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= Challenges
= Application: Luggage screening
» Few fixed (non-rotating) sources
» Fixed energy-resolved detectors
= Goals
* Improving detection performance
* Material characterization
* Recovery ofthe mass density and
photoelectric absorption coefficient
* Artifact reduction
= Solution
* Compton scatter = additional information
* Fusing attenuation data and Compton scatter data
* Energy resolved detectors

R RN A

http://www. passengerterminaltoday.com/viewnews.php? NewsID=42596
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Compton Scatter

= Compton Scatter- Continuous form

gS(rD’7E/) — /I(ES) [/QD f(I'D/,I',E/ S(T,H,ES

urce Spectrum / \
1
: Z(r
o 20 0 50 &0 100 120 140
Kev

p(r, Es) = NAAEI'; fKN(ES)@+ fp(ES)@

= Compton Scatter- Discrete form

gs = Ks(p,p)p
W_J

discretized scattering
system matrix

scattered
data
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=  Attenuation- Continuous form

esueo) = [ 1659) fop (— [, B 106 a2

=  Attenuation- Discrete form

Klein-Nishina and photoelectric coefficients
T T T T

Em+A2—E 10°
gli,m) = / 1(Es) [exp (—[Alip(Es))] dEs

Em—¥ 10" F
E.,+4E
glim) = fexp (IALu(B, )] [ (B aBs )

ga(i.m) = —tog (ES) — () (5,

m

A = KA,pp + KA,plp
j \ / s o]

1 1 1 1
20 40 60 80 100 120 140 160

attenuation discretized attenuation Energy(KeV)
data system matrix Detector resolution: 5KeV
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"Forward Model

= Attenuation model

ga=Ka,p+Ka,p+wy

= Compton scatter model

gs = Ks(p,p)p+ ws

» Poisson statistics are the “right” way of modeling this
problem.

» For simplicity, here we focus on the additive white Gaussian
noise case
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(p,b) = argminwi |[gs — Ks(p,p)pll3 + w2llgs — Ka,pp — Kauplls + Ry(p) + Ry(p1"Y)
PP
Y

data mismatch regularization

= (Cyclic coordinate decent method
= Jterative density reconstruction

= Jterative photoelectric reconstruction q
Dens.
= Regularization Recon.
* (radient-based and edge-preserving Q/
regularizations for density
* Non-local means (NLM) for photoelectric /3
Phot

= |nitialization QR/econ.
* Multi-scaling approach
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= Gradient-based regularization [R,(p) = APHLpHg

* Penalize all high differences even
edges

Inputs:

= Edge-preserving regularization [1] . DO@O=y

L gradient matrix

R,1(p) = Apa| DY LplJ3

Estimate of pfork = 0,1, ...

* Diagonal elements determine 1: foriterationsk =1, ...

whether a pixel belongs to the edge 2: Set v=D*Vp

map 3: Normalize v by setting v « v/||v||.
* C(loserto one: enforce smoothness 4 Map d to [0,1] by defining d i= 1 — 1.7
* Closerto zero: should be preserved 5. Define D = diag(D)

Update p® « ppk-D

@

M = D(Z)L OR M — L 7: end

[1] Oguz Semerici, “Image Formation Methods for Dual Energy and Multi-Energy Computed Tomography,” PhD Thesis, Dept. of ECE Tufts University,
October 2012.
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* Density Reconstruction
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i,

ﬁn—l—l :'argminwlngs - KS(p7f)n)p||§ +

P

wallga — Ka,pp — Kapb, |5

P41 = argmin
o)

Vi Kelob

Vw2 (84 — Kapp,) —‘ Vw2 Ka, | P

VAM(p)

poi1 = argmin[|g — K(p)p)
o)
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~ Density Reconstruction (

77k
A/
n .~ ~ 2 Initial estimate
Pn41 = argmin Hg — K(P)pHQ of density
p
Pn

|

= Solution : :
D _ Build matrices
 Iterative fixed-pointapproach A
e Linearleast squares Ks(pn: ), M

 LSQR method

Yes

= Starting with current estimation
of density and photoelectric

= Ifedge-preserving regularization
then update:

M = DWL
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Pn1 = argmnin||g — K(p)p|, P -1
p
= [nitial guess v
« Constant background image Resizing

!

» Assuming several scales with different

resolutions for discretized model and
density '
Density
= Starting with the coarse scale Estimation
representation and constant density image |

|
|
|
|
|
|
|
|
|
|
|
£, times :
|
|
|
|
|
|
|
|
|
|

= Using the final estimation of previous scale
for the nextscale
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= [nverse Problem

* Photoelectric Reconstruction
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N . A~ A A 2 Te
P, = argminwi ||gg — Ks (P, P)P,|153 + wallgs — Ka,np,, — Kapp|, + Rp(pT™7)
P

= Solution
* Non-linearleastsquares
* Levenberg-Marquardt method

= Regularization
» Non-localmeans (NLM) [2] R,(PT"*') = Rnra(P|Pn—1) = Ap[(I— W)p|[3

= Initial guess
* Constantbackground image

[2]Brian H. Tracey and Eric L. Miller, "Stabilizing dual-energy X-ray computed tomography reconstructions using patch-based regularization,” Inverse
Problems, 31(10), 05004, September 2015
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R,(P1") = Rnra (PlPnei) = Mpll(I— W)p|3

* C(Calculates weighting matrix using density
estimation as reference image

* Reduce noise artifacts

ref ref 2
1 ( D _seA (Pi+5 _Pj+5) )

i
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System setup

Grid size of 20cm x 20cm

= 3 Sources and 41 detectors

* Fiverepresentations of the grid = Materials:
10 x 10,20 % 20, ...,50 X 50 * HDPE

Water

= SNRratio of 50 dB * Graphite
* Glass

= [nitial guess

_ _ = Size of the data
* Density: Constantimage
1.05760e + 5

P, =1 g/cm?
* Photoelectric:
po =20

Size of the system matrix
(1.05760e + 5) x 2500
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= QObservation

* Compton Scattering model is successful in recovering density and
photoelectric

* Jointattenuation and Compton Scatter inversion increase the quality of
imaging

* Reconstruction doesn'trequire any prior information of the objectin
multi-scale approach

* Edge-preserving results obtains more of the structure of the object

» Stabilized reconstruction of photoelectric using “structural” regularization
like NLM regularization

= Needtodo

* Explore performance on more complex phantoms and real data
* Modify noise model
* Improve photoelectric reconstruction
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Solid Angle Calculation

source _~"

interaction
point

(Vp, = 4 arcsin (sin («) X sin (5))
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