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Emerging Models of Resilience
-Introduction-

1. Why resilience?

2. Resilience quantification

3. An example



“[T]he capacity of [a] system 
to absorb change and 
disturbances and still retain its 
basic structure and function”

- Brian Walker and David Salt

Resilience:



Nutrient Loading

Disruption to 
food web

Oligotrophic Lake Eutrophic Lake
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Example

Carpenter et al., Ecological Applications, 1999



Emerging Models of Resilience
-Introduction-

1. Why resilience?

2. Resilience quantification

3. An example



Resilience    of What    to What?

Carpenter et al., Ecosystems, 2001

- attractor
- basin of attraction
- set in state space

- disturbances… 



Disturbances

http://news.psu.edu/http://www.alaskajournal.com/
http://ocean-acidification.net

pH

𝜇 𝑡 ~ Dirac 𝛿

𝜇

𝑡

𝜇

𝑡

𝜇 𝑡 gradual

𝑥′ = 𝑓(𝑥, 𝜇 𝑡 )

discretecontinuous

𝜇

𝑡

… or rapid

… or periodic …



Disturbances

discretecontinuous

http://news.psu.edu/http://www.alaskajournal.com/
http://ocean-acidification.net

pH

𝑥 ↦ 𝜑𝜏 𝑥 + 𝜅

𝑥 𝜏

𝜅

𝑡

fix
𝜅

𝜏
= 𝑟

let 𝜏, 𝜅 → 0

𝑥

𝑡𝑡

𝑥′ = 𝑓 𝑥 + 𝜅/𝜏

𝑥



Common Resilience Indicators

Meyer, Natural Resource Modeling, 2016

controls balance between

disturbance and transient

dynamics V(x)

x

steepness

basin width 

distance to 
threshold 

bounds resilience to a single “kick”

eigenvalues of linearization

near-equilibrium return times for small perturbations



An Opportunity
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Emerging Models of Resilience
-Introduction-

1. Why resilience?

2. Resilience quantification

3. An example



What does “steepness” really measure?



What does “steepness” really measure?
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What does “steepness” really measure?



𝑥′ = 𝑓 𝑥

|𝑔|sup ≤ 𝑟

A possible definition of steepness

+𝑔(𝑡)

𝑃𝑟 𝐴
points accessible 

from A  with

|𝑔| ≤ 𝑟

𝑓(𝑥)

A
𝑥

𝑉(𝑥)

−8

𝑟 = 2:
𝑟 = 4:

𝑟 = 8:
𝑟 = 8 + 휀:

𝑓 𝑥 + 𝑟

𝑓 𝑥 − 𝑟



A possible definition of steepness

In analogy to McGehee (1988):

Chain Intensity of Attraction of A ≡ sup 𝑟 ∈ ℝ+ | 𝑃𝑟(𝐴) ⊂ 𝒟(𝐴)
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𝑟 = 8:

𝑟 = 8 + 휀:

𝑥′ = 𝑓 𝑥

|𝑔|sup ≤ 𝑟

+𝑔(𝑡)



𝑥′
𝑦′

=
−1 0
0 −2

𝑥
𝑦 + റ𝑔(𝑡)

Computing accessible regions 

𝑥2 + (2𝑦)2 = 1

𝑃1 𝟎 = ?



Computing accessible regions 



Steepness / Intensity in Lotka-Volterra
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Steepness / Intensity in Lotka-Volterra
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|𝑔| ≤ 𝑟



Steepness / Intensity in Lotka-Volterra

𝑥′
𝑦′

=
𝑥(1 − 𝑥 − 5𝑦)
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A

B

𝑟 = 0.02

0.02 ≤ Intensity(A) ≤ 0.03
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Steepness / Intensity in Lotka-Volterra

𝑥′
𝑦′

=
𝑥(1 − 𝑥 − 5𝑦)
𝑦(1 − 2𝑥 − 𝑦)

+ റ𝑔(𝑡)

|𝑔| ≤ 𝑟
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B

A

𝑟 = 0.21

𝑟 = 0.22

(subset)
0.21 ≤ Intensity(B) ≤ 0.22

0.02 ≤ Intensity(A) ≤ 0.03



Current Directions

Computational methods for finding accessible regions

sup 𝛽 𝐵 : 𝐵 an attractor block associated with 𝐴

Attractor block formulation (as in McGehee 1988)

Block intensity of attraction: 

Conjecture: 
Chain intensity = Block intensity
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To Be Continued… 



Intensity of Attraction

McGehee R. (1988) Some metric properties of attractors with applications to 
computer simulations of dynamical systems. Unpublished report. http://www-
users.math.umn.edu/~mcgehee/publications/McGehee1988/index.html 
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