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Introduction	
§ Challenges

§ Application:	Luggage	screening	
§ Few	fixed	(non-rotating)	sources
§ Fixed	energy-resolved	detectors	

§ Goals
• Improving	detection	performance	
• Material	characterization
• Recovery	of	the	mass	density	and	

photoelectric	absorption	coefficient	
• Artifact	reduction	

§ Solution
• Compton	scatter	=	additional	information	
• Fusing	attenuation	data	and	Compton	scatter	data	
• Energy	resolved	detectors

http://www.passengerterminaltoday.com/viewnews.php?NewsID=42596
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Compton	Scatter	
§ Compton	Scatter- Continuous	form		

§ Compton	Scatter- Discrete	form		
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Attenuation	
§ Attenuation- Continuous	form	

§ Attenuation- Discrete	form	
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Fig. 3. Energy dependent coefficients in mass attenuation. Comparison of Klein-Nishina cross section coefficient with photoelectric

coefficient.The vertical grid shows 5 KeV energy bandwidth.

equals to NSD⇥Np the product of the number of primary raypaths and number of pixels. For each primary raypath

i = 1, . . . , NSD with detector energy bin Em,m = 1, . . . , NE and bandwidth of �E, the discrete equivalent to (1)

is

g(i,m) =

Z Em+

�E
2

Em��E
2

I(ES) [exp (�[A]iµ(ES))] dES (5)

where µ(ES) is the lexicographically ordered vector of attenuation coefficients at energy level ES .

Referring to (2), the terms that depend on energy are Klein-Nishina cross section fKN (ES) and photoelectric

coefficient fp(ES) are plotted as functions of energy in Fig. 3. Two characteristics of these graphs are important

to us. First, photoelectric coefficient in the data is quite small relative to mass density especially at higher energy

levels , a fact we shall exploit in Section III when we discuss the imaging algorithm. Second, vary little over the

5KeV windows (shown by the vertical lines in the figure) over which the detectors in this study integrate energy.

Thus µ(ES) can be replaced with µ(Em) so that the term exp (�[A]iµ(Em)) can be factored out of the energy

sum so (5) simplifies to

g(i,m) ⇡ [exp (�[A]iµ(Em))]

Z Em+

�E
2

Em��E
2

I(ES) dES (6)

from which we obtain the following model which is linear in the unknowns of interest:

gA(i,m) = � log

✓
g(i,m)

˜Im

◆
= [A]iµ(Em) (7)

where ˜Im =

R Em+

�E
2

Em��E
2

I(ES) dES . After substituting µ(Em) given by (2), a set of equations linear with respect to

density and photoelectric coefficients is obtained as

gA = KA,⇢⇢+ KA,pp (8)
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Forward	Model	
§ Attenuation	model	

§ Compton	scatter	model	

§ Poisson	statistics	are	the	“right”	way	of	modeling	this	
problem.

§ For	simplicity,	here	we	focus	on	the	additive	white	Gaussian	
noise	case

gA = KA,⇢⇢+KA,pp+wA

gS = KS(⇢,p)⇢+wS
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Inverse	Problem	

§ Cyclic	coordinate	decent	method
§ Iterative	density	reconstruction	
§ Iterative	photoelectric	reconstruction	

§ Regularization	
• Gradient-based	and	edge-preserving	
regularizations		for	density	

• Non-local	means	(NLM)	for	photoelectric	

§ Initialization	
• Multi-scaling	approach	

data	mismatch regularization

11

The inelastic nature of Compton interactions imply that even monochromatic sources will give rise to observed

scatter across a band of energies thereby significantly complicating the ‘bookkeeping’ associated with this model.

Because the scattering angle is a function of the energy after the Compton event, this assumption of retaining

photons in an energy band around each Em,m = 1, 2, . . . , NE requires that we introduce a window factor in the

definition of the scattering coefficient defined in (19) as follows

S(¯ri,l, ✓i,j,l, Em) =

1

2

NA
d�KN (ES , ✓i,j,l)

d⌦

!(i, j, l,m) (20)

where, with E0 defined by (13),

!(i, j, l,m) =

8
><

>:

1 ✓i,j,l such that E0 2
⇥
Em � �E

2

, Em +

�E
2

⇤

0 else
(21)

Using standard linear algebra, (17) can be formulated as a set of equations nonlinear in the photoelectric coefficient

and quasi-linear in density resulting in a measurement model taking the form

gS = KS(⇢, p)⇢ (22)

where KS(⇢, p) is the discretized scattering system matrix obtained from the terms h(rD0,j ,¯ri,l, E0
), S(¯ri,l, ✓i,j,l))and

f(¯ri,l, rS,i, ES) in (17). The vector gS is comprised of all of the observed scattered data as a function of source

location, secondary detector location, and energy. The total number of elements in gS is defined by the number of all

possible secondary raypaths and energy bins NE in detectors which is equal to NST = NS⇥ND⇥(ND�1)⇥NE ,

the product of the number of sources NS , number of detectors ND, number of secondary raypaths ND�1 associated

with each primary raypath and energy bins NE at detectors.

