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Bayesian Inverse Problem

Find the unknown data w € X from noisy observations

y=G(u)+n

u € X parameter function

G : X — Y forward response operator
y observations, here y € Y = RX
evaluation of G expensive

prior u ~ pg

noise model n ~ A(0,T)
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Bayesian Inverse Problem

Find the unknown data w € X from noisy observations

y=G(u)+n

Assuming G € C(X,Y) and p0(X) = 1, then the posterior measure ;¥ on
u|y is absolutely continuous w.r. to the prior on u and

¥ (du) = — exp(~(u)o(du)

with @ : X — R, ®(u) = 3|y — G(u)[? and Z = [ exp(—®(u))puo(du).
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Bayesian Inverse Problem

Find the unknown data u € X from noisy observations

y=G(u)+n

Algorithms
e MCMC

» Dimension robust versions, multilevel strategies, improvements by local
approximations

@ Approximations of the forward problem / posterior

» Structure exploiting approximations, best Gaussian approximations,
transport maps

@ Ensemble Kalman filter

@ Randomized maximum likelihood , Approximate Bayesian computation, ...
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Ensemble Kalman Inversion

Find the unknown data w € X from noisy observations

y=G(u)+n

Ensemble Kalman Filter

@ Fully Bayesian inversion is often too expensive.
@ EnKEF is widely used.

@ Currently, very little analysis of the EnKF is available.

Aim: Build analysis of properties of EnKF for fixed ensemble size.
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Ensemble Kalman Inversion

Find the unknown data w € X from noisy observations

y=G(u)+n

Ensemble Kalman Filter
Optimisation viewpoint

Study of the properties of the EnKF as a regularisation technique for minimisation of the
least-squares misfit functional

Continuous time limit

Analysis of the properties of the differential equations
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Ensemble Kalman Inversion

Find the unknown data w € X from noisy observations

y=G(u)+n

Ensemble Kalman Filter
Optimisation viewpoint

Study of the properties of the EnKF as a regularisation technique for minimisation of the
least-squares misfit functional

Continuous time limit

Analysis of the properties of the differential equations

Assumption G = A € L(X,RE).
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EnKF for Inverse Problems

Bridging Sequence

Introduction of an artificial discrete time dynamical system which maps the prior o into
the posterior u. The effective variance is amplified by N = 1/h at each step,
compensating for the redundant, repeated use of the data.
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EnKF for Inverse Problems

Bridging Sequence

Introduction of an artificial discrete time dynamical system which maps the prior o into
the posterior u. The effective variance is amplified by N = 1/h at each step,
compensating for the redundant, repeated use of the data.

Ensemble of Interacting Particles

@ Use the ensemble ( 53))] 1 to define the empirical mean w,, = %Z‘.Izl u'? and
covariance C(un) = 575 23 L <J) —Up) ® (u Sf) — Up).

@ Kalman update formulas

Unt+1 = Un + Kn(y — Alln) Clunt1) = Clun) — KnAC (un)
with Ky, = C(un)A*(AC (un)A* + +1) 7.

© Define (ugll)j:l by a linear transformation D with w) = ZJ ugf)dij such

h n+1 i=1
that
J
£ u(J) a and (J) —a ®( 7) —a ) _ C( )
7 n+1 — Un+1 Upt1 n+1 Upt1 n+1) = C(Unt1) .
j:
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EnKF for Inverse Problems

EnKF with perturbed observations
; , 1
wlly = u) + Clun) A"(AC(un)A” + S T)7(

with observations yfﬂl =y+ 7]7(13'4)_1, 17553_1 ~ N(0, £T).
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EnKF for Inverse Problems

EnKF with perturbed observations
. ‘ 1 , ‘
uf)y = uff) + Clu) A" (AC(u)A” + £1) 7 (i), — Auf))

with observations 4}, =y +n{),, 0}, ~ N(0, £T).

Ensemble square root filter (ESFR)

n+1 = Z u Z)dw

with dij = wi — & + slJ where C'(un) = P(un)P(un)*,
S = (siz)iy = (I + 75 (AP(uy))* hF‘lAP(un)) 3 and
w= 11— 1 8%(P(u,))" A"hT " (AT, — y).
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Continuous Time Limit

EnKF with perturbed observations

du) = C(u) A T Al +n — u®) dt + C(u) A T2 daW W)

where W W) are pairwise independent cylindrical Wiener processes and y

denotes the noisy observational data.
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Continuous Time Limit

EnKF with perturbed observations

du) = C(u) A T Al + 1 — u®)dt + C(u) A T2 aW 1)

where W W) are pairwise independent cylindrical Wiener processes and y

denotes the noisy observational data.
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Continuous Time Limit

EnKF with perturbed observations

dul) = C(u)A*T T A(ul — w9 dt,

or equivalently, d

Eu(j) = —C(u) Dy ®(uV; y)

with potential ®(u;y) = %HF_%(y — Au) |

Ensemble square root filter (ESFR)

du = C(u) A T A(ul — @) dt,
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Continuous Time Limit
EnKF with perturbed observations

du") = C(u)A* T A(ul — ) dt,

or equivalently, d

) = (7).
Sl = —Cw)D, @ sy)

with potential ®(u;y) = %HF_%(y — Au)|]?.

