot \boldsymbol{\xi}}\right] d \boldsymbol{\xi}=0
$$

which implies Q must satisfy

$$
Q(z, \boldsymbol{\xi})=\frac{e^{-i z \cdot \boldsymbol{\xi}}}{A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi})}
$$

BLUE continued

- If we insert the expression found for Q into the definition for $\widehat{T}(z)$ we obtain

$$
\widehat{T}(z)=\int \frac{e^{-i z \cdot \boldsymbol{\xi}}}{A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi})} e^{i x \cdot \boldsymbol{\xi}} A(z, \boldsymbol{\xi}) T(x) \eta(z, \boldsymbol{\xi}) d \boldsymbol{\xi} d x+\int Q(z, \boldsymbol{\xi}) n(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

- Looking at the first term above we see that we obtain precisely the backprojected image from the previous section, i.e.

$$
\widehat{T}(z)=\int e^{i(x-z) \cdot \boldsymbol{\xi}} \tilde{Q}(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi}) A(z, \boldsymbol{\xi}) T(x) d \boldsymbol{\xi} d x+\int Q(z, \boldsymbol{\xi}) n(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

where

$$
\tilde{Q}(z, \boldsymbol{\xi})=\frac{1}{A(z, \boldsymbol{\xi}) \eta(z, \boldsymbol{\xi})}
$$

where in this case we have assumed the data collection manifold is the entire $\boldsymbol{\xi}$-plane.

Observations

- We first conclude that in 'ideal' circumstances we can say the backprojected image in SAR is equivalent to the BLUE of the reflectivity function.
- By 'ideal' we mean a full data collection manifold and that the imaging plane is \mathbb{R}^{2}.
- In practice these 'ideal' conditions are never met and hence using these techniques do not result in a truly unbiased estimator of the reflectivity function (also there is the step when we ignore higher order terms after performing the Stolt change of variables).
- This does lead to interesting questions about how to find an unbiased estimator.

Bias

- If we return to the unbiased constraint from the BLUE calculation, note an unbiased estimator is defined by:

$$
E[\widehat{T}(z)]=T(z)=\int K(x, z) T(x) d x
$$

- We note this requires that K is a reproducing kernel or evaluator
- The question becomes does T lie in a reproducing kernel Hilbert space and can we find a kernel such that our estimator is unbiased?

RKHS definitions and background

- Definition. An evaluation functional over the Hilbert space of functions \mathcal{H} is a linear functional $\mathcal{F}_{t}: \mathcal{H} \rightarrow \mathbb{R}$ that evaluates each function in the space at the point t, or

$$
\mathcal{F}_{t}[f]=f(t), \quad \forall f \in \mathcal{H}
$$

- Definition. A Hilbert space \mathcal{H} is a reproducing kernel Hilbert space (RKHS) if the evaluation functionals are bounded, i.e. if for all t there exists some $M>0$ such that

$$
\left|\mathcal{F}_{t}[f]\right|=|f(t)| \leq M\|f\|_{\mathcal{H}} \quad \forall f \in \mathcal{H} .
$$

- Theorem. If \mathcal{H} is a RKHS then for each $t \in X$ there exists a function $K_{t} \in H$ (called the representer of t or reproducing kernel) with the reproducing property

$$
\mathcal{F}_{t}[f]=\left\langle K_{t}, f\right\rangle_{\mathcal{H}}=f(t) \quad \forall f \in \mathcal{H}
$$

- Note a reproducing kernel is symmetric and positive definite. Also an RKHS defines a corresponding RK and a RK defines a unique RKHS.

SAR in an RKHS framework

- We begin by supposing the reflectivity function we wish to reconstruct lies in the Hilbert space $L^{2}(Y)$ where Y is the imaging plane, for simplicity say it is the rectangle $Y=\{-a \leq x \leq a,-b \leq y \leq b\}$.
- Note the inner product on this space is given by

$$
\langle f(x), g(x)\rangle_{L^{2}(Y)}=\int_{Y} f(x) \overline{g(x)} d x
$$

- We also note we may express the reflectivity in terms of its Fourier transform:

$$
T(x)=\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{2}} e^{-i x \cdot \xi} \widehat{T}(\boldsymbol{\xi}) d \xi
$$

SAR in RKHS framework continued

- We now consider the SAR data expression, and observe it is the result of a linear operator \mathcal{F} acting on T :

$$
D(k, s)=\mathcal{F}[V(x)]=\int_{Y} e^{2 i k R_{x, s}} A(x, s, k) T(x) d x
$$

- The Reisz representation theorem states we may rewrite the data expression as an inner product of V with a unique element of $L^{2}(Y)$, i.e.

$$
D(k, s)=\langle T(x), L(x ; s, k)\rangle_{L^{2}(Y)}
$$

where $L(x ; s, k)=e^{-2 i k R_{x, s}} \overline{A(x, s, k)}$.

