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Motivation: seismic oil and gas exploration

@ Seismic exploration

@ Seismic waves in the
subsurface induced by
sources (shots)

@ Measurements of seismic
signals on the surface or
in a well bore

@ Determine the acoustic or
elastic parameters of

the subsurface
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Forward model: acoustic wave equation

@ Consider an acoustic wave equation in the time domain
ur=Au inQ, tel0,T]
with initial conditions
Ult—o = Up, Ut[t=0 =0
@ The spatial operator A € RV*N is a fine grid discretization of
Alc) = 2A

with the appropriate boundary conditions

@ The solution is
u(t) = cos(tv—A)up [l]l
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Source model

@ We stack all p sources in a single tall skinny matrix S € RN*P and
introduce them in the initial condition

Ult=0 =S, Ui|t=0=0
@ The solution matrix u(t) € RN*P is
u(t) = cos(tv—A)S
@ We assume the form of the source matrix
S = ¢°(A)CE,

where p columns of E are point sources on the surface, g?(w) is
the Fourier transform of the source wavelet and C = diag(c)

@ Here we take g?(w) = e°“ with small o so that S is localized lll'l
near E
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Receiver and data model

@ For simplicity assume that the sources and receivers are
collocated

@ Then the receiver matrix R € RN*P is
R=C'E
@ Combining the source and receiver we get the data model

F(t; c) T cos(ty/—

a p x p matrix function of time
@ The data model can be fully symmetrized

F(t) = B cos (t —K) B,

with A = CAC and B = g(A)E llll
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Seismic inversion and imaging

@ Seismic inversion: determine ¢ from the knowledge of measured
data F*(t) (full waveform inversion, FWI); highly nonlinear since
F(-;c)is nonlinearin c

e Conventional approach: non-linear least squares (output least
squares, OLS)
minimize |F* — F(-; )|l

e Abundant local minima
e Slow convergence
o Low frequency data needed

@ Seismic imaging: estimate c or its discontinuities given F(t) and
also a smooth kinematic model ¢
e Conventional approach: linear migration (Kirchhoff, reverse time
migration - RTM)

o Major difficulty: multiple reflections wl
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Reduced order models

@ The data is always discretely sampled, say uniformly at fy = kr

@ The choice of 7 is very important, optimally we want = around
Nyquist rate

@ The discrete data samples are

F« = F(kr) = BT cos (/wﬁ) =
=BT cos <k arccos <cosT\/3>> B =B'T«(P)B,

where Ty is Chebyshev polynomial and the propagator is

P = cos (7 —f\)

@ We want a reduced order model (ROM) P, B that fits the

measured data ll!'l
F, =B T(P)B=B'T((P)B, k=0,1,...,2n—1
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Projection ROMs

@ Projection ROMs are obtained from
P=V'PV, B=V'B,
where V is an orthonormal basis for some subspace

@ How do we get a ROM that fits the data?
@ Consider a matrix of solution shapshots

U= [Uo,U1,. . .,Un_1] € Ranp, Uy = Tk(P)B

Theorem (ROM data interpolation)
If span(V) = span(U) and V'V = I then

Fr,=B T (P)B=B'T((P)B, k=0,1,...,2n—1,

where P = VTPV € R"P*™ and B = VTB € R™P*P,
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ROM from measured data

@ We do not know the solutions in the whole domain U and thus V is
unknown

@ How do we obtain the ROM from just the data Fy?
@ The data does not give us U, but it gives us the inner products!
@ A basic property of Chebyshev polynomials is

TOOTX) = 3 (Tosf6) + Ty ()

@ Then we can obtain

’
(V'U);; =ulu; = 5 (Fisj + Fij),

’
(UTPU);; =u/Pu; = 7 Fivitt +Fiipn + Fpyiq +Fjiy) llll
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ROM from measured data

@ Suppose U is orthogonalized by a block QR (Gram-Schmidt)
procedure
U=VL', equivalently V= UL,
where L is a block Cholesky factor of the Gramian U”U known
from the data
U'u=LL"

@ The projection is given by
P=VPV=L" (UTPU> L7,

where UTPU is also known from the data

@ The use of Cholesky for orthogonalization is essential, (block)
lower triangular structure is the linear algebraic equivalent of
causality llll
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Image from the ROM

@ How to extract an image form the ROM?

