
Software Development Kits
A Software Integration Strategy for CSE
PI: James Willenbring - SNL

In collaboration with

ECP ST focus area SDK project leads:
- Chuck Atkins – Kitware
- Ulrike Meier Yang - LLNL
- Bart Miller – U Wisconsin
- Sameer Shende – U Oregon

ECP Software Deployment:
- Dave Montoya – LANL

February 26, 2019

SAND2019-1978 C

2 Exascale Computing Project

SDK Motivation

• The exascale software ecosystem will be
comprised of a wide array of software, all of which
are expected to be used by DOE applications.

• The software must be:
– interoperable
– sustainable
– maintainable
– adaptable
– portable
– scalable
– deployed at DOE computing facilities

• Without these qualities:
– Value will be diminished
– Scientific productivity will suffer

3 Exascale Computing Project

SW Development Kit (SDK) Overview

• SDK: A collection of related software products (called packages) where
coordination across package teams will improve usability and practices and
foster community growth among teams that develop similar and complementary
capabilities. SDKs have the following attributes:

– Domain scope: Collection makes functional sense.

– Interaction model: How packages interact; compatible, complementary, interoperable.

• Interfaces and common versions of 3rd party software.

– Community policies: Value statements; serve as criteria for membership.

– Community interaction: Communication between teams. Bridge culture. Common vocabulary.

– Meta-infrastructure: Encapsulates, invokes build of all packages (Spack), shared test suites.

– Coordinated plans: Inter-package planning. Does not replace autonomous package planning.

– Community outreach: Coordinated, combined tutorials, documentation, best practices.

• Unity in essentials, otherwise diversity.

4 Exascale Computing Project

SDK Objectives

• SDKs will enable greater collaboration across ECP ST projects, and
with the external software community. SDKs are essential to the
ECP ST product delivery strategy, providing intermediate build and
coordination points to better manage complexity.

• Through common community policies, deployment via the Extreme-
Scale Scientific Software Stack (E4S) and testing that leverages the
ECP Continuous Integration infrastructure (under development),
SDKs will enhance interoperability and sustainability of ECP ST
software.

5 Exascale Computing Project

SDK “Horizontal”
Grouping:

Key Quality
Improvement

Driver

• Horizonal (vs Vertical) Coupling
– Common substrate
– Similar function and purpose

• e.g. compiler frameworks, math libraries
– Potential benefit from common Community Policies

• Best practices in software design and development and customer support
– Used together, but not in a long vertical dependency chain
– Support for (and design of) common interfaces

• Commonly an aspiration, not yet reality

PETSc Trilinos

SuperLU Version X SuperLU Version Y

Horizontal grouping:
• Assures X=Y.
• Protects against regressions.
• Transforms code coupling from

heroic effort to turnkey.

6 Exascale Computing Project

ECP ST SDK Breakdown

7 Exascale Computing Project

ECP ST SDK community policies: Important team building,
quality improvement, membership criteria.

xSDK compatible package: Must satisfy mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
…

Recommended policies: encouraged,
not required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order

to test for memory corruption issues.
R3. Adopt and document consistent system for error

conditions/exceptions.
R4. Free all system resources it has acquired as soon

as they are no longer needed.
R5. Provide a mechanism to export ordered list of

library dependencies.

xSDK member package: An xSDK-compatible
package, that uses or can be used by another
package in the xSDK, and the connecting
interface is regularly tested for regressions.

https://xsdk.info/policies
Prior to defining and complying with these policies, a user could
not correctly, much less easily, build hypre, PETSc, SuperLU
and Trilinos in a single executable: a basic requirement for some
ECP app multi-scale/multi-physics efforts.

Initially the xSDK team did not have
sufficient common understanding to
jointly define community policies.