Ensemble square root filter (ESFR)

1
du = jYY*A*F_lA(uT —w)dt,

with dY = =525 YY" AT~ AY, e.g. [Bergemann, Reich 2009].

2m—2
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Continuous Time Limit

EnKF with perturbed observations

du) = C(u) AT A(ut — ) dt,

or equivalently, d

BhiPyl ©) RN (9.
Sl = —C(u)D, D (u)5y)

with potential ®(u;y) = %HI"%(y — Au)|]?.

Ensemble square root filter (ESFR)

dul) — _%C(u)(DUCI)(u(j); y) + Dy (W y))

1
with potential ®(u;y) = 3|72 (y — Au)|>.
S YD



Continuous Time Limit

EnKF with perturbed observations

k=1

Ensemble square root filter (ESFR)

dom__1 ZJ:< Au® — Az, y — 2 4u — LAz w® —w)
at J—1& Ty 2
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@ The ensemble parameter estimate lies in the linear span of the initial
ensemble [8].

@ In the linear case, the EnKF estimate converges in the limit J — oo to the
solution of the regularised least-squares problem [9, 14]. In the nonlinear
setting, convergence to the mean-field Kalman filter is proven in [13].

@ Ernst et al. [6] showed that the EnKF is not consistent with the Bayesian
perspective in the nonlinear setting, but can be interpreted as a point
estimator of the unknown parameters.

@ In [4], multilevel strategies to enhance the perfomance of the EnKF are
analysed.

o Kelly et al. [11, 12, 20, 19] presented an analysis of the long-time behavior
and ergodicity of the ensemble Kalman filter with arbitrary ensemble size
establishing time uniform bounds to control the filter divergence and
ensuring in addition the existence of an invariant measure.

@ Long term stability and accuracy is established for ensemble Kalman-Bucy
filters applied to continuous-time filtering problems [5, 21].

@ Higher order updates by polynomial chaos expansion can be found in [15].
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions
(b) Ensemble Collapse

(c) Convergence of Residuals
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Long-time Behaviour (Linear Case)
EnKF with perturbed observations / ESRF

(a) Global Existence of Solutions

Assume that y is the image of a truth uf € X under A. Let u0)(0) € X
for j =1,...,J and define A} to be the linear span of the {u(j)(O)}jzl.

Then, the limiting ODE has a unique solution ) (-) € C([0, 00); Xp) for
j=1,...,.
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Long-time Behaviour (Linear Case)

EnKF with perturbed observations / ESRF

(a) Global Existence of Solutions

Assume that y is the image of a truth uf € X under A. Let u0)(0) € X
for j =1,...,J and define A} to be the linear span of the {u(j)(())}jzl.

Then, the limiting ODE has a unique solution ) (-) € C([0, 00); Xp) for
j=1,...,.

Sketch of Proof
Quantities
NONRORETS P =@ gt

Ey = (Ae®| AeW)p Ryj = (Ar"D| Ar@yp Fyy = (Ar®D | Ae@)p
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Long-time Behaviour (Linear Case)
EnKF with perturbed observations / ESRF

(a) Global Existence of Solutions

Assume that ¥ is the image of a truth uf € X under A. Let u()(0) € X
for j =1,...,J and define &} to be the linear span of the {u(j)(O)}jzl.

Then, the limiting ODE has a unique solution u)(-) € C([0, 00); Xp) for
7=1,...,J.

Sketch of Proof

J
d G _ p0 1 (k) _
a@ = — 712E]k€ s t _ﬁ;ijT 5 ]—1,...,J
d. 2 d . a2
al=—7= wlt= JleF al=—7=t"

Global existence of E, R and F = global existence of r and e
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Long-time Behaviour (Linear Case)
EnKF with perturbed observations, ESRF

(b) Ensemble Collapse

Assume that y is the image of a truth uf € X under A. Let ul9)(0) € X
forj=1,...,J.

