Geometry and Computational Challenges in Data Science (GCCDS)

Diffusion Geometry and Manifold Learning on Fibre Bundles

Tingran Gao

Visiting Assistant Professor

Department of Mathematics
Duke University

2017 SIAM Annual Meeting
Minisymposium
Geometry and Computational Challenges in Data Science (GCCDS)
Plttsburgh, PA
Tuesday July 11, 2017

Outline

Background \& Motivations

- Graph Synchronization Problems

Manifold Learning on Fibre Bundles

- Diffusion Geometry
- Fibre Bundles
- Horizontal Diffusion Maps

Applications

- Evolutionary Anthropology

Graph Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- matrix group G, equipped with a norm $\|\cdot\|$
- edge potential $\rho: E \rightarrow G$ satisfying $\rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E$

Graph Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- matrix group G, equipped with a norm $\|\cdot\|$
- edge potential $\rho: E \rightarrow G$ satisfying $\rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E$
- Goal:
- find a vertex potential $f: V \rightarrow G$ such that

$$
f_{i}=\rho_{i j} f_{j}, \quad \forall(i, j) \in E
$$

Graph Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- matrix group G, equipped with a norm $\|\cdot\|$
- edge potential $\rho: E \rightarrow G$ satisfying $\rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E$
- Goal:
- find a vertex potential $f: V \rightarrow G$ such that

$$
f_{i}=\rho_{i j} f_{j}, \quad \forall(i, j) \in E
$$

- The goal can be achieved if and only if $\rho_{i j}=f_{i} f_{j}^{-1}$

Graph Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- matrix group G, equipped with a norm $\|\cdot\|$
- edge potential $\rho: E \rightarrow G$ satisfying $\rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E$
- Goal:
- find a vertex potential $f: V \rightarrow G$ such that

$$
f_{i}=\rho_{i j} f_{j}, \quad \forall(i, j) \in E
$$

- The goal can be achieved if and only if $\rho_{i j}=f_{i} f_{j}^{-1}$
- Not always feasible!

Graph Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- matrix group G, equipped with a norm $\|\cdot\|$
- edge potential $\rho: E \rightarrow G$ satisfying $\rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E$
- Goal:
- find a vertex potential $f: V \rightarrow G$ such that

$$
f_{i}=\rho_{i j} f_{j}, \quad \forall(i, j) \in E
$$

- The goal can be achieved if and only if $\rho_{i j}=f_{i} f_{j}^{-1}$
- Not always feasible!
- If infeasible, find the "closest solution" in the sense of

$$
\min _{\substack{f: V \rightarrow G \\\|f\| \| \neq 0}} \frac{1}{2} \frac{\sum_{i, j \in V}\left\|f_{i}-\rho_{i j} f_{j}\right\|^{2}}{\sum_{i \in V}\left\|f_{i}\right\|^{2}}(=: \eta(f))
$$

A Toy Example

$$
\begin{gathered}
y_{i}=R_{i} x+\xi_{i} \\
R_{i} \in O(d), \quad \xi_{i} \sim \text { i.i.d. noise }
\end{gathered}
$$

Afonso S. Bandeira. "Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science." (2015).

$$
\begin{gathered}
y_{i}=R_{i} x+\xi_{i} \\
R_{i} \in O(d), \quad \xi_{i} \sim \text { i.i.d. noise }
\end{gathered}
$$

Measurement: $\quad R_{i j} \approx R_{i}^{\top} R_{j}$
Recover: R_{1}, R_{2}, \cdots

$$
\begin{gathered}
y_{i}=R_{i} x+\xi_{i} \\
R_{i} \in O(d), \quad \xi_{i} \sim \text { i.i.d. noise }
\end{gathered}
$$

Measurement: $\quad R_{i j} \approx R_{i}^{\top} R_{j}$
Recover: R_{1}, R_{2}, \cdots
\Rightarrow Solve the minimization problem

$$
\min _{R_{1}, R_{2}, \cdots \in O(d)} \sum_{(i, j) \in E} w_{i j}\left\|R_{i j}-R_{i}^{\top} R_{j}\right\|_{F}^{2}
$$