D. Measurement Noise

While in principle, a Poisson model is appropriate for describing both the attenuation and scattered data [40], we

have modeled system noise for simplicity with a white Gaussian noise. We assume that the integration time at each

detector is long enough that the photon count Poisson distribution could be estimated with Gaussian distribution

[41], [42]. More specifically, attenuation model after adding noise is defined by

gA = KA,⇢⇢+ KA,pp + wA (23)

where wA is a white Gaussian noise with zero mean and variance �2

A. And Compton scattering model is given by

gS = KS(⇢, p)⇢+ wS (24)

where wS is a white Gaussian noise with zero mean and variance �2

S .

III. IMAGING APPROACH

In order to recover density and photoelectric images, we propose the following optimization problem

(

ˆ⇢, ˆp) = argmin

⇢,p
w

1

kgS � KS(⇢, p)⇢k2
2

+ w
2

kgA � KA,⇢⇢� KA,ppk2
2

+R⇢(⇢) +Rp(p|Iref ) (25)
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Regularization	
§ Gradient-based	regularization	

• Penalize	all	high	differences	even	
edges

§ Edge-preserving	regularization	[1]	

[1]	Oguz Semerici,	“Image	Formation	Methods	for	Dual	Energy	and	Multi-Energy	Computed	 Tomography,”	PhD	Thesis,	Dept.	of	ECE	Tufts	University,	
October	2012.

R⇢(⇢) = �⇢kL⇢k22

R⇢,l(⇢) = �⇢,lkD(l)L⇢k22
• Diagonal	elements	determine	
whether	a	pixel	belongs	to	the	edge	
map

• Closer	to	one:	enforce	smoothness	
• Closer	to	zero:	should	be	preserved

M = D(l)L M = LOR
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Density	Reconstruction

12

where kgS�KS(⇢, p)⇢k2
2

measures the mismatch between the scattering data and our prediction of the scattering data

for a given ⇢ and p, kgA�KA,⇢⇢�KA,ppk2
2

is the mismatch term between the attenuation data and predicted data,

the regularization terms R⇢(⇢) and Rp(p|Iref ) for density and photoelectric respectively stabilize the construction

by imposing prior information such as smoothness and w
1

and w
2

are weighting factors. Following [43] we set

w
1

=

1

kgSk2
and w

2

=

1

kgAk2
to basically normalize the impact of the two data sets in the reconstruction process.

We have developed a cyclic coordinate decent method [44] for solving the optimization problem given in (25).

At each iteration, density reconstruction is performed using the estimates of density and photoelectric images

from previous iteration. Density reconstruction itself is an iterative proceduree detailed below in Section III.A.

Subsequently, we use current estimated density image to recover photoelectric coefficient image in another iterative

process described in Section III.B. Our approach for solving (25) is motivated from the physical fact shown in Fig.

3 that the impact of the photoelectric coefficient in the data is quite small relative to density especially at higher

energy levels. Thus we begin initially by assuming p

0

= 0 at the first iteration and estimate density by seeking

the solution to the optimization problem described in the following subsection. In the next iterations the previous

results of density and photoelectric reconstruction are used to update the system matrices.