SDK Community Policy Strategy

• Review and revise xSDK community policies and categorize
• Generally applicable
• In what context the policy is applicable

• Allow each SDK latitude in customizing appropriate
community policies

• Establish baseline policies, continually refine

https://xsdk.info/policies

8 Exascale Computing Project

Extreme-Scale Scientific Software Stack – E4S

• E4S: A Spack-based distribution of ECP ST and

related and dependent software tested for

interoperability and portability to multiple

architectures

• Provides distinction between SDK usability /

general quality / community and deployment /

testing goals

• Will leverage and enhance SDK interoperability

thrust

• Oct: E4S 0.1 - 24 full, 24 partial release products

• Jan: E4S 0.2 - 37 full, 10 partial release products

• Current primary focus: Facilities deployment

e4s.io
Lead: Sameer

Shende (U Oregon)

9 Exascale Computing Project

E4S Full Release and Installed Packages

• Adios
• Bolt
• Caliper
• Darshan
• Gasnet
• GEOPM
• GlobalArrays
• Gotcha
• HDF5
• HPCToolkit
• Hypre
• Jupyter
• Kokkos
• Legion

• Libquo
• Magma
• MFEM
• MPICH
• OpenMPI
• PAPI
• Papyrus
• Parallel

netCDF
• ParaView
• PETSc/TAO
• Program

Database
Toolkit (PDT)

• Qthreads
• Raja
• SCR
• Spack
• Strumpack
• Sundials
• SuperLU
• Swift/T
• SZ
• Tasmanian
• TAU
• Trilinos
• VTKm
• Umpire

• UnifyCR
• Veloc
• xSDK
• Zfp

Packages installed using Spack

10 Exascale Computing Project

E4S: Providing a Common Environment Using Containers

• Useful for:
– Testing

• Target platforms are well-defined and accessible
– Development
– Demonstration

• Already used for different tutorials, including CANDLE
– Deployment
– Achieving interoperability
– Creating Spack “recipes” and Spack Stacks

• Not a replacement for Spack-based build-from-source installations
– Near-term deployment primarily bare metal

• Docker, Shifter, Singularity, and Charliecloud are supported
– Different facilities support and are exploring different technologies

11 Exascale Computing Project

Long-term Impact: Support Broader Deployment through
DOE Facilities gitlab.doecode.gov

Trusted repository (only ECP users commit)
Collect projects into SDKs and ECP releases
Based on standard web-based OSS (e.g. gitlab)

Mirro
r

ECP Projects
(existing repos)

Hardware and Integration in ECP 2.0 is
a key enabler to move developed
infrastructure into deployment

Key Issues:
• Facility security
• Site identification – other resource sites
• Authentication
• Account approvals
• Gatekeeping
• User Id mapping
• Testbed availability
• Application CI testing
• Tests beyond build tests – Tier 2
• Integration of local CI environments
• Integration into local schedulers
• Testing and feedback during CI vendor development
• Process/Policy development
• Working groups for CI related efforts
• Etc..

Pu
ll

/ P
ol

l

Pu
ll

/ P
ol

l

P
ul

l /
 P

ol
l

CI Runner orchestration

Test resources

Production resources

Tier 1 testing

Tier 2 testing

M
irr

or

M
irr

or

M
irr

or

12 Exascale Computing Project

SDK Project Risks and Issues

• Achieving compatibly and interoperability among and between dozens of
software products is hard. Maintaining it is even harder
– Continuous Integration (CI) testing capability through ECP Hardware Integration (HI) is crucial
– Sustaining the interoperability beyond ECP requires proper workflows and sufficient funding

• Community building opportunities are more limited than for xSDK
– Mutual understanding important for defining community policies

• xSDK project members were naturally (or forcefully) inclined to work together
– Many other ECP objectives for everyone involved
– IDEAS productivity project included xSDK creation as a primary focus area

• Opportunities for value added vary for each SDK
– Effort will be required to define these opportunities

13 Exascale Computing Project

SDK and E4S Project Next Steps

• Organize individual SDKs
• ‘Kick the tires’ and leverage new ECP CI testing capability

– Essential for maintaining interoperability

• Coordinate and negotiate E4S deployment with facilities
• Continue adding new products to E4S
• New software quality and assessment thrust

– Focus on continuous improvement
• Assessment required for baselining and measuring improvement