Synchronization Problems: Examples

- Manifold Orientability [singer, wu (2011)]: $G=O(1)$
- Angular Synchronization [Singer (2011)]: $G=U(1)$
- Vector Diffusion Maps [Singer, wu (2012)]: $G=O(d)$
- Multireference Alignment [Bandeira et al. (2014)]: $G=\{$ cyclic shifts $\}$
- Global Registration of Point Clouds [Chaudhury (2015)]: $G=\mathbb{E}_{d}$
- Collection Shape Matching [Nguyen et al. (2011)], [Huang, Guibas (2013)], [Chen et al. (2014)], [Maron et al. (2016)]: $G=S_{n}$ (symm. group of n elements)
- Cryo-EM Structural Reconstruction [Singer et al. (2011)], [Shkolnisky, Singer (2012)], [Zhao, Singer (2014)], [Bandeira et al. (2015)]: $G=S O(3)$
- Cartan Motion Groups [Ozyesil et al. (2016)]: $G=K \ltimes V$ (more about this soon - in Nir Sharon's talk)

The Geometry of Synchronization Problems

- Data:
- graph $\Gamma=(V, E)$
- linear algebraic group G, equipped with a norm $\|\cdot\|$
- edge potential $\rho: E \rightarrow G$ satisfying $\rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E$
- Observation:
- Let $\mathfrak{U}=\left\{U_{i}|1 \leq i \leq|V|\}\right.$ be an open cover of Γ (viewed as a 1-dimensional simplicial complex), where U_{i} is the (open) star neighborhood of vertex i.

- The ρ defines a flat principal G-bundle over $\Gamma\left(\right.$ denoted as $\left.\mathscr{B}_{\rho}\right)$.

Fibre Bundle $\mathscr{E}=(E, M, F, \pi)$

- E : total manifold
- M: base manifold
- F: fibre
- E is "locally equivalent" to $M \times F$, but not necessarily so globally!

PRINCETON LANDMARKS II MATHEMATICS

Norman Steenrod

The lopology offilire Pundes

Theorem (Steenrod 1951, §2). If topological group G acts on F and $\left\{U_{i}\right\},\left\{\rho_{i j}\right\}$ is a system of coordinate transformations in the space M such that

$$
\begin{aligned}
\rho_{i i} & =e \in G \quad \text { for all } U_{i} \\
\rho_{i j} & =\rho_{j i}^{-1} \quad \text { if } U_{i} \cap U_{j} \neq \emptyset \\
\rho_{i j} \rho_{j k} & =\rho_{i k} \quad \text { if } U_{i} \cap U_{j} \cap U_{k} \neq \emptyset
\end{aligned}
$$

then there exists a fibre bundle \mathscr{B} with base space M, fibre F, group G, and coordinate transforms $\left\{\rho_{i j}\right\}$.

No triple intersections!

Theorem (Steenrod 1951, §2). If topological group G acts on F and $\left\{U_{i}\right\},\left\{\rho_{i j}\right\}$ is a system of coordinate transformations in the space M such that

$$
\begin{aligned}
& \rho_{i i}=e \in G \quad \text { for all } U_{i} \\
& \rho_{i j}=\rho_{j i}^{-1} \quad \text { if } U_{i} \cap U_{j} \neq \emptyset
\end{aligned}
$$

ค..р.i- - if ll.
then there exists a fibre bundle \mathscr{B} with base space M, fibre F, group G, and coordinate transforms $\left\{\rho_{i j}\right\}$.

Geometric Observations

- Denote

$$
\begin{aligned}
& C^{0}(\Gamma ; G):=\{f: V \rightarrow G\} \text { vertex potentials } \\
& C^{1}(\Gamma ; G):=\left\{\rho: E \rightarrow G \mid \rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E\right\} \text { edge potentials }
\end{aligned}
$$

Geometric Observations

- Denote

$$
\begin{aligned}
& C^{0}(\Gamma ; G):=\{f: V \rightarrow G\} \text { vertex potentials } \\
& C^{1}(\Gamma ; G):=\left\{\rho: E \rightarrow G \mid \rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E\right\} \text { edge potentials }
\end{aligned}
$$

- Consider the right action of $C^{0}(\Gamma ; G)$ on $C^{1}(\Gamma ; G)$:

$$
\begin{aligned}
C^{1}(\Gamma ; G) \times C^{0}(\Gamma ; G) & \rightarrow C^{1}(\Gamma ; G) \\
(\rho, f) & \longmapsto \tau_{\rho} f
\end{aligned}
$$

defined as $\left(\tau_{f} \rho\right)_{i j}:=f_{i}^{-1} \rho_{i j} f_{j}, \quad \forall(i, j) \in E$.

