Sleep, dreams, and bifurcations: REM sleep and nonsmooth maps for sleep/wake dynamics

Cecilia Diniz Behn

Department of Applied Mathematics and Statistics, Colorado School of Mines Department of Pediatrics, University of Colorado Anschutz Medical Campus

May 19, 2019

Introduction

Introduction

- Normal adult human sleep occurs in a consolidated nighttime period
- Sleep includes both rapid-eye movement (REM) sleep and non-REM (NREM) sleep
- Over the course of the night, people cycle between NREM and REM sleep approximately every 90 minutes

Scammell et al., Neuron, 2017

Sleep across the lifespan

Use mathematical modeling and analysis to investigate the role of REM sleep in sleep/wake dynamics during the transition from polyphasic to monophasic sleep and gain insight into physiology during development.

Two-process model

Two-process model

- Circadian rhythm (Process C): propensity to sleep that changes over 24 h day
- Homeostatic sleep drive (Process S): propensity to sleep that increases with time in prior wakefulness

Web-based simulator of two-process model

Developed in collaboration with Victoria Booth, U. Michigan

http://twoprocessmodel.math.lsa.umich.edu

Two-process model equations

• Circadian rhythm (Process C) represented with sinusoid (may include higher harmonics):

$$C^+(t) = H_0^+ + a\sin(2\pi t); \ C^-(t) = H_0^- + a\sin(2\pi t)$$

- Homeostatic sleep drive (Process S) represented by
 - Exponential growth during wake:

$$H_s(t, t_0) = H^+(t_0) \exp((t_0 - t)/\chi_s)$$

• Exponential decay during sleep:

$$H_w(t, t_0) = 1 - (1 - H^-(t_0)) \exp((t_0 - t)/\chi_w)$$

Circle map for two-process model

- Compute map describing successive phases of sleep onset
- Stable fixed point of map = entrained sleep-wake behavior
- Map monotonic with a vertical gap

Nakao et al., 1997

Gap in map

- Vertical gap comes from tangency of homeostat with upper or lower threshold
- Nearby initial phases of transition to wake onset can produce large differences in phase of next sleep onset
- This feature plays a role in the observed patterns in recovery sleep following sleep deprivation

Circle map for two-process model

- Existence and stability of fixed points changes with H_0^-
- System may undergo a border collision bifurcation
- Period-adding sequences observed in the number of sleep episodes/day

Nakao et al., 1997

Conclusions

Number of daily sleep episodes changes with H_0^-

Bailey et al., 2018

Three-state network model

Three-state sleep/wake network model

- Represents neuronal network in brainstem and hypothalamus
 - Arrows = excitatory projections
 - Circles = inhibitory projections
- Circadian modulation C relayed by suprachiasmatic nucleus (SCN)
- Homeostatic modulation h on NREM-promoting population

Model equations - firing rates for neuronal populations

$$F'_X = \frac{F_{X\infty}\left(\sum_i g_{i,X} C_{i\infty}(F_{Yi})\right) - F_X}{\tau_X}$$

$$F_{X\infty}(c) = X_{max}(0.5(1 + \tanh((c - \beta_X)/\alpha_X)))$$

$$C_{i\infty}(f) = \tanh(f/\gamma_i)$$

for X = W, N, R, SCN.

Elements of Two-process model also present here:

- Forger circadian pacemaker model produces 24 h variation in F_{SCN}
- Homeostatic sleep drive modulates activation threshold of F_{NREM}

Typical model behavior

Model equations - homeostatic sleep drive

$$\frac{dh}{dt} = \frac{h_{max} - h}{\chi \tau_{hw}} H[F_W - \theta_W] - \frac{h}{\chi \tau_{hs}} H[\theta_W - F_W]$$

- Initial time constants fit to experimental measurements in adults.
- Parameter τ_{hw} controls growth of homeostatic sleep drive
- Parameter τ_{hs} controls decay of homeostatic sleep drive
- Decreasing the scaling parameter χ below 1 causes both growth and decay to occur more quickly

- As χ decreases, it affects both
 - Number of sleep episodes per day
 - Number of REM bouts per sleep episode

Notation:

 $\begin{array}{l} \{1_{[4]},\ldots\},\\ \{1_{[4]},1_{[5]},\ldots\} \end{array}$

Map of three-state model

- Numerically compute map to describe the sleep onset phase, Φ_{i+1}, as a function of the previous sleep onset phase, Φ_i
- Determining appropriate initial conditions was key step in algorithm for computing map
- For $\chi = 1$, map has one stable fixed point and multiple gaps

Booth, Xique, CDB, SIADS, 2017

Map dynamics near fixed point - $\chi = 0.92$

Cusp-like behavior of map near fixed point causes fixed point to lose stability near $\chi = 0.92$ in a putative period-doubling bifurcation.

