
Numerical Solutions of ODEs by Gaussian
(Kalman) Filtering

Hans Kersting
joint work with Michael Schober, Philipp Hennig, Tim Sullivan and Han

C. Lie

SIAM CSE, Atlanta
March 1, 2017

Emmy Noether Group on Probabilistic Numerics
Department of Empirical Inference
Max Planck Institute for Intelligent Systems

Tübingen, Germany



Contents

1. What is Probabilistic Numerics?

2. Initial Value Problems (IVP)

3. Numerical Solvers of IVPs

4. Solving IVPs by Gaussian Filtering

5. Convergence Rates for Filtering with Integrated Brownian Motion

1 ,



Numerical methods such as
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

output approximate solutions for unknown quantities.

Probabilistic numerics aimes to produce probability measures instead,
which are supposed to capture our epistemic uncertainty over the solution.

2 ,



Numerical methods such as
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

output approximate solutions for unknown quantities.
Probabilistic numerics aimes to produce probability measures instead,

which are supposed to capture our epistemic uncertainty over the solution.

2 ,



Numerical methods such as
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

output approximate solutions for unknown quantities.
Probabilistic numerics aimes to produce probability measures instead,
which are supposed to capture our epistemic uncertainty over the solution.

2 ,



Numerical methods perform inference
an old observation [Poincaré 1896, Diaconis 1988, O’Hagan 1992]

A numerical method
estimates a function’s latent property

given the result of computations.

quadrature estimates ∫ b
a f(x)dx given {f(xi)}

linear algebra estimates x s.t. Ax = b given {As = y}
optimization estimates x s.t. ∇f(x) = 0 given {∇f(xi)}

analysis estimates x(t) s.t. x′ = f(x, t), given {f(xi, ti)}
▸ computations yield “data” / “observations”
▸ non-analytic quantities are “latent”
▸ even deterministic quantities can be uncertain.

Probabilistic numerics uses this link between statistics and numerics to
(i) perform numerical computation in a statistically interpretable

framework, and
(ii) enable an all–inclusive uncertainty quantification (for computations

which include both numerical and statistical parts).

3 ,



Numerical methods perform inference
an old observation [Poincaré 1896, Diaconis 1988, O’Hagan 1992]

A numerical method
estimates a function’s latent property

given the result of computations.

quadrature estimates ∫ b
a f(x)dx given {f(xi)}

linear algebra estimates x s.t. Ax = b given {As = y}
optimization estimates x s.t. ∇f(x) = 0 given {∇f(xi)}

analysis estimates x(t) s.t. x′ = f(x, t), given {f(xi, ti)}
▸ computations yield “data” / “observations”
▸ non-analytic quantities are “latent”
▸ even deterministic quantities can be uncertain.

Probabilistic numerics uses this link between statistics and numerics to

(i) perform numerical computation in a statistically interpretable
framework, and

(ii) enable an all–inclusive uncertainty quantification (for computations
which include both numerical and statistical parts).

3 ,



Numerical methods perform inference
an old observation [Poincaré 1896, Diaconis 1988, O’Hagan 1992]

A numerical method
estimates a function’s latent property

given the result of computations.

quadrature estimates ∫ b
a f(x)dx given {f(xi)}

linear algebra estimates x s.t. Ax = b given {As = y}
optimization estimates x s.t. ∇f(x) = 0 given {∇f(xi)}

analysis estimates x(t) s.t. x′ = f(x, t), given {f(xi, ti)}
▸ computations yield “data” / “observations”
▸ non-analytic quantities are “latent”
▸ even deterministic quantities can be uncertain.

Probabilistic numerics uses this link between statistics and numerics to
(i) perform numerical computation in a statistically interpretable

framework, and
(ii) enable an all–inclusive uncertainty quantification (for computations

which include both numerical and statistical parts).
3 ,



ODEs: Initial Value Problems (IVP)

∂u

∂t
(t) = f(u(t), t), u(0) = u0 ∈ Rn

f u̇ u

4 ,



Ordinary Differential Equations
Applications all over the place

I. In engineering, for example:

1. modelling mechanical oscillations,

2. heating/cooling of engine parts, and

3. model predictive control.

II. In AI, for example:

1. Nesterov’s Accelerated Gradient Descent

2. dynamically changing data, and

3. demand forecasting.

Challenge in AI: Most quantities involving the ODE can be uncertain:

1. initial value,

2. partial knowledge of vector field f

3. imprecise function evaluations, and

4. accumulated numerical errors.