ROM is a projection, we can use backprojection

e If span(U) is suffiently rich, then columns of VVT should be good
approximations of é-functions, hence

P~ VV'PVV' = VPV’

@ Problem: snapshots U in the whole domain are unknown, so are
orthogonalized snapshots V

@ In imaging we have a rough idea of kinematics, i.e. we know
approximately the travel times

@ This is equivalent to knowing a kinematic model, a smooth
non-reflective sound speed ¢,

@ Once ¢ is fixed, we know everything associated with it

Ao, Py, Up, Vo, Py lﬂ'l
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Approximate backprojection

@ We take the backprojection P ~ VPVT and make another
approximation replacing unknown V with the kinematic model
basis Vy: _

P~ V,PV]

@ For the kinematic model we know the basis exactly
PO ~ Voﬁovg

@ If 0x is a d-function centered at point x, then

Péy = coS (rﬁ) dox = w(7),

where w(t) is a solution to
Wy = RW, w(0) = dx, wi(0) =0,
i.e. itis a Green’s function G(x, -, 1) llll
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Green’s function and imaging

@ Diagonal entries of P are Green’s function evaluated at the same
point
G(x,x,T) = 6] Pdx

@ By taking the diagonals of backprojections we may extract the
approximate Green’s functions

G(+, +,7)=Go( -, -,7) = diag(P—Po) ~ diag (Vo(P — Po)V§ ) =T

@ Approximation quality depends only on how well columns of VVOT
and vovg approximate §-functions

@ It appears that Z works well as an imaging functional to image
the discontinuities of ¢

@ Despite the name “backprojection” our method is nonlinear in the
data since obtaining P from F is a nonlinear procedure (block
Lanczos and matrix inversion) llll
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Simple example: layered model

True sound speed ¢
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A simple layered model, p = 32
sources/receivers (black x)
Constant velocity kinematic
model ¢o = 1500 m/s

Multiple reflections from waves
bouncing between layers and
surface

Each multiple creates an RTM
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Why ROM backprojection imaging works?

@ Suppression of multiples: implicit causal orhthogonalization
(block Gram-Schmidt) of snapshots U removes the “tail” with
reflections and produces a focused, localized pulse

@ Compare U and V for various times
@ Approximation

G(-, +,7) = Gol -, -, 7) ~ dliag (Vo(P — Po)V{ )

only works if columns of va and VOVOT are good approximations
of §-functions
@ Plot columns of VV] and VoV{ for various points in the domain

@ ROM computation resolves the dynamics fully, so image
imperfections are mostly due to deficiencies of the kinematic llll
model
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V
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Approximation of ¢-functions
Columns of VoV/ Columns of VV[
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Approximation of ¢-functions
Columns of VoV{ Columns of VV[
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High contrast example: hydraulic fractures

True ¢ Backprojection image Z
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@ Important application: acoustic monitoring of hydraulic fracturing

@ Multiple thin fractures (down to 1cm in width, here 10cm)

@ Very high contrasts: ¢ = 4500m/s in the surrounding rock, lﬂ.l
¢ = 1500m/s in the fluid inside fractures
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High contrast example: hydraulic fractures
True ¢ RTM image
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@ Important application: acoustic monitoring of hydraulic fracturing
@ Multiple thin fractures (down to 1¢m in width, here 10cm)

@ Very high contrasts: ¢ = 4500m/s in the surrounding rock, wl
¢ = 1500m/s in the fluid inside fractures
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Large scale example: Marmousi model

Standard Marmousi model, 13.5km x 2.7km

Forward problem is discretized on a 15m grid with
N =900 x 180 = 162,000 nodes

Kinematic model ¢p: smoothed out true ¢ (465m horizontally, 315m
vertically)

Time domain data sample rate = = 33.5ms, source frequency about
15Hz, n = 35 data samples measured

Number of sources/receivers p = 90 uniformly distributed with spacing
150m

Data is split into 17 overlapping windows of 10 sources/receivers each
(1.5km max offset)

Reflecting boundary conditions

No data filtering, everything used as is (surface wave, reflections from
the boundaries, multiples)
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Backprojection imaging: Marmousi model
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Backprojection imaging: Marmousi model
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Marmousi backprojection i |mage well Iog
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Marmousi backprojection i |mage well Iog
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Marmousi backprojection i |mage well Iog
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Marmousi backprojection i |mage well Iog
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Marmousi backprojection i |mage well Iog
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Marmousi backprojection image: well log
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Other possible applications: ultrasound tomography

True ¢ Backprojection image
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@ Ultrasound screening for early detection of breast cancer

@ Conventional ultrasound imaging techniques are rather crude,
advanced methods originating in geophysics are in demand lﬂl
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Conclusions and future work

@ Novel approach to acoustic imaging using reduced order models

@ Time domain formulation is essential, makes use of causality (linear
algebraic analogues - Gram-Schmidt, Cholesky decomposition)

@ Nonlinear imaging: strong suppression of multiple reflection artifacts;
improved resolution compared to RTM

Future work:

@ Non-symmetric forward model and ROM for non-collocated
sources/receivers

@ Better theoretical understanding, relation of Z to ¢

@ Use for ROMs for full waveform inversion
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