SAR in RKHS framework continued

- Now consider the SAR image

$$
I(z)=\int_{\Omega} Q(z, s, k) D(s, k) d s d k
$$

where Q is to be determined and Ω is the data collection manifold.

- Note we may say $D \in L^{2}(\Omega)$, a Hilbert space, with the inner product

$$
\langle D(s, k), P(s, k)\rangle_{L^{2}(\Omega)}=\int_{\Omega} D(s, k) \overline{P(s, k)} d s d k
$$

- Now I is a linear operator acting on D and again by the Reisz representation theorem we have that

$$
I(z)=\langle D(s, k), \overline{Q(z, s, k)}\rangle_{L^{2}(\Omega)}
$$

SAR in RKHS framework continued

- Now inserting the data expression into the image we have

$$
\begin{aligned}
I(z) & =\langle D(s, k), \overline{Q(z, s, k)}\rangle_{L^{2}(\Omega)} \\
& =\langle\mathcal{F}[T(x)](s, k), \overline{Q(z, s, k)}\rangle_{L^{2}(\Omega)} \\
& =\left\langle T(x), \mathcal{F}^{*}[\overline{Q(z, s, k)}](x)\right\rangle_{L^{2}(Y)}
\end{aligned}
$$

where \mathcal{F}^{*} is the formal adjoint of the operator \mathcal{F}.

- We note that the formal adjoint is given by

$$
\mathcal{F}^{*}[Q(z, s, k)](x)=\int_{\Omega} e^{-2 i k R_{x, s}} \overline{A(x, s, k)} Q(z, s, k) d s d k
$$

- Ideally we would have

$$
\begin{gathered}
I(z)=T(z) \\
\Rightarrow I(z)=\left\langle T(x), \mathcal{F}^{*}[\overline{Q(z, s, k)}](x)\right\rangle_{L^{2}(Y)}=T(z)
\end{gathered}
$$

which implies $\mathcal{F}^{*}[\overline{Q(z, s, k)}](x)$ should be the evaluator or reproducing kernel.

Finding the RK for $L^{2}(Y)$

- Now we seek the element $K_{z}(x) \in L^{2}(Y)$ such that

$$
\left\langle T(x), K_{z}(x)\right\rangle_{L^{2}(Y)}=T(z)
$$

- Therefore we consider the following integral equation:

$$
\int_{Y} T(x) \overline{K_{z}(x)} d x=T(z)
$$

which is equivalent to

$$
\int_{Y}\left[\int_{\mathbb{R}^{2}} e^{-i x \cdot \xi} \widehat{T}(\xi) d \xi\right] \overline{K_{z}(x)} d x=\int_{\mathbb{R}^{2}} e^{-i z \cdot \boldsymbol{\xi}} \widehat{T}(\xi) d \xi
$$

Finding the RK for $L^{2}(Y)$ continued

- Rearranging the RHS we see that we require the following

$$
\overline{\widehat{K}_{z}(\xi)}=e^{-i z \cdot \xi}
$$

or

$$
K_{z}(x)=\int_{\mathbb{R}^{2}} e^{i z \cdot \boldsymbol{\xi}} e^{-i x \cdot \boldsymbol{\xi}} d \boldsymbol{\xi}=\delta(z-x)
$$

- We note that $\delta(z-x) \notin L^{2}(Y)$ as it is not bounded, hence it is not possible to find Q such that $\mathcal{F}^{*}[\bar{Q}]=\delta(z-x)$.
- Note there are methods to obtain something 'close' to the delta function, i.e. the microlocal technique of Cheney and the Backus-Gilbert method.

A Different Hilbert space

- Let us now suppose that our reflectivity function lies in a different Hilbert space, say

$$
H=\left\{T(x) \in L^{2}\left(\mathbb{R}^{2}\right) \mid \operatorname{supp}(\widehat{T}(\xi)) \subseteq Y\right\}
$$

with the inner product

$$
\langle T(x), f(x)\rangle_{H}=\int_{\mathbb{R}^{2}} T(x) \overline{f(x)} d x
$$

- Note we have

$$
T(x)=\frac{1}{2 \pi^{2}} \int_{Y} e^{-i x \cdot \xi} \widehat{T}(\xi) d \xi
$$

- Now again we look for $K_{z}(x)$ such that

$$
\left\langle T(x), K_{z}(x)\right\rangle_{H}=T(z)
$$

A Different Hilbert space continued

- We now consider the integral equation

$$
\int_{\mathbb{R}^{2}}\left[\int_{Y} e^{-i x \cdot \xi} \widehat{T}(\xi) d \boldsymbol{\xi}\right] \overline{K_{z}(x)} d x=\int_{Y} e^{-i z \cdot \boldsymbol{\xi}} \widehat{T}(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