5 ,



Ordinary Differential Equations
Applications all over the place

I. In engineering, for example:

1. modelling mechanical oscillations,

2. heating/cooling of engine parts, and

3. model predictive control.

II. In AI, for example:

1. Nesterov’s Accelerated Gradient Descent

2. dynamically changing data, and

3. demand forecasting.

Challenge in AI: Most quantities involving the ODE can be uncertain:

1. initial value,

2. partial knowledge of vector field f

3. imprecise function evaluations, and

4. accumulated numerical errors.

5 ,



Ordinary Differential Equations
Applications all over the place

I. In engineering, for example:

1. modelling mechanical oscillations,

2. heating/cooling of engine parts, and

3. model predictive control.

II. In AI, for example:

1. Nesterov’s Accelerated Gradient Descent

2. dynamically changing data, and

3. demand forecasting.

Challenge in AI: Most quantities involving the ODE can be uncertain:

1. initial value,

2. partial knowledge of vector field f

3. imprecise function evaluations, and

4. accumulated numerical errors.

5 ,



Ordinary Differential Equations
Applications all over the place

I. In engineering, for example:

1. modelling mechanical oscillations,

2. heating/cooling of engine parts, and

3. model predictive control.

II. In AI, for example:

1. Nesterov’s Accelerated Gradient Descent

2. dynamically changing data, and

3. demand forecasting.

Challenge in AI: Most quantities involving the ODE can be uncertain:

1. initial value,

2. partial knowledge of vector field f

3. imprecise function evaluations, and

4. accumulated numerical errors.

5 ,



Numerical solutions of IVPs
plots: Runge-Kutta of order 3

How classical solvers extrapolate forward from time t0 to t0 + h:
▸ Estimate ẋ(ti), t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn ≤ t0 + h by evaluating
yi ≈ f(t, x̂(ti)), where x̂(t) is itself an estimate for x(t)

▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)

6 ,



Numerical solutions of IVPs
plots: Runge-Kutta of order 3

How classical solvers extrapolate forward from time t0 to t0 + h:
▸ Estimate ẋ(ti), t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn ≤ t0 + h by evaluating
yi ≈ f(t, x̂(ti)), where x̂(t) is itself an estimate for x(t)

▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)

6 ,



Numerical solutions of IVPs
plots: Runge-Kutta of order 3

How classical solvers extrapolate forward from time t0 to t0 + h:
▸ Estimate ẋ(ti), t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn ≤ t0 + h by evaluating
yi ≈ f(t, x̂(ti)), where x̂(t) is itself an estimate for x(t)

▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)

6 ,



Numerical solutions of IVPs
plots: Runge-Kutta of order 3

How classical solvers extrapolate forward from time t0 to t0 + h:
▸ Estimate ẋ(ti), t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn ≤ t0 + h by evaluating
yi ≈ f(t, x̂(ti)), where x̂(t) is itself an estimate for x(t)

▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

Uncertainty in these calculations:
▸ We can only observe x indirectly via x̂.
▸ The observations of ẋ(t) = f(t, x̂(t)) is inaccurate, since x̂(t) ≈ x(t).
▸ There is uncertainty on our source of information x̂, since it is both

partial (i.e. discrete) and ‘noisy’.
▸ The quantification of uncertainty on x̂ is crucial to quantify uncertainty

on x.

6 ,



The Filtering Problem from Stochastic Calculus
Assume we have an unobservable state Xt of a dynamical system given
by the SDE:

dXt = b(t,Xt)dt + σ(t,Xt)dBt.

We can only observe the observations process Zt, a noisy transform of Xt,
given by the SDE:

dZt = c(t,Xt)dt + γ(t,Xt)dB̃t, Z0 = 0.

Filtering Problem: What is the L2-best estimate X̂t of Xt, based on
observations {Zsi ∣si ≤ t}?
IVPs as Filtering Problems:

▸ State is the unknown belief over x(t)
▸ Observation process is ẋ(t) + ‘noise’
▸ ‘noise’ process is due to the inaccurate evaluation position x̂(t) in
ẋ(t) ≈ f(t, x̂(t))

Hence,
(i) IVPs can be recast as Stochastic Filtering Problems,
(ii) and solved by Gaussian (Kalman) filtering.