A. Density Reconstruction

With ˆ

pn representing our estimate of the photoelectric coefficient at iteration n of the algorithm, from (25), we

update the density estimate by solving

ˆ⇢n+1

= argmin

⇢
w

1

kgS � KS(⇢, ˆpn)⇢k22 + w
2

kgA � KA,⇢⇢� KA,pˆpnk22 +R⇢(⇢) (26)

where the Rp(.) term in (25) not relevant as it does not depend on density. In order to decrease the effect of

noise and impose smoothness as a priori information for more accurate results we have implemented two different

regularization methods. In the first approach we have used gradient-based regularization defined as

R⇢(⇢) = �⇢kL⇢k2
2

(27)

where �⇢ is the regularization parameter the value of which determines the balance between data mismatch and

regularization terms and L is a discrete gradient matrix including all vertical and horizontal derivatives computed

as

L =

2

4I ⌦ LH

LV ⌦ I

3

5 (28)

where I is an identity matrix with the size of N⇥N (assuming we are reconstructing images containing Np = N⇥N

pixels), ⌦ is the Kronecker tensor product operator and LH = LV is the (N � 1)⇥N first difference matrix

LH = LV =

2

6666666664

�1 1 0 0 · · ·

0 �1 1 0 · · ·

0 0 �1 1 · · ·
...

. . . . . . . . .
...

0 0 · · · 0 �1

3

7777777775

(29)
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In the second approach we employ the iterative edge-enhancing regularization methods developed in [45]. Here,

(26) is solved repeatedly where from one iteration to the next the regularization is updated in a manner that de-

emphasizes the smoothing for locations in the image where edges are suspected. More specifically, at iteration l

takes the form

R⇢,l(⇢) = �⇢,lkD

(l)
L⇢k2

2

(30)

where �⇢,l is the regularization parameter for every iteration and D

(l) is a diagonal weighting matrix with elements

between zero and one updated at iteration l. Those diagonal elements closer to one will enforce smoothness to the

associated pixels while the values closer to zero indicating that the associated pixels belong to the edge map and

should be preserved. The pseudo code for the iterative edge-preserving regularization is given in Table I.

The regularization term R⇢(⇢) in both the gradient-based and edge-preserving regularizations, which are defined

by (29) and (30), is in fact quadratic in ⇢; i.e., of the form R⇢(⇢) = �kM(⇢)⇢k2
2

for a matrix M(⇢) = L in

gradient-based regularization and M(⇢) = D

(l)
L in the case of edge-preserving regularization. As it stands, (26) is

quasi-linear in the density, ⇢, in that the density appears nonlinearly in the structure of the matrix KS but also in

a linear manner as the vector upon which KS , KA,⇢ and M operates. By stacking KS , KA,⇢ and M matrices (26)

takes the form

ˆ⇢n+1

= argmin

⇢

���������

2

6664

p
w

1

gS

p
w

2

(gA � KA,pˆpn)

0

3

7775
�

2

6664

p
w

1

KS(⇢, ˆpn)

p
w

2

KA,⇢
p
�M(⇢)

3

7775
⇢

���������

2

2

⌘ argmin

⇢

��
˜

g � ˜

K(⇢)⇢
��2
2

(31)

This structure suggests an iterative, fixed point type of approach for solving (26) detailed in Table I. At each

iteration, the scattering system matrix KS and in the case of the edge preserving regularization the matrix M, are

updated with the current estimate of density and “stacked” to create ˜

K(⇢) in (31). With the dependency of the

matrices in (31) on density now effectively removed, we are left with a linear least squares problem for the vector

rho multiplying ˜

K. We solve this system using the LSQR [?] method to obtain and update to the density. If the

change from the last iteration is small, we stop. Otherwise, we rebuild the matrices and repeat.

We assume an initial estimate for the density, ⇢ = ⇢
0

and p = 0 at first iteration. Starting with an appropriate

initial guess for the density is crucial to the success of the approach. We note there are a number of ways this

could be accomplished. For example, attenuation based CT images have been shown to be useful in this regard

[28] however for the limited view problems that interest most in this effort, reconstruction of the photoelectric and

density from attenuation data is known to be a highly ill-posed problem. Thus we are motivated to consider an

alternate, multi-scale approach. At the first level, a coarse scale representation of the grid and density vector to

be recovered is assumed and a constant density vector is considered as an initial guess to build the system matrix

KS(.). The method in Table I is used to solve the problem at this spatial scale and the estimated density image at

this level is “upscaled” using the Matlab function ‘imresize()’ employing nearest neighbor interpolation and used

as an initial guess to build the system matrix at the next finer scale and so on and so forth. After a few iterations

we achieve a good approximation of density vector in a desired scale size without any prior information about
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In the second approach we employ the iterative edge-enhancing regularization methods developed in [45]. Here,

(26) is solved repeatedly where from one iteration to the next the regularization is updated in a manner that de-

emphasizes the smoothing for locations in the image where edges are suspected. More specifically, at iteration l

takes the form

R⇢,l(⇢) = �⇢,lkD

(l)
L⇢k2

2

(30)

where �⇢,l is the regularization parameter for every iteration and D

(l) is a diagonal weighting matrix with elements

between zero and one updated at iteration l. Those diagonal elements closer to one will enforce smoothness to the

associated pixels while the values closer to zero indicating that the associated pixels belong to the edge map and

should be preserved. The pseudo code for the iterative edge-preserving regularization is given in Table I.