Geometric Observations

- Denote

$$
\begin{aligned}
& C^{0}(\Gamma ; G):=\{f: V \rightarrow G\} \text { vertex potentials } \\
& C^{1}(\Gamma ; G):=\left\{\rho: E \rightarrow G \mid \rho_{i j}=\rho_{j i}^{-1}, \forall(i, j) \in E\right\} \text { edge potentials }
\end{aligned}
$$

- Consider the right action of $C^{0}(\Gamma ; G)$ on $C^{1}(\Gamma ; G)$:

$$
\begin{aligned}
C^{1}(\Gamma ; G) \times C^{0}(\Gamma ; G) & \rightarrow C^{1}(\Gamma ; G) \\
(\rho, f) & \longmapsto \tau_{\rho} f
\end{aligned}
$$

defined as $\left(\tau_{f} \rho\right)_{i j}:=f_{i}^{-1} \rho_{i j} f_{j}, \quad \forall(i, j) \in E$.

- ρ synchronizable $\Leftrightarrow \tau_{f} \rho$ synchronizable for all $f \in C^{0}(\Gamma ; G)$,
i.e. synchronizability is defined at the level of equivalence classes $C^{1}(\Gamma ; G) / C^{0}(\Gamma ; G)$

Moduli Space of Synchronization Data

Theorem (G., Brodzki, Muhkerjee (2016)). There exists a one-to-one correspondence (between sets)

$$
C^{1}(\Gamma ; G) / C^{0}(\Gamma ; G) \cong \operatorname{Hom}\left(\pi_{1}(\Gamma), G\right) / G
$$

where G acts on $\operatorname{Hom}\left(\pi_{1}(\Gamma), G\right)$ by conjugations:

$$
\begin{aligned}
\operatorname{Hom}\left(\pi_{1}(\Gamma), G\right) \times G & \longrightarrow \operatorname{Hom}\left(\pi_{1}(\Gamma), G\right) \\
(\phi, g) & \longmapsto g^{-1} \phi g
\end{aligned}
$$

Tingran Gao, Jacek Brodzki, Sayan Mukherjee. "The Geometry of Synchronization Problems and Learning Group Actions." submitted. arXiv:1610.09051, 2016

Fundamental Group of a Graph?

$$
\pi_{1}(\Gamma)=\bigvee_{k=1}^{|E|-|V|+1} S^{1}
$$

$$
\operatorname{Hom}\left(\pi_{1}(\Gamma), G\right)=\underbrace{G * G * G * \cdots * G * G * G}_{(|E|-|V|+1) \text {-copy free product }}
$$

$$
C^{0}(\Gamma ; G) / C^{1}(\Gamma ; G) \cong \operatorname{Hom}\left(\pi_{1}(\Gamma), G\right) / G
$$

- Proof builds upon construction of a holonomy homomorphism
- The orbit space $C^{0}(\Gamma ; G) / C^{1}(\Gamma ; G)$ is exactly the first cohomology set $\check{H}^{1}((\Gamma, \mathfrak{U}), \underline{G})$
- "Synchronizability" is a property at the level of equivalence classes $\left[f_{i}^{-1} \rho_{i j} f_{j}\right]_{(i, j) \in E}$
- $\rho \in C^{1}(\Gamma ; G)$ synchronizable
$\Leftrightarrow[\rho]=[e]$ as equivalence classes in $C^{0}(\Gamma ; G) / C^{1}(\Gamma ; G)$
\Leftrightarrow the principal G-bundle \mathscr{B}_{ρ} is trivial
- Future work: study synchronization problems through the geometry of the moduli space/character variety

Quick Aside: A Twisted De Rham-Hodge Theory

- Combinatorial Hodge Theory:

$$
0 \rightleftarrows \Omega^{0}(\Gamma) \stackrel{d}{\rightleftarrows} \Omega^{1}(\Gamma) \rightleftarrows 0
$$

- Twisted Combinatorial Hodge Theory:

$$
0 \rightleftarrows C^{0}(\Gamma ; F) \underset{\delta_{\rho}}{\stackrel{d_{\rho}}{\rightleftarrows}} \Omega^{1}\left(\Gamma ; \mathscr{B}_{\rho}[F]\right) \rightleftarrows 0
$$