Map - $\chi = 0.92$

- For $\chi = 0.92$, the fixed points goes unstable, and REM occurs in a $\{1_{[4]}, 1_{[4]}, 1_{[5]}, \ldots\}$ pattern.
- Sleep onsets (red dots) plotted on the map show two on the branch associated with 4 REM bouts/sleep period and one on the branch with 5 REM bouts/sleep period

Map - $\chi = 0.89$

- For χ = 0.89, unstable fixed point associated with one sleep episode per day
- The number of REM bouts in each sleep episode alternates in a $\{1_{[5]}, 1_{[4]}, \ldots\}$ pattern
- One sleep onset (red dots) mapped to each branch

Map - $\chi = 0.88$

- For $\chi = 0.88$ REM bouts occur in a $\{1_{[5]}, 1_{[5]}, 1_{[4]} \dots\}$ pattern
- Two sleep onsets (red dots) mapped to branch associated with 5 REM bouts and one mapped to branch associated with 4 REM bouts

Summary of REM bouts/sleep episode changing with χ

Summary of REM bouts/sleep episode changing with χ

Summary of REM bouts/sleep episode changing with χ

REM sleep dynamics also change with χ

- For χ = 1, there are 4 REM bouts per sleep episode.
- As χ decreases, 4 or 5 REM bouts occur in successive sleep episodes.

Conclusions

Conclusions

- Border collision bifurcations involved in the transition from one to two sleep cycles per day in both two-process model and our physiologically-based three-state model
- Period-doubling bifurcations may contribute to changes in the number of REM bouts/sleep cycle
- REM sleep contributes to stabilizing and destabilizing sleep/wake patterns and should be considered when analyzing sleep/wake dynamics, particularly during transition periods
- Results suggest that during the transition from napping to not napping in early childhood, physiology may promote higher order patterns of sleep-wake behavior

Acknowledgements

- Victoria Booth, University of Michigan
- Monique LeBourgeois, University of Colorado
- Ismael Xique, University of Michigan
- Kelsey Kalmbach, Colorado School of Mines
- Sofia Piltz, University of Michigan
- Funding: NSF DMS 1412571 (CDB) and DMS 1412119 (VB); NIH RO1 HD087707 (ML, PI; CDB Co-I)

Citations

[1] V Booth, I Xique, and C Diniz Behn. One-dimensional map for the circadian modulation of sleep in a sleep-wake regulatory network model for human sleep. submitted

[2] M diBernardo, C.J. Budd, A.R. Champneys, and P Kowalczyk. Piecewise-smooth Dynamical Systems: Theory and Applications. Springer, 2008.

[3] C. Diniz Behn and V. Booth. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network. J Neurophysiol, 103:1937–1953, 2010.

[4] C. Diniz Behn and V. Booth. A fast-slow analysis of the dynamics of REM sleep. SIAM J on App Dyn Systems, 11:212–242, 2012.

[5] J Farey. On a curious property of vulgar fractions. 1816.

[6] D. B. Forger, M. E. Jewett, and R. E. Kronauer. A simpler model of the human circadian pacemaker. J Biol Rhythms, 14:532–537, 1999.

[7] R. D. Gleit, C. Diniz Behn, and V. Booth. Modeling interindividual differences in spontaneous internal desynchrony patterns. J Biol Rhythms, 28:339–355, 2013.

Citations

[8] A Granados, L Alseda, and M Krupa. The period adding and incrementing bifurcations: from rotation theory to applications. submitted.

[9] O Jenni, P Achermann, and M Carskadon. Homeostatic sleep regulation in adolescents. Sleep, 28:1446–1454, 2005.

[10] O Jenni and M LeBourgeois. Understanding sleepwake behavior and sleep disorders in children: the value of a model. Curr Opin Psychiatry, 19:282–287, 2006.

[11] M. Nakao, H. Sakai, and M. Yamamoto. An interpretation of the internal desynchronizations based on dynamics of the two-process model. Meth Inform Med, 36:282–285, 1997.

[12] H Sakai, M Nakao, and M Yamamoto. A circle map model of human circadian rhythms. Frontiers Med. Biol. Engng, 9:75–92, 1999.

[13] A. Skeldon, D.-J. Dijk, and G. Derks. Mathematical models for sleep-wake dynamics: Comparison of the two-process model and a mutual inhibition neuronal model. PLoS One, 9:e103877, 2014.

Model equations - circadian oscillator

Forger circadian pacemaker model produces oscillation with \sim 24 h rhythm is entrained to 14:10 light/dark cycle [6]:

$$\frac{dC}{dt} = \frac{\pi}{720} (x_c + B(t))$$
$$\frac{dx_c}{dt} = \frac{\pi}{720} \left[\mu \left(x_c - \frac{4x_c^3}{3} - C \left(\frac{24}{0.99669\tau_c} \right) + kB(t) \right) \right]$$

Fast-slow analysis of model dynamics

- Taking homeostatic and circadian variables to be slow, we have z-shaped surface
- Hysteresis loop with respect to h is common feature of many sleep models
- REM sleep → hysteresis loop interacting with limit cycle

Booth, Xique, CDB, SIADS, 2017