The regularization term R⇢(⇢) in both the gradient-based and edge-preserving regularizations, which are defined

by (29) and (30), is in fact quadratic in ⇢; i.e., of the form R⇢(⇢) = �kM(⇢)⇢k2
2

for a matrix M(⇢) = L in

gradient-based regularization and M(⇢) = D

(l)
L in the case of edge-preserving regularization. As it stands, (26) is

quasi-linear in the density, ⇢, in that the density appears nonlinearly in the structure of the matrix KS but also in

a linear manner as the vector upon which KS , KA,⇢ and M operates. By stacking KS , KA,⇢ and M matrices (26)

takes the form

ˆ⇢n+1

= argmin

⇢

���������

2

6664

p
w

1

gS

p
w

2

(gA � KA,pˆpn)

0

3

7775
�

2

6664

p
w

1

KS(⇢, ˆpn)

p
w

2

KA,⇢
p
�M(⇢)

3

7775
⇢
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2

2
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⇢
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˜

g � ˜

K(⇢)⇢
��2
2

(31)

ˆ⇢n+1

⌘ argmin

⇢

��
˜

g � ˜

K(⇢)⇢
��2
2

(32)

This structure suggests an iterative, fixed point type of approach for solving (26) detailed in Table I. At each

iteration, the scattering system matrix KS and in the case of the edge preserving regularization the matrix M, are

updated with the current estimate of density and “stacked” to create ˜

K(⇢) in (31). With the dependency of the

matrices in (31) on density now effectively removed, we are left with a linear least squares problem for the vector

rho multiplying ˜

K. We solve this system using the LSQR [?] method to obtain and update to the density. If the

change from the last iteration is small, we stop. Otherwise, we rebuild the matrices and repeat.

We assume an initial estimate for the density, ⇢ = ⇢
0

and p = 0 at first iteration. Starting with an appropriate

initial guess for the density is crucial to the success of the approach. We note there are a number of ways this

could be accomplished. For example, attenuation based CT images have been shown to be useful in this regard

[28] however for the limited view problems that interest most in this effort, reconstruction of the photoelectric and

density from attenuation data is known to be a highly ill-posed problem. Thus we are motivated to consider an

alternate, multi-scale approach. At the first level, a coarse scale representation of the grid and density vector to

be recovered is assumed and a constant density vector is considered as an initial guess to build the system matrix

KS(.). The method in Table I is used to solve the problem at this spatial scale and the estimated density image at

this level is “upscaled” using the Matlab function ‘imresize()’ employing nearest neighbor interpolation and used

as an initial guess to build the system matrix at the next finer scale and so on and so forth. After a few iterations
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Density	Reconstruction

§ Solution	
• Iterative	fixed-point	approach	
• Linear	least		squares	
• LSQR		method	
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In the second approach we employ the iterative edge-enhancing regularization methods developed in [45]. Here,

(26) is solved repeatedly where from one iteration to the next the regularization is updated in a manner that de-

emphasizes the smoothing for locations in the image where edges are suspected. More specifically, at iteration l

takes the form

R⇢,l(⇢) = �⇢,lkD

(l)
L⇢k2

2

(30)

where �⇢,l is the regularization parameter for every iteration and D

(l) is a diagonal weighting matrix with elements

between zero and one updated at iteration l. Those diagonal elements closer to one will enforce smoothness to the

associated pixels while the values closer to zero indicating that the associated pixels belong to the edge map and

should be preserved. The pseudo code for the iterative edge-preserving regularization is given in Table I.