- Theorem (G., Brodzki, Muhkerjee (2016)). Define

$$
\Delta_{\rho}^{(0)}:=\delta_{\rho} d_{\rho}, \quad \Delta_{\rho}^{(1)}:=d_{\rho} \delta_{\rho}
$$

then the following Hodge-type decomposition holds:

$$
\begin{aligned}
C^{0}(\Gamma ; F) & =\operatorname{ker} \Delta_{\rho}^{(0)} \oplus \operatorname{im} \delta_{\rho}
\end{aligned}=\operatorname{ker} d_{\rho} \oplus \operatorname{im} \delta_{\rho}, ~ 子 ~\left(\Gamma ; \mathscr{B}_{\rho}[F]\right)=\operatorname{im} d_{\rho} \oplus \operatorname{ker} \Delta_{\rho}^{(1)}=\operatorname{im} d_{\rho} \oplus \operatorname{ker} \delta_{\rho} .
$$

Application: Evolutionary Anthropology

Jukka Jernvall

More Precisely: biological morphologists

Study Teeth \& Bones of extant \& extinct animals

Data Acquisition: microCT (High Resolution X-ray CT)

Surface reconstructed from μ CT-scanned voxel data

Landmarked Teeth \longrightarrow

$d_{\text {Procrustes }}^{2}\left(S_{1}, S_{2}\right)=\min _{R \text { rigid motion }} \frac{1}{k} \sum_{j=1}^{k}\left\|R\left(x_{j}\right)-y_{j}\right\|^{2}$

Boyer et al. "Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces." Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.

A Zoo of Shape Distances...

$$
\begin{aligned}
d_{\mathrm{cWn}}\left(S_{1}, S_{2}\right): & \text { Conformal Wasserstein Distance (CWD) } \\
d_{\mathrm{cP}}\left(S_{1}, S_{2}\right): & \text { Continuous Procrustes Distance (CPD) } \\
d_{\mathrm{cKP}}\left(S_{1}, S_{2}\right): & \text { Continuous Kantorovich-Procrustes Distance (CKPD) }
\end{aligned}
$$

$$
d_{\mathrm{cP}}\left(S_{1}, S_{2}\right)=\inf _{\mathcal{C} \in \mathcal{A}\left(S_{1}, S_{2}\right)} \inf _{R \in \mathbb{E}(3)}\left(\int_{S_{1}}\|R(x)-\mathcal{C}(x)\|^{2} d \operatorname{vol}_{S_{1}}(x)\right)^{\frac{1}{2}}
$$

II. cP determined correspondence map between two structur

Interpretability Issue

> Even mistakes made by CPD were similar to biologists' mistakes!

Resolving Interpretability Issue \#1: Trust Small Distances

"Correct" like a biologist, but automatically?
small distances between $S_{1}, S_{2} \longrightarrow$ OK maps larger distances \longrightarrow not OK

Gao et al. (2016) "Development and Assessment of Fully Automated and Globally Transitive Geometric
Morphometric Methods." submitted. DOI: http://dx.doi.org/10.1101/086280

Trust Only small Distances: Geodesics in Shape Space

Diffusion Maps and Diffusion Distances

Diffusion Maps: Embedding Graphs into ℓ_{2} using Eigenfunctions and the Heat Kernel of the Graph Laplacian
Coifman, R. R., and Lafon, S. "Diffusion Maps." Appl. \& Comput. Harmonic Analysis 21, no. 1 (2006): 5-30.

Diffusion Maps: "Knit Together" Local Geometry

Small distances are much more reliable!

Resolving Interpretability Issue \#2: Use Maps!

$$
d_{\mathrm{cP}}\left(S_{i}, S_{j}\right)=\inf _{\mathcal{C} \in \mathcal{A}\left(S_{i}, S_{j}\right)} \inf _{R \in \mathbb{E}(3)}\left(\int_{S_{i}}\|R(x)-\mathcal{C}(x)\|^{2} d \operatorname{vol}_{S_{i}}(x)\right)^{\frac{1}{2}}
$$

Geometric Model __ Fibre Bundles

Fibre Bundle $\mathscr{E}=(E, M, F, \pi)$

- E: total manifold
- M: base manifold
- F: fibre
- E is "locally equivalent" to $M \times F$, but not necessarily so globally!