Then, the matrix valued quantity E(t) converges to 0 for t — oo and,
indeed ||E(t)] = O(Jt™1).
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Long-time Behaviour (Linear Case)
EnKF with perturbed observations, ESRF

(b) Ensemble Collapse

Assume that y is the image of a truth uf € X under A. Let ul9)(0) € X
forj=1,...,J.

Then, the matrix valued quantity E(t) converges to 0 for t — oo and,
indeed | E(t)|| = O(Jt~1).

The rate of convergence of F and F is algebraic with a constant growing with
larger ensemble size J.
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Long-time Behaviour (Linear Case)
EnKF with perturbed observations

(c) Convergence of Residuals

Assume that y is the image of a truth uf € X under A and the forward operator A is
one-to-one. Let Y denote the linear span of the {Ae(j)(O)}j=1 and let Y+ denote the
orthogonal complement of Yl in ) with respect to the inner product (-, r and assume
that the initial ensemble members are chosen so that Y has the maximal dimension

min{J — 1,dim(})}.
Then ArU)(t) may be decomposed uniquely as

Arﬁj) (t) + Arﬂ'_j) (t) with Arﬁj) c Yl and ATY) cY*t.

Furthermore Arl('j)(t) — 0 as t — oo and Arf)(t) = Arg)(O) = ATE).
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Long-time Behaviour (Linear Case)
EnKF with perturbed observations

(c) Convergence of Residuals

Assume that y is the image of a truth u! € X under A and the forward operator A is
one-to-one. Let Y denote the linear span of the {Ae(j)(O)};’:l and let Y denote the

orthogonal complement of Yl in ) with respect to the inner product (-,-)r and assume

that the initial ensemble members are chosen so that Y has the maximal dimension
min{J — 1,dim(})}.

Then ArU)(t) may be decomposed uniquely as
Arﬁj)(t) 4 Ar(f)(t) with Arﬁj) e Yl and Ar(f) eyt

Furthermore Arﬁj) (t) = 0 as t — oo and Ar(f) (t) = Ar(f) (0) = Ar(ll).

Adaptive choice of the initial ensemble to ensure convergence of the residuals.
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Long-time Behaviour (Linear Case)

EnKF with perturbed observations
Idea of Proof

Subspace property

J
Ae@ (1) = Zéjk(t)Ae(k)(O)
k=1
where the matrix L = {{;} is invertible.
Decomposition of the residual
J
Ar(j)(t) = Z apAe® (1) + A’!‘S_l)
k=1

Convergence of the residuals

Boundedness of the coefficient vector

()

A
() < )\iin | (0
0

gives convergence of the residuals.
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Long-time Behaviour (Linear Case)

ESRF

(c) Convergence of Residuals

Assume that y is the image of a truth uf € X under A and the forward operator A is
one-to-one. Let Y denote the linear span of the {Ae(j)(O)}j=1 and let Y+ denote the
orthogonal complement of Yl in ) with respect to the inner product (-, r and assume
that the initial ensemble members are chosen so that Y!I has the maximal dimension
min{J — 1,dim(})}.

Then A7(t) may be decomposed uniquely as

AT () + ATL(t) with ATy € Y1 and A7, e Y.

Furthermore A7 (t) — 0 as t — oo and A7 (t) = A7, (0).
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Long-time Behaviour (Linear Case)

ESRF

(c) Convergence of Residuals

Then A7(t) may be decomposed uniquely as
A7) (t) + AT (t)  with A7) € Yl and A7, € Y.

Furthermore A7 (t) — 0 as t — oo and AT, (t) = A7, (0).

@ ldea of the proof stays the same.

@ Result implies the convergence of the residuals Ar(®).
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions
(b) Ensemble Collapse

(c) Convergence of Residuals

@ No Gaussian prior assumption (in the case of the EnKF with
perturbed observations).

@ Convergence result opens up the perspective to use the EnKF as a
linear solver in case of a boundedly invertible forward operator.

@ In the finite dimensional setting, the results can be used to
characterise the parameter space informed by the data.
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Long-time Behaviour for Noisy Data (Linear Case)

Find the parameters u from (noisy) observations y'

ot = Al 20

Global Existence of Solutions v

Ensemble Collapse v

Convergence of Residuals  — convergence of the misfit
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EnKF with perturbed observations

du) = C(u) A T A(uf 41 — u)) dt+C(u) A T~z dW ) |

where W W) are pairwise independent cylindrical Wiener processes and y

denotes the noisy observational data.

Simplified model:

du = —u® +u2dw

@ EnKF seems to provide a stable numerical discretization, i.e.

