Nonlinear acoustic imaging via reduced order model backprojection

Alexander V. Mamonov¹, Vladimir Druskin², Andrew Thaler³ and Mikhail Zaslavsky²

> ¹University of Houston, ²Schlumberger-Doll Research Center, ³The Mathworks, Inc.

Motivation: seismic oil and gas exploration

Seismic exploration

- Seismic waves in the subsurface induced by sources (shots)
- Measurements of seismic signals on the surface or in a well bore
- Determine the acoustic or elastic parameters of the subsurface

• Consider an acoustic wave equation in the time domain

$$u_{tt} = \mathbf{A}u \quad \text{in } \Omega, \quad t \in [0, T]$$

with initial conditions

$$u|_{t=0} = u_0, \quad u_t|_{t=0} = 0$$

• The spatial operator $\boldsymbol{A} \in \mathbb{R}^{N \times N}$ is a fine grid discretization of

$$A(c) = c^2 \Delta$$

with the appropriate boundary conditions

The solution is

$$u(t) = \cos(t\sqrt{-\mathbf{A}})u_0$$

Source model

 We stack all *p* sources in a single tall skinny matrix S ∈ ℝ^{N×p} and introduce them in the initial condition

$$||_{t=0} = S, \quad ||_{t=0} = 0$$

• The solution matrix $\mathbf{u}(t) \in \mathbb{R}^{N \times p}$ is

$$\mathbf{u}(t) = \cos(t\sqrt{-\mathbf{A}})\mathbf{S}$$

• We assume the form of the source matrix

$$\mathbf{S} = q^2(\mathbf{A})\mathbf{C}\mathbf{E},$$

where *p* columns of **E** are point sources on the surface, $q^2(\omega)$ is the Fourier transform of the source wavelet and **C** = diag(*c*)

 Here we take q²(ω) = e^{σω} with small σ so that S is localized near E

Receiver and data model

- For simplicity assume that the sources and receivers are collocated
- Then the receiver matrix $\mathbf{R} \in \mathbb{R}^{N \times p}$ is

$$\mathbf{R} = \mathbf{C}^{-1}\mathbf{E}$$

• Combining the source and receiver we get the data model

$$\mathbf{F}(t; c) = \mathbf{R}^T \cos(t \sqrt{-\mathbf{A}(c)}) \mathbf{S},$$

a $p \times p$ matrix function of time

The data model can be fully symmetrized

$$\mathbf{F}(t) = \mathbf{B}^T \cos\left(t\sqrt{-\widehat{\mathbf{A}}}\right) \mathbf{B},$$

with
$$\widehat{\mathbf{A}} = \mathbf{C} \Delta \mathbf{C}$$
 and $\mathbf{B} = q(\widehat{\mathbf{A}})\mathbf{E}$

Seismic inversion and imaging

- Seismic inversion: determine c from the knowledge of measured data F^{*}(t) (full waveform inversion, FWI); highly nonlinear since F(·; c) is nonlinear in c
 - Conventional approach: non-linear least squares (output least squares, OLS)

```
minimize \|\mathbf{F}^{\star} - \mathbf{F}(\cdot; \mathbf{c})\|_2^2
```

- Abundant local minima
- Slow convergence
- Low frequency data needed
- Seismic imaging: estimate c or its discontinuities given F(t) and also a smooth kinematic model c₀
 - Conventional approach: linear migration (Kirchhoff, reverse time migration RTM)
 - Major difficulty: multiple reflections

Reduced order models

- The data is always discretely sampled, say uniformly at $t_k = k\tau$
- The choice of τ is very important, optimally we want τ around Nyquist rate
- The discrete data samples are

$$\begin{aligned} \mathbf{F}_{k} &= \mathbf{F}(k\tau) = \mathbf{B}^{T} \cos\left(k\tau \sqrt{-\widehat{\mathbf{A}}}\right) \mathbf{B} = \\ &= \mathbf{B}^{T} \cos\left(k \arccos\left(\cos\tau \sqrt{-\widehat{\mathbf{A}}}\right)\right) \mathbf{B} = \mathbf{B}^{T} T_{k}(\mathbf{P}) \mathbf{B}, \end{aligned}$$

where T_k is Chebyshev polynomial and the **propagator** is

$$\mathbf{P} = \cos\left(\tau\sqrt{-\widehat{\mathbf{A}}}\right)$$

We want a reduced order model (ROM) P
 B
 that fits the measured data

$$\mathbf{F}_k = \mathbf{B}^T T_k(\mathbf{P}) \mathbf{B} = \widetilde{\mathbf{B}}^T T_k(\widetilde{\mathbf{P}}) \widetilde{\mathbf{B}}, \quad k = 0, 1, \dots, 2n-1$$