Shape Space is NOT a Trivial Fibre Bundle

Horizontal Random Walk on a Fibre Bundle

Horizontal Diffusion Process in Stochastic Geometry

- K.D. Elworthy, W.S. Kendall. "Factorization of Harmonic Maps and Brownian Motions." University of Warwick, 1985.
- M. Liao, "Factorization of Diffusions on Fibre Bundles." Transactions of the American Mathematical Society. 311.2 (1989): 813-827.
$>$ M. Arnaudon, A. Thalmaier. "Horizontal Martingales in Vector Bundles." Séminaire de Probabilits de Strasbourg. 36 (2002): 419-456.
- K.D. Elworthy, Y. Le Jan, and X. Li. "The Geometry of Filtering." Springer Basel, 2010. 33-59.
- F. Baudoin. "An Introduction to the Geometry of Stochastic Flows." London: Imperial College Press, 2004.

Horizontal Diffusion Maps

Horizontal Diffusion Maps

$$
\mathcal{D}^{-1} \mathcal{W} u_{k}=\lambda_{k} u_{k}, \quad 1 \leq k \leq \kappa
$$

Horizontal Diffusion Maps

Automatic Landmarking — Interpretability

Species Clustering

Horizontal Base Diffusion Distance (with Maps)

Diffusion Distance (without Maps)

Species Clustering

Horizontal Base Diffusion Distance (with Maps)

HDM: Mathematical Theory

$$
P_{\epsilon}^{(\alpha)}=\left(D_{\epsilon}^{(\alpha)}\right)^{-1} W_{\epsilon}^{(\alpha)}
$$

$$
H_{\epsilon, \delta}^{(\alpha)}=\left(\mathscr{D}_{\epsilon, \delta}^{(\alpha)}\right)^{-1} \mathscr{W}_{\epsilon, \delta}^{(\alpha)}
$$

Asymptotic Theory for Diffusion Maps

Theorem (Belkin-Niyogi 2005). Let data points x_{1}, \cdots, x_{n} be sampled from a uniform distribution on M. Under mild technical assumptions, there exist a sequence of real numbers $t_{n} \rightarrow 0$ and a constant C such that for any $f \in C^{\infty}(M)$

$$
\lim _{n \rightarrow \infty} C \frac{\left(4 \pi t_{n}\right)^{-\frac{k+2}{2}}}{n} \frac{P_{t_{n}}-I}{t_{n}} f(x)=\Delta_{M} f(x), \quad \forall x \in M
$$

Theorem (Coifman-Lafon 2006). As $\epsilon \rightarrow 0$, for any $f \in C^{\infty}(M)$ and $x \in M$, if $\left\{x_{i}\right\}_{i=1}^{n} \sim p(x) \operatorname{dvol}_{M}(x)$, then w.h.p.
$P_{\epsilon}^{(\alpha)} f(x)$

$$
=f(x)+\epsilon \frac{m_{2}}{2 m_{0}}\left[\frac{\Delta_{M}\left[f p^{1-\alpha}\right](x)}{p^{1-\alpha}(x)}-f(x) \frac{\Delta_{M} p^{1-\alpha}(x)}{p^{1-\alpha}(x)}\right]+O\left(\epsilon^{2}\right)
$$

HDM: Horizontal Random Walk on a Fibre Bundle

$$
P_{\epsilon}^{(\alpha)}=\left(D_{\epsilon}^{(\alpha)}\right)^{-1} W_{\epsilon}^{(\alpha)} \quad H_{\epsilon, \delta}^{(\alpha)}=\left(\mathscr{D}_{\epsilon, \delta}^{(\alpha)}\right)^{-1} \mathscr{W}_{\epsilon, \delta}^{(\alpha)}
$$

Asymptotic Theory for HDM on (E, M, F, π)

Theorem (G. 2016). If $\delta=O(\epsilon)$ as $\epsilon \rightarrow 0$, then for any $f \in C^{\infty}(E)$ and $(x, v) \in E$, as $\epsilon \rightarrow 0$,

$$
H_{\epsilon, \delta}^{(\alpha)} f(x, v)
$$

$$
\begin{aligned}
= & f(x, v)+\epsilon \frac{m_{21}}{2 m_{0}}\left[\frac{\Delta_{H}\left(f p^{1-\alpha}\right)(x, v)}{p^{1-\alpha}(x, v)}-f(x, v) \frac{\Delta_{H} p^{1-\alpha}(x, v)}{p^{1-\alpha}(x, v)}\right] \\
& +\delta \frac{m_{22}}{2 m_{0}}\left[\frac{\Delta_{E}^{v}\left(f p^{1-\alpha}\right)(x, v)}{p^{1-\alpha}(x, v)}-f(x, v) \frac{\Delta_{E}^{v} p^{1-\alpha}(x, v)}{p^{1-\alpha}(x, v)}\right] \\
& +O\left(\epsilon^{2}+\epsilon \delta+\delta^{2}\right) .
\end{aligned}
$$