– Quality goal for each ST project
– Joint effort with IDEAS ECP

14 Exascale Computing Project

Summary
• Extending the SDK approach to all ECP ST domains

– SDKs create a horizontal coupling of software products, teams
– Enhance collaboration
– Manage complexity
– Improve interoperability, maintainability, sustainability and productivity

• Shared testing
• Community policies, best practices

• Deployment via E4S
– Spack-based install, develop Spack recipes/stacks
– Handle version compatibility issues and coordination of common dependencies
– Support for container environments

15 Exascale Computing Project

Appendix:

• Packages installed through E4S ‘spack install’
• Location of E4S Containers
• Software Technology Release Vectors
• Project interactions

16 Exascale Computing Project

Packages Installed through E4S ‘spack install’

17 Exascale Computing Project

Location of E4S Containers

• Docker:
– http://tau.uoregon.edu/ecp.tgz

– % gunzip ecp.tgz | docker load

– % docker run –v <localdir>:<mountdir> -i –t sameer/ecp-pmr /bin/bash

– # spack find

• Shifter
– % shifterimg images

– % shifter --image=registry/sameer/ecp-pmr -- /bin/bash --rcfile /etc/bashrc

• Singularity

– http://tau.uoregon.edu/ecp.simg

– % singularity exec ecp.simg /bin/bash --rcfile /etc/bashrc

• Charliecloud
– http://tau.uoregon.edu/ecp-cc.tgz

– % tar xf ecp-cc.tgz;

– % ch-run --bind=<localdir>:<mountdir> ./ecp-cc -- /bin/bash --rcfile /etc/bashrc

• Archives:
– http://tau.uoregon.edu/ecp

http://tau.uoregon.edu/ecp.tgz
http://tau.uoregon.edu/ecp.simg
http://tau.uoregon.edu/ecp-cc.tgz
http://tau.uoregon.edu/ecp

18 Exascale Computing Project

OpenHPC
Potential exit strategy
for binary distributions

• Target similar software to
existing OpenHPC stack

• Develop super-scalable
release targeting higher end
systems

Direct2Facility
Platform-specific software
in support of a specified
2021–2023 exascale system

• Software exclusively
supporting a specific platform

• System software, some tools
and runtimes

ECP software projects
Each project to define (potentially ≥2) release vectors

SDKs
Reusable software libraries
embedded in applications;
cohesive/interdependent
libraries released as sets
modeled on xSDK

• Regular coordinated
releases via E4S

• Hierarchical collection
built on Spack

• Establish community policies
for library development

• Apply Continuous Integration
and other robust testing
practices

Software Technologies Release Vectors

Math SDK

Tools SDK

PM&RT SDK

DataViz SDK

More projects Fewer projects

Dev/Eco SDK

19 Exascale Computing Project

SDK relationships throughout ECP

ECP Productivity
(IDEAS)

ECP
Applications

ECP Software
Technologies

ECP Hardware
and Integration

SDK
• Collaborate on definition and

documentation of best practices in
• SDK definition
• Software release
• Community policies

• Single access point for ST software
• Programming Models and

Runtimes
• Development Tools
• Math Libraries
• Data and Visualization
• Software Development and

Ecosystems

• Make ST software more easily
accessible to their customers

• Assist in testing for regressions and
continued interoperability

• Provide guidance in software best
practices via community policy effort

• Provide support for ST software deployment
• Single access point
• Spack “recipes”
• Continued interoperability testing

Part of
HI

C. I. Testing &
Release Part of

HI

• Continuous Integration
• Software integration
• Containers

LLNL ATDM SW
Eco & Delivery

• Spack

Part of
ST

20 Exascale Computing Project

xSDK functionality, Nov 2017

Tested on key machines at ALCF,
NERSC, OLCF, also Linux, Mac OS X

xSDK: The First SDK

ECP AD Multiphysics Application

Application B

Notation: A B:
A can use B to provide
functionality on behalf of A

MAGMA,
PLASMA

Alquimia hypre

Trilinos

PETSc

SuperLU More
contributed

libraries

PFLOTRAN

More
domain

components

MFEM

SUNDIALS

Application A