The regularization term R⇢(⇢) in both the gradient-based and edge-preserving regularizations, which are defined

by (29) and (30), is in fact quadratic in ⇢; i.e., of the form R⇢(⇢) = �kM(⇢)⇢k2
2

for a matrix M(⇢) = L in

gradient-based regularization and M(⇢) = D

(l)
L in the case of edge-preserving regularization. As it stands, (26) is

quasi-linear in the density, ⇢, in that the density appears nonlinearly in the structure of the matrix KS but also in

a linear manner as the vector upon which KS , KA,⇢ and M operates. By stacking KS , KA,⇢ and M matrices (26)

takes the form

ˆ⇢n+1

= argmin

⇢

���������

2

6664

p
w

1

gS

p
w

2

(gA � KA,pˆpn)

0

3

7775
�

2

6664

p
w

1

KS(⇢, ˆpn)

p
w

2

KA,⇢
p
�M(⇢)

3

7775
⇢

���������

2

2

⌘ argmin

⇢
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˜

g � ˜

K(⇢)⇢
��2
2

(31)

ˆ⇢n+1

⌘ argmin

⇢

��
˜

g � ˜

K(⇢)⇢
��2
2

(32)

This structure suggests an iterative, fixed point type of approach for solving (26) detailed in Table I. At each

iteration, the scattering system matrix KS and in the case of the edge preserving regularization the matrix M, are

updated with the current estimate of density and “stacked” to create ˜

K(⇢) in (31). With the dependency of the

matrices in (31) on density now effectively removed, we are left with a linear least squares problem for the vector

rho multiplying ˜

K. We solve this system using the LSQR [?] method to obtain and update to the density. If the

change from the last iteration is small, we stop. Otherwise, we rebuild the matrices and repeat.

We assume an initial estimate for the density, ⇢ = ⇢
0

and p = 0 at first iteration. Starting with an appropriate

initial guess for the density is crucial to the success of the approach. We note there are a number of ways this

could be accomplished. For example, attenuation based CT images have been shown to be useful in this regard

[28] however for the limited view problems that interest most in this effort, reconstruction of the photoelectric and

density from attenuation data is known to be a highly ill-posed problem. Thus we are motivated to consider an

alternate, multi-scale approach. At the first level, a coarse scale representation of the grid and density vector to

be recovered is assumed and a constant density vector is considered as an initial guess to build the system matrix

KS(.). The method in Table I is used to solve the problem at this spatial scale and the estimated density image at

this level is “upscaled” using the Matlab function ‘imresize()’ employing nearest neighbor interpolation and used

as an initial guess to build the system matrix at the next finer scale and so on and so forth. After a few iterations
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Inputs:

•D

(0) = I

•M = L gradient matrix

• r0 = ⇢n and p = pn

• ✏0 stopping criteria

• l = 1

• ✏ > ✏0

1: While ✏ > ✏0

2: Build KS(rl�1, p)

3: if <Edge-Preserving Regularizarion> :

Set ⌫ = D

(l�1)
Lrl�1

Normalize ⌫ by setting ⌫  ⌫
k⌫k1

Map d to [0, 1] by defining d := 1� ⌫.p

Define D := diag(d)

Update D

(l)  DD

(l�1)

Update M = D

(l)
L

4: Find rl by solving (31) with LSQR

5: Define ✏ := krl � rl�1k22
6: Increase l

7: Update ⇢n+1 = rl�1

8: end

TABLE I

PSEUDO CODE FOR ITERATIVE QUASI-LINEAR SOLVER

we achieve a good approximation of density vector in a desired scale size without any prior information about

the density image. The block diagram of the multi-scale approach to estimate density with the edge-preserving

regularization method is shown in Fig. 6.

After estimating density, the results can be used for photoelectric reconstruction explained in the next section.

B. Photoelectric Reconstruction

Having the density image estimated, from (25) the photoelectric subproblem takes the form

ˆ

pn+1

= argmin

p

w
1

��
gS � KS(ˆ⇢n, p)

ˆ⇢nk22 + w
2

kgA � KA,⇢ˆ⇢n � KA,pp

��2
2

+Rp(p|Iref ) (33)

where ˆ⇢n is the final estimate of density image at previous iteration as a solution to (26) and Rp(p|Iref ) is the

photoelectric regularization term. In contrast to the density problem, photoelectric recovery is a non-linear least

squares optimization problem which we solved using the Levenberg-Marquardt method [46]. The approach requires

the Jacobian matrix of the objective function which is given in Appendix A.

It is well known that the recovery of the photoelectric map is a challenging problem [1] while density is, roughly

speaking, far easier to obtain accurately. To stabilize the photoelectric problem, we have used patch-based non-local

mean (NLM) regularization method [1] which benefits from the accuracy with which density can be recovered.