3 2
un un
. AW,
1+h-u%+1+h-u% il

Upt1 = Up — D

strongly approximates the simplified model problem.
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EnKF with perturbed observations

du = —u® +u2dWw

Lipschitz-regularized version

v v?
dv=— dt dw.
v 14+e-02 +1+6-v2
and its Euler-Maruyama discretization

3 2

—v v
— he——1m AW, . — 1
Un41 = Un + 1+€'U721 n 1+€'U7%

and interpolation of v,, as

v(t) = vy + /t: f(vn)ds + /t: o(v,) dW.
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EnKF with perturbed observations

Forany0 < a<2and 0 <7 <1,

1 3—a 1
lim A 23%%/3a . ( sup E[o(t) —u(t)|*)® =0
Jim BT (s Blo(0) ~ o))
_1 1-n 1
1 ’ . D — n)" =
lim 7T (B sup [o(t) - u(®)]") 0

te[0,7T
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EnKF with perturbed observations

Forany0<a<2and 0 <n <1,

1 3—a
lim h 23F2%/3a . ( sup Elv(t) — u(t)| =0
Jim (5o Bl - u(®)l”)

Q=

3=

lim h‘%'fﬁ-(E sup [o(t) = u(®)|")” =0

h=e—0 te[0,T]

@ Generalization of the strong convergence results to the linear setting.

@ Well-posedness and accuracy results for the SDE model (linear
forward problem).

@ Accuracy results of the EnkF estimate w.r. to the conditional mean.

D Blomker, C Schillings and P Wacker 2017 A strongly convergent numerical
scheme from ensemble Kalman inversion arXiv:1703.06767.
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Conclusions and Outlook

@ Deriving the continuous time limit allows to determine the asymptotic
behaviour of important quantities of the algorithm.

@ Analysis of the perturbed observation EnKF and Kalman square root filter
for inverse problems .

@ Generalisation of the results to noisy observational data, i.e. Auf + nf.
@ Strong convergence results of the EnKF discretization.

@ Analysis of EnKF variants

Variance inflation
Localization

Iterative regularization
Markov mixing

vV vyVvYyy
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Variants on EnKF

Variance Inflation
du)
dt

where Cy is a self-adjoint, strictly positive operator.

= —(aCy + C(u)) D, ®(u); y),
Localisation

Randomised Search
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Variants on EnKF

Variance Inflation

Localisation

p:DxD—=R,  plx,y)=exp(—|lz—y|"),
where D C R? denotes the physical domain and | - | is a suitable norm in D, r € N.
du)

el —C°(u)D,® (s y), j=1,...,J,
where C"¢(u)¢(z) = fD o(Y)k(z,y)p(z,y)dy with k being the kernel of C(u), ¢ € X.

Randomised Search
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Variants on EnKF

Variance Inflation
Localisation

Randomised Search
M1 = Ly Py

where P, is any Markov kernel which preserves .

() J
T = 7 200" -6, (0

—u) — CyD,®(u +\/CodW
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d2p

1 — +tp=u inD:=(0,7), p=0 indD,

where

A=0oL™ wnthL_—ﬁ—l—zdand D(L) = H2(D)OHO(D)
0: X —RE, eqmspaced observation points in D with spacing TN 27NK at
k=1,. 2NK—1,ok() 6(—$k)WIthK:2NK—1‘

Tk = 2NK7
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d2p

_@‘i‘p:u inD:=(0,7), p=0 indD.

The goal of computation is to recover the unknown data u' from observations

y = OL ' +n=Au" +7.
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d?p

_@_Fp:u |nD:(O’7r),p:0 in 0D .

The goal of computation is to recover the unknown data u' from observations
y = OL %W +n=Au+1.

Computational Setting

@ Noisy case, ' = 1.
@ u~ N(0,C) with C = B(A —id)~! and with 8 = 10.

@ Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth h = 2—8 (the spatial discretisation leads to a discretisation of w, i.e.

u € st’l).
@ The space A = span{uéj)}j:1 is chosen based on the KL expansion of C' = B(A —id) 1.
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Numerical Experiments (Linear Case)

Underdetermined case, K=24-1,J=5

0.14

0.12

Figure: Quantities

R NS

"ve:
YN

0.2

0.4 06 08

— 1 MEu=5VI
— = W SIM2 J=5loc
——- T T2 J=5 MM

Wt N

|r

0.4 06 0.8 1
t

—— 1 2 A2 J=5 VI
— = 1S IA%2 J=5 loc

—-—= 11 5 |A2 J=5 MM

B8 =10, 3 =10, K = 2* — 1, initial ensemble chosen based on KL expansion of

C = B(A—id)~".
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Numerical Experiments (Linear Case)

Underdetermined case, K=24-1,J=5

utruth

EnKF est. J=5 VI
— — EnKF est. J=5 loc
—=-==EnKF est. J=5 MM
== = = EnKF est. J=5 orig.