Projection ROMs

Projection ROMs are obtained from

$$\widetilde{\mathbf{P}} = \mathbf{V}^T \mathbf{P} \mathbf{V}, \quad \widetilde{\mathbf{B}} = \mathbf{V}^T \mathbf{B},$$

where ${\bf V}$ is an orthonormal basis for some subspace

- How do we get a ROM that fits the data?
- Consider a matrix of solution snapshots

$$\mathbf{U} = [\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{n-1}] \in \mathbb{R}^{N \times np}, \quad \mathbf{u}_k = T_k(\mathbf{P})\mathbf{B}$$

Theorem (ROM data interpolation)

If $span(\mathbf{V}) = span(\mathbf{U})$ and $\mathbf{V}^T \mathbf{V} = \mathbf{I}$ then

$$\mathbf{F}_k = \mathbf{B}^T T_k(\mathbf{P}) \mathbf{B} = \widetilde{\mathbf{B}}^T T_k(\widetilde{\mathbf{P}}) \widetilde{\mathbf{B}}, \quad k = 0, 1, \dots, 2n-1,$$

where $\widetilde{\mathbf{P}} = \mathbf{V}^T \mathbf{P} \mathbf{V} \in \mathbb{R}^{np \times np}$ and $\widetilde{\mathbf{B}} = \mathbf{V}^T \mathbf{B} \in \mathbb{R}^{np \times p}$.

ROM from measured data

- We do not know the solutions in the whole domain U and thus V is unknown
- How do we obtain the ROM from just the data \mathbf{F}_k ?
- The data does not give us **U**, but it gives us the inner products!
- A basic property of Chebyshev polynomials is

$$T_i(x)T_j(x) = \frac{1}{2}(T_{i+j}(x) + T_{|i-j|}(x))$$

Then we can obtain

$$(\mathbf{U}^{T}\mathbf{U})_{i,j} = \mathbf{u}_{i}^{T}\mathbf{u}_{j} = \frac{1}{2}(\mathbf{F}_{i+j} + \mathbf{F}_{i-j}),$$

$$(\mathbf{U}^{T}\mathbf{P}\mathbf{U})_{i,j} = \mathbf{u}_{i}^{T}\mathbf{P}\mathbf{u}_{j} = \frac{1}{4}(\mathbf{F}_{j+i+1} + \mathbf{F}_{j-i+1} + \mathbf{F}_{j+i-1} + \mathbf{F}_{j-i-1})$$

ROM from measured data

 Suppose U is orthogonalized by a block QR (Gram-Schmidt) procedure

$$\mathbf{U} = \mathbf{V}\mathbf{L}^{T}$$
, equivalently $\mathbf{V} = \mathbf{U}\mathbf{L}^{-T}$,

where **L** is a **block Cholesky** factor of the Gramian $\mathbf{U}^{T}\mathbf{U}$ known from the data

$$\mathbf{U}^T\mathbf{U} = \mathbf{L}\mathbf{L}^T$$

• The projection is given by

$$\widetilde{\mathbf{P}} = \mathbf{V}^{T} \mathbf{P} \mathbf{V} = \mathbf{L}^{-1} \left(\mathbf{U}^{T} \mathbf{P} \mathbf{U} \right) \mathbf{L}^{-T},$$

where $\mathbf{U}^T \mathbf{P} \mathbf{U}$ is also known from the data

 The use of Cholesky for orthogonalization is essential, (block) lower triangular structure is the linear algebraic equivalent of causality

Image from the ROM

- How to extract an image form the ROM?
- ROM is a projection, we can use backprojection
- If span(U) is sufficiently rich, then columns of VV^T should be good approximations of δ-functions, hence

$\mathbf{P} \approx \mathbf{V} \mathbf{V}^T \mathbf{P} \mathbf{V} \mathbf{V}^T = \mathbf{V} \widetilde{\mathbf{P}} \mathbf{V}^T$

- Problem: snapshots U in the whole domain are unknown, so are orthogonalized snapshots V
- In imaging we have a rough idea of kinematics, i.e. we know approximately the travel times
- This is equivalent to knowing a **kinematic model**, a smooth non-reflective sound speed *c*₀
- Once *c*₀ is fixed, we know everything associated with it

$$\widehat{\mathbf{A}}_{0}, \quad \mathbf{P}_{0}, \quad \mathbf{U}_{0}, \quad \mathbf{V}_{0}, \quad \widetilde{\mathbf{P}}_{0}$$