In this approach the photoelectric reconstructed image is conditioned on a reference image I

ref which we take as
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Inputs:

•D

(0) = I

•M = L gradient matrix

• r0 = ⇢n and p = pn

• ✏0 stopping criteria

• l = 1

• ✏ > ✏0

1: While ✏ > ✏0

2: Build KS(rl�1, p)

3: if <Edge-Preserving Regularizarion> :

Set ⌫ = D

(l�1)
Lrl�1

Normalize ⌫ by setting ⌫  ⌫
k⌫k1

Map d to [0, 1] by defining d := 1� ⌫.p

Define D := diag(d)

Update D

(l)  DD

(l�1)

Update M = D

(l)
L

4: Find rl by solving (31) with LSQR

5: Define ✏ := krl � rl�1k22
6: Increase l

7: Update ⇢n+1 = rl�1

8: end

TABLE I

PSEUDO CODE FOR ITERATIVE QUASI-LINEAR SOLVER

we achieve a good approximation of density vector in a desired scale size without any prior information about

the density image. The block diagram of the multi-scale approach to estimate density with the edge-preserving

regularization method is shown in Fig. 6.

After estimating density, the results can be used for photoelectric reconstruction explained in the next section.

B. Photoelectric Reconstruction

Having the density image estimated, from (25) the photoelectric subproblem takes the form

ˆ

pn+1

= argmin

p

w
1

��
gS � KS(ˆ⇢n, p)

ˆ⇢nk22 + w
2

kgA � KA,⇢ˆ⇢n � KA,pp

��2
2

+Rp(p|Iref ) (33)

where ˆ⇢n is the final estimate of density image at previous iteration as a solution to (26) and Rp(p|Iref ) is the

photoelectric regularization term. In contrast to the density problem, photoelectric recovery is a non-linear least

squares optimization problem which we solved using the Levenberg-Marquardt method [46]. The approach requires

the Jacobian matrix of the objective function which is given in Appendix A.

It is well known that the recovery of the photoelectric map is a challenging problem [1] while density is, roughly

speaking, far easier to obtain accurately. To stabilize the photoelectric problem, we have used patch-based non-local

mean (NLM) regularization method [1] which benefits from the accuracy with which density can be recovered.

In this approach the photoelectric reconstructed image is conditioned on a reference image I

ref which we take as
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In the second approach we employ the iterative edge-enhancing regularization methods developed in [45]. Here,

(26) is solved repeatedly where from one iteration to the next the regularization is updated in a manner that de-

emphasizes the smoothing for locations in the image where edges are suspected. More specifically, at iteration l

takes the form

R⇢,l(⇢) = �⇢,lkD

(l)
L⇢k2

2

(30)

where �⇢,l is the regularization parameter for every iteration and D

(l) is a diagonal weighting matrix with elements

between zero and one updated at iteration l. Those diagonal elements closer to one will enforce smoothness to the

associated pixels while the values closer to zero indicating that the associated pixels belong to the edge map and

should be preserved. The pseudo code for the iterative edge-preserving regularization is given in Table I.

The regularization term R⇢(⇢) in both the gradient-based and edge-preserving regularizations, which are defined

by (29) and (30), is in fact quadratic in ⇢; i.e., of the form R⇢(⇢) = �kM(⇢)⇢k2
2

for a matrix M(⇢) = L in

gradient-based regularization and M(⇢) = D

(l)
L in the case of edge-preserving regularization. As it stands, (26) is

quasi-linear in the density, ⇢, in that the density appears nonlinearly in the structure of the matrix KS but also in

a linear manner as the vector upon which KS , KA,⇢ and M operates. By stacking KS , KA,⇢ and M matrices (26)

takes the form

ˆ⇢n+1

= argmin

⇢

���������
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w
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gS

p
w
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(gA � KA,pˆpn)

0

3

7775
�

2

6664

p
w

1

KS(⇢, ˆpn)
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KA,⇢
p
�M(⇢)
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7775
⇢

���������

2

2

⌘ argmin

⇢

��
˜

g � ˜

K(⇢)⇢
��2
2

(31)

KS(⇢n, ˆpn)$ This structure suggests an iterative, fixed point type of approach for solving (26) detailed in Table

I. At each iteration, the scattering system matrix KS and in the case of the edge preserving regularization the matrix

M, are updated with the current estimate of density and “stacked” to create ˜

K(⇢) in (32). With the dependency of

the matrices in (32) on density now effectively removed, we are left with a linear least squares problem for the

vector rho multiplying ˜

K. We solve this system using the LSQR [?] method to obtain and update to the density. If

the change from the last iteration is small, we stop. Otherwise, we rebuild the matrices and repeat.