7 ,



IVPs by Gaussian filtering
plots by M. Schober

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

8 ,



IVPs by Gaussian filtering
plots by M. Schober

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

8 ,



IVPs by Gaussian filtering
plots by M. Schober

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

8 ,



IVPs by Numerical Solver versus Gaussian Filtering

Numerical Solver

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t
)

Gaussian Filter

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

9 ,



IVPs by Numerical Solver versus Gaussian Filtering

Numerical Solver

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t
)

Gaussian Filter

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

9 ,



IVPs by Numerical Solver versus Gaussian Filtering

Numerical Solver

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t
)

Gaussian Filter

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

9 ,



IVPs by Numerical Solver versus Gaussian Filtering

Numerical Solver

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t
)

Gaussian Filter

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

The computation of the numerical mean and the posterior mean of
Gaussian filtering share the same analytic structure [Schober et al., 2014]

9 ,



Filtering–based probabilistic ODE solvers
Gaussian filtering [Schober et al., 2014]

We interpret (u, u̇, u(2), . . . , u(q−1)
) as a draw from a q-times-integrated Wiener

process (Xt)t∈[0,T ] = (X
(1)
t , . . . ,X

(q)
t )

T
t∈[0,T ]

given by a linear SDE:

dXt = FXtdt +QdWt,

X0 = ξ, ξ ∼ N(m(0), P (0))

Ô⇒ Xt = GP(A(t)m(0),A(t)P (0)A(t)
⊺

+Q), A(t) = exp(hF ) and Q(t) = . . .

Calculation of Posterior by Gaussian filtering

Prediction step:

m−

t+h = A(h)mt,

P −

t+h = A(h)PtA(h)
T
+Q(h),

Vector field prediction at t + h:
Vector field y with uncertainty R
main source of uncertainty
cheaply quantified by Bayesian
quadrature [Kersting and Hennig,
2016]

Update step:

z = y − eTnm
−

t+h,

S = eTnP
−

t+hen +R,

K = P −

t+henS
−1,

mt+h =m
−

t+h +Kz,

Pt+h = P
−

t+h −Ke
T
nP

−

t+h,

10 ,



Filtering–based probabilistic ODE solvers
Gaussian filtering [Schober et al., 2014]

We interpret (u, u̇, u(2), . . . , u(q−1)
) as a draw from a q-times-integrated Wiener

process (Xt)t∈[0,T ] = (X
(1)
t , . . . ,X

(q)
t )

T
t∈[0,T ]

given by a linear SDE:

dXt = FXtdt +QdWt,

X0 = ξ, ξ ∼ N(m(0), P (0))

Ô⇒ Xt = GP(A(t)m(0),A(t)P (0)A(t)
⊺

+Q), A(t) = exp(hF ) and Q(t) = . . .

Calculation of Posterior by Gaussian filtering

Prediction step:

m−

t+h = A(h)mt,

P −

t+h = A(h)PtA(h)
T
+Q(h),

Vector field prediction at t + h:
Vector field y with uncertainty R
main source of uncertainty
cheaply quantified by Bayesian
quadrature [Kersting and Hennig,
2016]

Update step:

z = y − eTnm
−

t+h,

S = eTnP
−

t+hen +R,

K = P −

t+henS
−1,

mt+h =m
−

t+h +Kz,

Pt+h = P
−

t+h −Ke
T
nP

−

t+h,

10 ,



Filtering–based probabilistic ODE solvers
Gaussian filtering [Schober et al., 2014]

We interpret (u, u̇, u(2), . . . , u(q−1)
) as a draw from a q-times-integrated Wiener

process (Xt)t∈[0,T ] = (X
(1)
t , . . . ,X

(q)
t )

T
t∈[0,T ]

given by a linear SDE:

dXt = FXtdt +QdWt,

X0 = ξ, ξ ∼ N(m(0), P (0))

Ô⇒ Xt = GP(A(t)m(0),A(t)P (0)A(t)
⊺

+Q), A(t) = exp(hF ) and Q(t) = . . .

Calculation of Posterior by Gaussian filtering

Prediction step:

m−

t+h = A(h)mt,

P −

t+h = A(h)PtA(h)
T
+Q(h),

Vector field prediction at t + h:
Vector field y with uncertainty R
main source of uncertainty
cheaply quantified by Bayesian
quadrature [Kersting and Hennig,
2016]

Update step:

z = y − eTnm
−

t+h,

S = eTnP
−

t+hen +R,

K = P −

t+henS
−1,

mt+h =m
−

t+h +Kz,

Pt+h = P
−

t+h −Ke
T
nP

−

t+h,

10 ,



Filtering–based probabilistic ODE solvers
Gaussian filtering [Schober et al., 2014]

We interpret (u, u̇, u(2), . . . , u(q−1)
) as a draw from a q-times-integrated Wiener

process (Xt)t∈[0,T ] = (X
(1)
t , . . . ,X

(q)
t )

T
t∈[0,T ]

given by a linear SDE:

dXt = FXtdt +QdWt,

X0 = ξ, ξ ∼ N(m(0), P (0))

Ô⇒ Xt = GP(A(t)m(0),A(t)P (0)A(t)
⊺

+Q), A(t) = exp(hF ) and Q(t) = . . .

