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REDUCED MODELS




Data-driven reduced models

Reduced models are typically built and used in a static way:

— offline phase: sample a high-fidelity model, build a low-
dimensional basis, project to build the reduced model

— online phase: use the reduced model

A single and/or static model is insufficient in many situations
— Complex physical system
— Other information sources, besides models
— Decision goal changes dynamically

— Physical system changes dynamically

— A need for (online) adaptation of models



Data-driven reduced models

Adaptation is data-driven, where data could be:

— Sensor data collected online
(e.g., structural sensors on board an aircraft)

— Simulation data collected online
(e.g., over the path to an optimal solution)

Achieve adaptation in a variety of ways:
— Adapt the basis
— Adapt the way in which nonlinear terms are approximated
— Adapt the reduced model itself

— Construct localized reduced models; adapt through model
choice



Start with a physics-based model

Arising, for example, from systems of ODEs or spatial
discretization of PDEs describing the system of interest

- which in turn arise from governing physical principles
(conservation laws, etc.)
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x € RV: state vector

u € RYi: input vector

p € RVr: parameter vector
y € RN output vector



Projection-based model reduction

X = VXr
x = A(p)x+ B(p)u I r = Vx, — AVx, — Bu
y = C(p)x yr = CVx;
Wir=0
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C.(p) = C(p)V e (P)Xr
x € RY:; state vector x, € R™: reduced state vector

p € RVr: parameter vector V € RY*™: reduced basis

uc RY:: input vector
y € RNe: output vector



Projection-based model reduction of nonlinear systems
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¢ Nonlinear systems: standard projection approach leads to a
model that is low order but still expensive to solve

¢ The cost of evaluating the nonlinear term

fr(Xr, U) —

VIE(Vxy,u)

still depends on N, the dimension of the large-scale system

Can achieve efficient nonlinear reduced models via
interpolation, e.g., Missing Point Estimation [Astrid et al., 2008],
(Discrete) Empirical Interpolation Method [Barrault et al., 2004;

Chaturantabut & Sorensen, 2010]

Xr = Arxy + Er £ (Drxr,u)




Computing the Basis:

Proper Orthogonal Decomposition (POD)

(aka Karhunen-Loeve expansions, Principal Components Analysis, Empirical
Orthogonal Eigenfunctions, ...)

* Consider K snapshots x1,X2,...,Xx € RY [sirovich, 1991]
(solutions at selected times or parameter values)

* Form the snapshot matrix X = [xl XD s XK]

* Choose the n basisvectors V = [V] V5...V,]

to be left singular vectors of the snapshot matrix, with
singularvalues 91 2022 "+ 20n 20p41 2 "+ 2 0K

* This is the optimal projection in a least squares sense:
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« Similar idea to construct a basis for the nonlinear term
using snapshots of f(x, u) in DEIM approximation 9



LOCALIZED REDUCED MODELS



Localized and adaptive reduced models = [rerods S W

* Automatic model management based on machine learning

— Cluster set of snapshots S ={z,,....2y} CcR"
into S=8§¥---88§;
(using e.g. k-means) design/offiine online phase
— Create a separate local (reduced) . data/sensor stream
offline : >
model for each cluster
|___select model (classification) |
— Derive a basis Q € RY*™ m « N . G . ‘
to obtain low-dimensional indicator [ duster |

reduced reduced reduced
model 1 model 3 model 1

z; = QT x; that describes state x;
— Learn a classifier g: Z — {1, ..., k} to @ @

map from low-dimensional @ @ -
indicator z to model index M < S
(using e.g. nearest neighbors) M3 M4Jl

— Classify current state/indicator online y S |
and select model M1 M2

=» Reduced models are tailored to local system behavior

11



Localized and adaptive reduced model gt SSCHNA]

e Example: Reacting flow with one-step reaction

2H, + Oy — 2H,0

e Governed by convection-diffusion-reaction equation

KAy — Ny + Fly.n) =0
¢ Exponential nonlinearity
(Arrhenius-type source term)

e POD-DEIM reduced model
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Combining 4 local models with machine-
learning-based model management

achieves accuracy improvement by up

to two orders of magnitude compared

to a single, global model| 12
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Dynamlcally evolving DDDAS procesS

~Infer—predict—Plan—Act—

DYNAMIC DATA-DRIVEN
DECISIONS VIA ADAPTIVE
REDUCED MODELS



Motivating application: Dynamic data-driven decisions

» A self-aware aerospace vehicle can dynamically adapt the
way it performs missions by gathering information about
itself and its surroundings and responding intelligently
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[Mainini & W.,,

Dynamic data-driven structural assessment AIAA 2015]

SENSE | (- |INFER. - | PLAN | =e————(p- | ACT

Measurement.sl- ------- > State} --------- - Capabilit.iesl
\ \/ Y

strain data structural state failure indices

| |

We want to:
use sensed structural data
L. estimate the structural state
L— update the flight capabilities
L— dynamically re-plan the mission

\/

adaptive surrogate modeling to map from sensed data to capabilities
15




Localization and adaptation using POD and self-organizing maps
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interest using POD expansion with
approximated coeflicients s (a) 16
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DATA-DRIVEN REDUCED
MODELS FOR INVERSE
PROBLEMS



SUMMARY



Data-driven reduced models: Summary

Data-driven reduced models via adaptation, where data could be:

— Sensor data collected online
(e.g., structural sensors on board an aircraft)

— Simulation data collected online
(e.g., over the path to an optimal solution)

Achieve adaptation in a variety of ways:

— Adapt the basis

= Data-driven reduced models for inverse problems
(Cui et al., 2014)

— Adapt the way in which nonlinear terms are approximated
* Adaptive DEIM (Peherstorfer, MS260 Wed 1210)

— Adapt the reduced model itself
* Low-rank updates (Peherstorfer & W., in review)

— Construct localized reduced models; adapt through model
choice (Peherstorfer et al., 2014; Mainini & W., 2015; Mainini MS55) 27



Conclusions

* The next generation of complex engineered systems will be
endowed with sensors and computing capabilities that enable
new modes of decision-making

* New opportunities for model reduction and surrogate
modeling, in particular through data-driven reduced models
that exploit the synergies of physics-based computational
modeling and physical data

— different sources of information (models, sensors, etc.)
tell us different things about the decision problem, with
the collective information they provide being greater than
the individual parts

— need methods that leverage complementary perspectives
from physics-based modeling and data-driven approaches

28
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