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Numerical methods such as
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

output approximate solutions for unknown quantities.

Probabilistic numerics aimes to produce probability measures instead,
which are supposed to capture our epistemic uncertainty over the solution.

2 ,



Numerical methods such as
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

output approximate solutions for unknown quantities.
Probabilistic numerics aimes to produce probability measures instead,

which are supposed to capture our epistemic uncertainty over the solution.

2 ,



Numerical methods such as
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

output approximate solutions for unknown quantities.
Probabilistic numerics aimes to produce probability measures instead,
which are supposed to capture our epistemic uncertainty over the solution.

2 ,



Numerical methods perform inference
an old observation [Poincaré 1896, Diaconis 1988, O’Hagan 1992]

A numerical method
estimates a function’s latent property

given the result of computations.

quadrature estimates ∫ b
a f(x)dx given {f(xi)}

linear algebra estimates x s.t. Ax = b given {As = y}
optimization estimates x s.t. ∇f(x) = 0 given {∇f(xi)}

analysis estimates x(t) s.t. x′ = f(x, t), given {f(xi, ti)}
▸ computations yield “data” / “observations”
▸ non-analytic quantities are “latent”
▸ even deterministic quantities can be uncertain.

Probabilistic numerics uses this link between statistics and numerics to
(i) perform numerical computation in a statistically interpretable

framework, and
(ii) enable an all–inclusive uncertainty quantification (for computations

which include both numerical and statistical parts).
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ODEs: Initial Value Problems (IVP)

∂u

∂t
(t) = f(u(t), t), u(0) = u0 ∈ Rn

f u̇ u
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Ordinary Differential Equations
Applications all over the place

I. In engineering, for example:

1. modelling mechanical oscillations,

2. heating/cooling of engine parts, and

3. model predictive control.

II. In AI, for example:

1. Nesterov’s Accelerated Gradient Descent

2. dynamically changing data, and

3. demand forecasting.

Challenge in AI: Most quantities involving the ODE can be uncertain:

1. initial value,

2. partial knowledge of vector field f

3. imprecise function evaluations, and

4. accumulated numerical errors.
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Numerical solutions of IVPs
plots: Runge-Kutta of order 3

How classical solvers extrapolate forward from time t0 to t0 + h:
▸ Estimate ẋ(ti), t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn ≤ t0 + h by evaluating
yi ≈ f(t, x̂(ti)), where x̂(t) is itself an estimate for x(t)

▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)
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▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t)

6 ,



Numerical solutions of IVPs
plots: Runge-Kutta of order 3

How classical solvers extrapolate forward from time t0 to t0 + h:
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▸ Estimate ẋ(ti), t0 ≤ t1 ≤ ⋅ ⋅ ⋅ ≤ tn ≤ t0 + h by evaluating
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▸ Use this data yi ∶= ẋ(ti) to estimate x(t0 + h), i.e.

x̂(t0 + h) ≈ x(t0) + h b∑
i=1
wiyi.

Uncertainty in these calculations:
▸ We can only observe x indirectly via x̂.
▸ The observations of ẋ(t) = f(t, x̂(t)) is inaccurate, since x̂(t) ≈ x(t).
▸ There is uncertainty on our source of information x̂, since it is both

partial (i.e. discrete) and ‘noisy’.
▸ The quantification of uncertainty on x̂ is crucial to quantify uncertainty

on x.
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The Filtering Problem from Stochastic Calculus
Assume we have an unobservable state Xt of a dynamical system given
by the SDE:

dXt = b(t,Xt)dt + σ(t,Xt)dBt.

We can only observe the observations process Zt, a noisy transform of Xt,
given by the SDE:

dZt = c(t,Xt)dt + γ(t,Xt)dB̃t, Z0 = 0.

Filtering Problem: What is the L2-best estimate X̂t of Xt, based on
observations {Zsi ∣si ≤ t}?
IVPs as Filtering Problems:

▸ State is the unknown belief over x(t)
▸ Observation process is ẋ(t) + ‘noise’
▸ ‘noise’ process is due to the inaccurate evaluation position x̂(t) in
ẋ(t) ≈ f(t, x̂(t))

Hence,
(i) IVPs can be recast as Stochastic Filtering Problems,
(ii) and solved by Gaussian (Kalman) filtering.
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IVPs by Gaussian filtering
plots by M. Schober

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

8 ,



IVPs by Gaussian filtering
plots by M. Schober

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

8 ,



IVPs by Gaussian filtering
plots by M. Schober

t0 t0 + hu t0 + hv t0 + h
t

x
(t)

8 ,



IVPs by Numerical Solver versus Gaussian Filtering

Numerical Solver

t0 t0 + c1 t0 + c2 t0 + h
t

x
(t
)

Gaussian Filter

t0 t0 + hu t0 + hv t0 + h
t

x
(t)
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IVPs by Numerical Solver versus Gaussian Filtering
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The computation of the numerical mean and the posterior mean of
Gaussian filtering share the same analytic structure [Schober et al., 2014]
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Filtering–based probabilistic ODE solvers
Gaussian filtering [Schober et al., 2014]

We interpret (u, u̇, u(2), . . . , u(q−1)
) as a draw from a q-times-integrated Wiener

process (Xt)t∈[0,T ] = (X
(1)
t , . . . ,X

(q)
t )

T
t∈[0,T ]

given by a linear SDE:

dXt = FXtdt +QdWt,

X0 = ξ, ξ ∼ N(m(0), P (0))

Ô⇒ Xt = GP(A(t)m(0),A(t)P (0)A(t)
⊺

+Q), A(t) = exp(hF ) and Q(t) = . . .

Calculation of Posterior by Gaussian filtering

Prediction step:

m−

t+h = A(h)mt,

P −

t+h = A(h)PtA(h)
T
+Q(h),

Vector field prediction at t + h:
Vector field y with uncertainty R
main source of uncertainty
cheaply quantified by Bayesian
quadrature [Kersting and Hennig,
2016]

Update step:

z = y − eTnm
−

t+h,

S = eTnP
−

t+hen +R,

K = P −

t+henS
−1,

mt+h =m
−

t+h +Kz,

Pt+h = P
−

t+h −Ke
T
nP

−

t+h,
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We can compute a probabilistic output (above 95% confidence interval) at
a low computational overhead.
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Does this solver live up to classical expectations?
Current project: Theoretical Analysis

For an Integrated Wiener Process prior, we have the following
convergence rates for the posterior mean:

Theorem
Under some technical assumptions, we have, for all modeled dimensions
i ∈ {0, . . . , q}, globally that

sup
n
∥m(nh)i − x(i)(nh)∥ ≤Khq−i, (1)

and locally that

∥m(h)i − x(i)(h)∥ ≤Khq+1−i, (2)

where K > 0 is a constant independent of h and n.

Proof: On arxiv soon!
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Summary

The PN perspective on ODEs:

1. Unknown numerical quantities are modeled as random variables

2. uncertainty arises from initial values, imprecise function evaluations,
partial knowledge of functions and accumulated numerical errors,

3. modeling these uncertainties yields a stochastic filtering problem.

We have a solver which can

(i) solve IVP at comparable cost of Runge–Kutta,

(ii) performs consistent UQ for all sources of uncertainty

(iii) output a whole probability measures, including confidence intervals,

(iv) filter out higher derivatives of the solution simultaneously, and

(v) learn (e.g. a periodic) vector field, while solving an ODE.
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More information at probabilistic-numerics.org.

Thank you for listening!
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