Calculation of Posterior by Gaussian filtering

Prediction step:

m−

t+h = A(h)mt,

P −

t+h = A(h)PtA(h)
T
+Q(h),

Vector field prediction at t + h:
Vector field y with uncertainty R
main source of uncertainty
cheaply quantified by Bayesian
quadrature [Kersting and Hennig,
2016]

Update step:

z = y − eTnm
−

t+h,

S = eTnP
−

t+hen +R,

K = P −

t+henS
−1,

mt+h =m
−

t+h +Kz,

Pt+h = P
−

t+h −Ke
T
nP

−

t+h,

10 ,



Filtering–based probabilistic ODE solvers
Gaussian filtering [Schober et al., 2014]

We interpret (u, u̇, u(2), . . . , u(q−1)
) as a draw from a q-times-integrated Wiener

process (Xt)t∈[0,T ] = (X
(1)
t , . . . ,X

(q)
t )

T
t∈[0,T ]

given by a linear SDE:

dXt = FXtdt +QdWt,

X0 = ξ, ξ ∼ N(m(0), P (0))

Ô⇒ Xt = GP(A(t)m(0),A(t)P (0)A(t)
⊺

+Q), A(t) = exp(hF ) and Q(t) = . . .

Calculation of Posterior by Gaussian filtering

Prediction step:

m−

t+h = A(h)mt,

P −

t+h = A(h)PtA(h)
T
+Q(h),

Vector field prediction at t + h:
Vector field y with uncertainty R
main source of uncertainty
cheaply quantified by Bayesian
quadrature [Kersting and Hennig,
2016]

Update step:

z = y − eTnm
−

t+h,

S = eTnP
−

t+hen +R,

K = P −

t+henS
−1,

mt+h =m
−

t+h +Kz,

Pt+h = P
−

t+h −Ke
T
nP

−

t+h,

10 ,



We can compute a probabilistic output (above 95% confidence interval) at
a low computational overhead.

11 ,



Does this solver live up to classical expectations?
Current project: Theoretical Analysis

For an Integrated Wiener Process prior, we have the following
convergence rates for the posterior mean:

Theorem
Under some technical assumptions, we have, for all modeled dimensions
i ∈ {0, . . . , q}, globally that

sup
n
∥m(nh)i − x(i)(nh)∥ ≤Khq−i, (1)

and locally that

∥m(h)i − x(i)(h)∥ ≤Khq+1−i, (2)

where K > 0 is a constant independent of h and n.

Proof: On arxiv soon!

12 ,



Does this solver live up to classical expectations?
Current project: Theoretical Analysis

For an Integrated Wiener Process prior, we have the following
convergence rates for the posterior mean:

Theorem
Under some technical assumptions, we have, for all modeled dimensions
i ∈ {0, . . . , q}, globally that

sup
n
∥m(nh)i − x(i)(nh)∥ ≤Khq−i, (1)

and locally that

∥m(h)i − x(i)(h)∥ ≤Khq+1−i, (2)

where K > 0 is a constant independent of h and n.

Proof: On arxiv soon!

12 ,



Summary

The PN perspective on ODEs:

1. Unknown numerical quantities are modeled as random variables

2. uncertainty arises from initial values, imprecise function evaluations,
partial knowledge of functions and accumulated numerical errors,

3. modeling these uncertainties yields a stochastic filtering problem.

We have a solver which can

(i) solve IVP at comparable cost of Runge–Kutta,

(ii) performs consistent UQ for all sources of uncertainty

(iii) output a whole probability measures, including confidence intervals,

(iv) filter out higher derivatives of the solution simultaneously, and

(v) learn (e.g. a periodic) vector field, while solving an ODE.

13 ,



More information at probabilistic-numerics.org.

Thank you for listening!

14 ,



More information at probabilistic-numerics.org.

Thank you for listening!

14 ,





Bibliography

Hand Kersting and P. Hennig. Active Uncertainty Calibration in Bayesian ODE Solvers. Uncertainty in
Artificial Intelligence (UAI), 2016.

M. Schober, D. Duvenaud, and P. Hennig. Probabilistic ODE Solvers with Runge-Kutta Means.
Advances in Neural Information Processing Systems (NIPS), 2014.

16 ,