- We find that

$$
\begin{aligned}
K_{z}(x) & =\frac{1}{2 \pi^{2}} \int_{Y} e^{-i z \cdot \boldsymbol{\xi}} e^{i x \cdot \boldsymbol{\xi}} d \boldsymbol{\xi} \\
& =\frac{a b}{\pi^{2}} \operatorname{sinc}\left(a\left(x_{1}-z_{1}\right)\right) \operatorname{sinc}\left(b\left(x_{2}-z_{2}\right)\right)
\end{aligned}
$$

supposing Y is a rectangle.

A different Hilbert space continued

- Now considering the SAR image we have

$$
\begin{aligned}
I(z) & =\int_{\Omega} Q(z, s, k) D(s, k) d s d k \\
& =\langle D(s, k), \overline{Q(z, s, k)}\rangle_{L^{2}(\Omega)} \\
& =\left\langle T(x), \mathcal{F}^{*}[\overline{Q(z, s, k)}](x)\right\rangle_{H} \\
& =T(z)
\end{aligned}
$$

- Therefore we see we require

$$
\mathcal{F}^{*}[\overline{Q(z, s, k)}](x)=\frac{a b}{\pi^{2}} \operatorname{sinc}\left(a\left(x_{1}-z_{1}\right)\right) \operatorname{sinc}\left(b\left(x_{2}-z_{2}\right)\right)
$$

Choosing Q

- We obtain the following integral equation for Q
where χ_{Ω} is an indicator function that is one on the data collection manifold and zero elsewhere.
- Using a technique similar to that used in backprojection, we perform the Stolt change of variables on the LHS and let $\overline{Q(z, s, k)}=e^{2 i k R_{z, s}} \tilde{q}(z, s, k)$

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} e^{-i(x-z) \cdot \boldsymbol{\xi}} \overline{A(x, \boldsymbol{\xi})} \tilde{q}(z, \boldsymbol{\xi}) \chi_{\Omega}(\boldsymbol{\xi}) \eta(x, z, \boldsymbol{\xi}) d \boldsymbol{\xi} \\
& =\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{2}} e^{-i(x-z) \cdot \boldsymbol{\xi}} \operatorname{rect}\left(\frac{\xi_{1}}{a}\right) \operatorname{rect}\left(\frac{\xi_{2}}{b}\right) d \boldsymbol{\xi}
\end{aligned}
$$

Choosing Q continued

- Using symbol calculus we may say the LHS of above is equivalent to the LHS of below plus higher order terms

$$
\begin{aligned}
& \int e^{-i(x-z) \cdot \boldsymbol{\xi}} \overline{A(z, \boldsymbol{\xi})} \tilde{q}(z, \boldsymbol{\xi}) \chi_{\Omega}(\boldsymbol{\xi}) \eta(z, z, \boldsymbol{\xi}) d \boldsymbol{\xi} \\
= & \frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{2}} e^{-i(x-z) \cdot \boldsymbol{\xi}} \text { rect }\left(\frac{\xi_{1}}{a}\right) \operatorname{rect}\left(\frac{\xi_{2}}{b}\right) d \boldsymbol{\xi}
\end{aligned}
$$

- This implies we may choose \tilde{q} to be

$$
\tilde{q}(z, \boldsymbol{\xi})=\frac{\operatorname{rect}\left(\frac{\xi_{1}}{a}\right) \operatorname{rect}\left(\frac{\xi_{2}}{b}\right)}{\overline{A(z, \boldsymbol{\xi})} \eta(z, z, \boldsymbol{\xi}) \chi_{\Omega}(\boldsymbol{\xi})}
$$

Further questions

- We see that the original filter Q is therefore given by:

$$
Q(z, \boldsymbol{\xi})=e^{-z \cdot \boldsymbol{\xi}} \frac{\operatorname{rect}\left(\frac{\xi_{1}}{a}\right) \operatorname{rect}\left(\frac{\xi_{2}}{b}\right)}{\overline{A(z, \boldsymbol{\xi})} \eta(z, z, \boldsymbol{\xi}) \chi_{\Omega}(\boldsymbol{\xi})}
$$

- We note this Q is still approximate because of our use of the symbol calculus to find only the first order term
- Also note that typically a, b or the support of the Fourier transform of the reflectivity function are unknown so actually implementing this filter in practice is not possible.
- Question: is there a RKHS that contains $T(x)$ for most scenarios in which we can find Q such that are image is exact, i.e. unbiased?

Acknowledgements

This work was supported by the AFOSR YIP.