We assume an initial estimate for the density, ⇢ = ⇢
0

and p = 0 at first iteration. Starting with an appropriate

initial guess for the density is crucial to the success of the approach. We note there are a number of ways this

could be accomplished. For example, attenuation based CT images have been shown to be useful in this regard

[28] however for the limited view problems that interest most in this effort, reconstruction of the photoelectric and

density from attenuation data is known to be a highly ill-posed problem. Thus we are motivated to consider an

alternate, multi-scale approach. At the first level, a coarse scale representation of the grid and density vector to

be recovered is assumed and a constant density vector is considered as an initial guess to build the system matrix

KS(.). The method in Table I is used to solve the problem at this spatial scale and the estimated density image at

this level is “upscaled” using the Matlab function ‘imresize()’ employing nearest neighbor interpolation and used

as an initial guess to build the system matrix at the next finer scale and so on and so forth. After a few iterations

we achieve a good approximation of density vector in a desired scale size without any prior information about

February 6, 2017 DRAFT

No

§ Starting	with	current	estimation	
of	density	and	photoelectric	

§ If	edge-preserving	regularization	
then	update:	

M = D(l)L

, M = D(l)L



Density	Reconstruction

§ Initial	guess	

• Constant	background	image	

§ Assuming	several	scales	with	different	
resolutions	for	discretized	model	and	
density	

§ Starting	with	the	coarse	scale	
representation	and	constant	density	image

§ Using	the	final	estimation	of	previous	scale	
for	the	next	scale

13

In the second approach we employ the iterative edge-enhancing regularization methods developed in [45]. Here,

(26) is solved repeatedly where from one iteration to the next the regularization is updated in a manner that de-

emphasizes the smoothing for locations in the image where edges are suspected. More specifically, at iteration l

takes the form

R⇢,l(⇢) = �⇢,lkD

(l)
L⇢k2

2

(30)

where �⇢,l is the regularization parameter for every iteration and D

(l) is a diagonal weighting matrix with elements

between zero and one updated at iteration l. Those diagonal elements closer to one will enforce smoothness to the

associated pixels while the values closer to zero indicating that the associated pixels belong to the edge map and

should be preserved. The pseudo code for the iterative edge-preserving regularization is given in Table I.

The regularization term R⇢(⇢) in both the gradient-based and edge-preserving regularizations, which are defined

by (29) and (30), is in fact quadratic in ⇢; i.e., of the form R⇢(⇢) = �kM(⇢)⇢k2
2

for a matrix M(⇢) = L in

gradient-based regularization and M(⇢) = D

(l)
L in the case of edge-preserving regularization. As it stands, (26) is

quasi-linear in the density, ⇢, in that the density appears nonlinearly in the structure of the matrix KS but also in

a linear manner as the vector upon which KS , KA,⇢ and M operates. By stacking KS , KA,⇢ and M matrices (26)

takes the form
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= argmin
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K(⇢)⇢
��2
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(32)

This structure suggests an iterative, fixed point type of approach for solving (26) detailed in Table I. At each

iteration, the scattering system matrix KS and in the case of the edge preserving regularization the matrix M, are

updated with the current estimate of density and “stacked” to create ˜

K(⇢) in (31). With the dependency of the

matrices in (31) on density now effectively removed, we are left with a linear least squares problem for the vector

rho multiplying ˜

K. We solve this system using the LSQR [?] method to obtain and update to the density. If the

change from the last iteration is small, we stop. Otherwise, we rebuild the matrices and repeat.

We assume an initial estimate for the density, ⇢ = ⇢
0

and p = 0 at first iteration. Starting with an appropriate

initial guess for the density is crucial to the success of the approach. We note there are a number of ways this

could be accomplished. For example, attenuation based CT images have been shown to be useful in this regard

[28] however for the limited view problems that interest most in this effort, reconstruction of the photoelectric and

density from attenuation data is known to be a highly ill-posed problem. Thus we are motivated to consider an

alternate, multi-scale approach. At the first level, a coarse scale representation of the grid and density vector to

be recovered is assumed and a constant density vector is considered as an initial guess to build the system matrix

KS(.). The method in Table I is used to solve the problem at this spatial scale and the estimated density image at

this level is “upscaled” using the Matlab function ‘imresize()’ employing nearest neighbor interpolation and used

as an initial guess to build the system matrix at the next finer scale and so on and so forth. After a few iterations
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Photoelectric	Reconstruction