35
o x I I X observations
0.1 EnKF est. J=5 VI
) — — EnKF est. J=5 loc
0.08 [ === EnKF est. J=5 MM
0.06
0.04
0.02
0 1 1 1 1 1
0 05 1 1.5 2 25 3

Figure: Comparison of the EnKF estimate with the truth and the observations, J =5
(red) for the discussed variants, 8 =10, K = 2* _ 1, initial ensemble chosen based on
KL expansion of C = B(A —id)™".
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Long-time Behaviour for Noisy Data (Linear Case)

Find the parameters u from (noisy) observations y'

ot = Al 20

Global Existence of Solutions v

Ensemble Collapse v

Convergence of Residuals
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Long-time Behaviour for Noisy Data (Linear Case)

Convergence of Residuals

Assume that y' is the perturbed image of a truth v € X, i.e. yf = Au® + 5T and the
forward operator A is one-to-one. Let Y! denote the linear span of the {Ad")(0)}7_,
and let Y+ denote the orthogonal complement of Yl in Y and assume that the initial
ensemble members are chosen so that Yl has the maximal dimension

min{J — 1, dim(Y")}.

Then 9 (t) := Aul) — 4T may be decomposed uniquely as

9P () + 99 (t) with 9 € Yl and 97 € v,

where ﬁﬁj)(t) — 0 ast— oo and 19({) (t) = 19(5)(0) = 1911).
Furthermore, if (n, Ae(®)) < (Ar(¥) Ae(¥))  the residual is monotonically
decreasing. The rate of convergence of the component of the mapped
residual, which belongs to YH, can be arbitrarily slow.

v
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Numerical Experiments (Linear Case, Noisy Observations)

Underdetermined case, K=24-1,J=5
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o 2 n c s
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10° 14 N,
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102 spread Jisz 1 spread |v| J=5
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—— 1 5|A%2 =5 adap. ERERYISPLA T =
s . . I I
‘Uwo“ 102 10* 108 108 ° ) ‘ : ‘
100 102 10 10° 10°

t
t

Figure: Quantities [r3, [A7|2 w.r. tot,  Figure: Misfit [9]3 w.r. to time ¢,

J =5 based on KL expansion of J = 5 based on KL expansion of
C=pB(A-id)™" (red), J=5 C=p(A—id)" ! (red), J=5
adaptively chosen (blue), 8 = 10, adaptively chosen (blue), 8 = 10,
K=2"-1 K=2"-1.
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Numerical Experiments (Linear Case, Noisy Observations)

Underdetermined case, K=24-1,J=5

utruth
EnKF est. J=5 1
—-—=-EnKF est. J=5 truth
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004 a X
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10 0.02 9 O EnKF est. J=5
: | ¥ O EnkF est. J=5 truth
10° 102 10* 10° 108 % 05 1 15 2 25 3

Figure: Quantities |19‘(|])|%, 1992 w.r.
to time t, J = 5 based on KL expansion
of C =B(A—id)™" (red), J =5
adaptively chosen (blue), 8 = 10,
K=2"-1.
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t

Figure: Comparison of the EnKF
estimate with the truth and the
observations, J = 5 based on KL
expansion of C' = (A —id)™" (red),

J =5 adaptively chosen (blue), 8 = 10,
K=2"-1
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Numerical Experiments (Linear Case, Noisy Observations)

Underdetermined case, K=24-1,J=5
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Figure: Quantities |r|3, |Ar|f w.r. to Figure: Comparison of the EnKF

time t, J = 5 based on KL expansion of
C=pB(A-id)™" (red), J=5
adaptively chosen (blue), 8 = 10,

K = 2% — 1, Bayesian stopping

rule.
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estimate with the truth and the
observations, J = 5 based on KL
expansion of C' = (A —id)™" (red),

J =5 adaptively chosen (blue), 5 = 10,
K = 2% — 1, Bayesian stopping rule.
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Numerical Experiments (Linear Case, Noisy Observations)

Underdetermined case, K=24-1,J=5
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Figure: Misfit [9]3 w.r. to time ¢, Figure: Comparison of the EnKF
J =5 based on KL expansion of estimate, J = 5 based on KL expansion
C=pB(A—id)™" (red), J=5 of C = B(A—id)™* (red), J =5
adaptively chosen (blue), J =5 adaptively chosen (blue), J =5
adaptively chosen w.r. to misfit (grey), adaptively chosen w.r. to misfit (grey),
=10, K =2*—1. =10 K=2*—1.
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