Asymptotic Theory for HDM on (E, M, F, π)

Theorem (G. 2016). If $\delta=O(\epsilon)$ as $\epsilon \rightarrow 0$, then for any $f \in C^{\infty}(E)$ and $(x, v) \in E$, as $\epsilon \rightarrow 0$,
$H_{\epsilon, \delta}^{(\alpha)} f(x, v)$

$$
\begin{aligned}
= & f(x, v)+\epsilon \frac{m_{21}}{2 m_{0}}\left[\frac{\Delta_{H}\left(f p^{1-\alpha}\right)(x, v)}{p^{1-\alpha}(x, v)}-f(x, v) \frac{\Delta_{H} p^{1-\alpha}(x, v)}{p^{1-\alpha}(x, v)}\right] \\
& +\delta \frac{m_{22}}{2 m_{0}}\left[\frac{\Delta_{E}^{v}\left(f p^{1-\alpha}\right)(x, v)}{p^{1-\alpha}(x, v)}-f(x, v) \frac{\Delta_{E}^{v} p^{1-\alpha}(x, v)}{p^{1-\alpha}(x, v)}\right] \\
& +O\left(\epsilon^{2}+\epsilon \delta+\delta^{2}\right) .
\end{aligned}
$$

- Δ_{E}^{V} is the vertical Laplacian on E
- Δ_{H} is the Bochner horizontal Laplacian on E
- In general $\Delta_{H}+\Delta_{E}^{V} \neq \Delta_{E}$, true if and only if π is harmonic

HDM on Unit Tangent Bundles: Validation on SO(3)

$\mathrm{SO}(3)$ as the unit tangent bundle of $S^{2} \subset \mathbb{R}^{3}$

HDM on Unit Tangent Bundles: Validation on SO(3)

Bar plots of the smallest 36 eigenvalues of horizontal, total, and base Laplacians on $\mathrm{SO}(3)$, with fixed $\epsilon=0.2$ and varying δ

Tingran Gao. The Diffusion Geometry of Fibre Bundles. arXiv:1602.02330, 2016

The Convergence Rate: Diffusion Maps

Theorem (Singer 2006). Suppose N points are i.i.d. uniformly sampled from a d-dimensional Riemannian manifold M. The graph diffusion operator $P_{\epsilon, \alpha}$ converges to its smooth limit at rate

$$
O\left(N^{-\frac{1}{2}} \epsilon^{\frac{1}{2}-\frac{d}{4}}\right)
$$

Corollary. Under the same assumption, non-uniform sampling has convergence rate

$$
O\left(N^{-\frac{1}{2}} \epsilon^{-\frac{d}{4}}\right)
$$

The Convergence Rate: HDM on Unit Tangent Bundles

Theorem (G. 2016). Suppose N_{B} points are i.i.d. sampled from a d-dimensional Riemannian manifold M, and N_{F} unit tangent vectors are i.i.d. sampled at each of the N_{B} samples. The graph horizontal diffusion operator $H_{\epsilon, \delta}^{\alpha}$ converges to its smooth limit at rate

$$
O\left(\theta_{*}^{-1} N_{B}-\frac{1}{2} \epsilon^{-\frac{d}{4}}\right),
$$

where

$$
\theta_{*}=1-\frac{1}{1+\epsilon^{\frac{d}{4}} \delta^{\frac{d-1}{4}} \sqrt{\frac{N_{F}}{N_{B}}}}
$$

Tingran Gao. "The Diffusion Geometry of Fibre Bundles." submitted. arXiv:1602.02330, 2016

Collaborators

Rima Alaifari ETH Zürich

Yaron Lipman Weizmann

Doug Boyer Duke

Roi Poranne
ETH Zürich

Ingrid Daubechies
Duke

Jesús Puente J.P. Morgan

Tingran Gao Duke

Robert Ravier Duke

Thank You!

Tingran Gao. "The Diffusion Geometry of Fibre Bundles." submitted. arXiv:1602.02330, 2016
Tingran Gao, Jacek Brodzki, Sayan Mukherjee. "The Geometry of Synchronization Problems and Learning Group Actions." submitted. arXiv:1610.09051, 2016