§ Solution	
• Non-linear	least	squares	
• Levenberg-Marquardt	method	

§ Regularization	
• Non-local	means	(NLM	)	[2]	

§ Initial	guess	
• Constant	background	image	
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Inputs:

•D

(0) = I

•M = L gradient matrix

• r0 = ⇢n and p = pn

• ✏0 stopping criteria

• l = 1

• ✏ > ✏0

1: While ✏ > ✏0

2: Build KS(rl�1, p)

3: if <Edge-Preserving Regularizarion> :

Set ⌫ = D

(l�1)
Lrl�1

Normalize ⌫ by setting ⌫  ⌫
k⌫k1

Map d to [0, 1] by defining d := 1� ⌫.p

Define D := diag(d)

Update D

(l)  DD

(l�1)

Update M = D

(l)
L

4: Find rl by solving (31) with LSQR

5: Define ✏ := krl � rl�1k22
6: Increase l

7: Update ⇢n+1 = rl�1

8: end

TABLE I

PSEUDO CODE FOR ITERATIVE QUASI-LINEAR SOLVER

we achieve a good approximation of density vector in a desired scale size without any prior information about

the density image. The block diagram of the multi-scale approach to estimate density with the edge-preserving

regularization method is shown in Fig. 6.

After estimating density, the results can be used for photoelectric reconstruction explained in the next section.

B. Photoelectric Reconstruction

Having the density image estimated, from (25) the photoelectric subproblem takes the form

ˆ

pn+1

= argmin

p

w
1

��
gS � KS(ˆ⇢n, p)

ˆ⇢nk22 + w
2

kgA � KA,⇢ˆ⇢n � KA,pp

��2
2

+Rp(p|Iref ) (32)

where ˆ⇢n is the final estimate of density image at previous iteration as a solution to (26) and Rp(p|Iref ) is the

photoelectric regularization term. In contrast to the density problem, photoelectric recovery is a non-linear least

squares optimization problem which we solved using the Levenberg-Marquardt method [46]. The approach requires

the Jacobian matrix of the objective function which is given in Appendix A.

It is well known that the recovery of the photoelectric map is a challenging problem [1] while density is, roughly

speaking, far easier to obtain accurately. To stabilize the photoelectric problem, we have used patch-based non-local

mean (NLM) regularization method [1] which benefits from the accuracy with which density can be recovered.

In this approach the photoelectric reconstructed image is conditioned on a reference image I

ref which we take as
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[2]	Brian	 H.	Tracey	and	Eric	L.	Miller,	“Stabilizing	dual-energy	X-ray	computed	tomography	reconstructions	 using	patch-based	regularization,”	 Inverse	
Problems,	31(10),	05004,	September	2015

Rp(p|Iref ) = RNLM (p|⇢̂n=1) = �pk(I�W)pk22



NLM	Regularization	

• Calculates	weighting	matrix	using	density	
estimation	as	reference	image		

• Reduce	noise	artifacts	

Rp(p|Iref ) = RNLM (p|⇢̂n=1) = �pk(I�W)pk22
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Results	
System	setup	

§ Grid	size	of	

§ SNR	ratio	of	50	dB	
§ Initial	guess

• Density:	Constant	image

• Photoelectric:	

§ 3	Sources	and	41	detectors

§ Five	representations	of	the	grid

20cm⇥ 20cm

p0 = 0

§ Materials:	
• HDPE
• Water	
• Graphite	
• Glass	

§ Size	of	the	data		

§ Size	of	the	system	matrix	
(1.05760e+ 5)⇥ 2500

1.05760e+ 5
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Results	

Density	Estimation:	Iterative	Edge-Enhancing	
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Conclusion	
§ Observation	

• Compton	Scattering	model	is	successful	in	recovering	density	and	
photoelectric

• Joint	attenuation	and	Compton	Scatter	inversion	increase	the	quality	of	
imaging	

• Reconstruction	doesn’t	require	any	prior	information	of	the	object	in	
multi-scale	approach

• Edge-preserving	results	obtains	more	of	the	structure	of	the	object
• Stabilized	reconstruction	of	photoelectric	using	“structural”	regularization	
like	NLM	regularization	

§ Need	to	do

• Explore	performance	on	more	complex	phantoms	and	real	data
• Modify	noise	model	
• Improve	photoelectric	reconstruction	
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Solid	Angle	Calculation	

⌦D0 = 4arcsin (sin (↵)⇥ sin (�))
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