Approximate backprojection

• We take the backprojection $\mathbf{P} \approx \mathbf{V} \widetilde{\mathbf{P}} \mathbf{V}^T$ and make another approximation replacing unknown \mathbf{V} with the kinematic model basis \mathbf{V}_0 :

$$\textbf{P} \approx \textbf{V}_0 \widetilde{\textbf{P}} \textbf{V}_0^{\mathcal{T}}$$

For the kinematic model we know the basis exactly

$$\boldsymbol{P}_0 \approx \boldsymbol{V}_0 \widetilde{\boldsymbol{P}}_0 \boldsymbol{V}_0^{\mathcal{T}}$$

• If δ_x is a δ -function centered at point x, then

$$\mathbf{P}\delta_{\mathbf{X}} = \cos\left(\tau\sqrt{-\widehat{\mathbf{A}}}\right)\delta_{\mathbf{X}} = \mathbf{w}(\tau),$$

where w(t) is a solution to

$$w_{tt} = \widehat{\mathbf{A}}w, \quad w(\mathbf{0}) = \delta_x, \quad w_t(\mathbf{0}) = \mathbf{0},$$

i.e. it is a Green's function $G(x, \cdot, \tau)$

Green's function and imaging

 Diagonal entries of P are Green's function evaluated at the same point

$$G(\mathbf{x}, \mathbf{x}, \tau) = \delta_{\mathbf{x}}^T \mathbf{P} \delta_{\mathbf{x}}$$

 By taking the diagonals of backprojections we may extract the approximate Green's functions

$$\boldsymbol{G}(\,\cdot\,,\,\cdot\,,\tau) - \boldsymbol{G}_{0}(\,\cdot\,,\,\cdot\,,\tau) = \text{diag}(\boldsymbol{\mathsf{P}} - \boldsymbol{\mathsf{P}}_{0}) \approx \text{diag}\left(\boldsymbol{\mathsf{V}}_{0}(\widetilde{\boldsymbol{\mathsf{P}}} - \widetilde{\boldsymbol{\mathsf{P}}}_{0})\boldsymbol{\mathsf{V}}_{0}^{T}\right) = \boldsymbol{\mathcal{I}}$$

- Approximation quality depends only on how well columns of VV₀^T and V₀V₀^T approximate δ-functions
- It appears that *I* works well as an **imaging functional** to image the discontinuities of *c*
- Despite the name "backprojection" our method is nonlinear in the data since obtaining P from F_k is a nonlinear procedure (block Lanczos and matrix inversion)

Simple example: layered model

True sound speed c

- A simple layered model, p = 32 sources/receivers (black ×)
- Constant velocity kinematic model c₀ = 1500 m/s
- Multiple reflections from waves bouncing between layers and surface
- Each multiple creates an RTM artifact below actual layers

1.4 1.5 1.6 1.7 1.8 1.9

Mamonov, Druskin, Thaler, Zaslavsky

Why ROM backprojection imaging works?

- **Suppression of multiples**: implicit causal orhthogonalization (block Gram-Schmidt) of snapshots **U** removes the "tail" with reflections and produces a focused, localized pulse
- Compare U and V for various times
- Approximation

$$G(\cdot, \cdot, \tau) - G_0(\cdot, \cdot, \tau) \approx \text{diag}\left(\mathbf{V}_0(\widetilde{\mathbf{P}} - \widetilde{\mathbf{P}}_0)\mathbf{V}_0^T\right)$$

only works if columns of VV_0^T and $V_0V_0^T$ are good approximations of δ -functions

- $\bullet~$ Plot columns of $\bm{V}\bm{V}_0^{\mathcal{T}}$ and $\bm{V}_0\bm{V}_0^{\mathcal{T}}$ for various points in the domain
- ROM computation resolves the dynamics fully, so image imperfections are mostly due to deficiencies of the kinematic model

Snapshot orthogonalization

1.8

Mamonov, Druskin, Thaler, Zaslavsky

Snapshot orthogonalization

Mamonov, Druskin, Thaler, Zaslavsky

Approximation of δ -functions

Columns of $\mathbf{V}_0 \mathbf{V}_0^T$

1.8

2.4

y = 345 m

Mamonov, Druskin, Thaler, Zaslavsky

Approximation of δ -functions

Columns of $\mathbf{V}_0 \mathbf{V}_0^T$

y = 840 *m*

Mamonov, Druskin, Thaler, Zaslavsky

High contrast example: hydraulic fractures

High contrast example: hydraulic fractures

Large scale example: Marmousi model

- Standard Marmousi model, 13.5km × 2.7km
- Forward problem is discretized on a 15m grid with $N = 900 \times 180 = 162,000$ nodes
- Kinematic model *c*₀: smoothed out true *c* (465*m* horizontally, 315*m* vertically)
- Time domain data sample rate $\tau = 33.5ms$, source frequency about 15*Hz*, n = 35 data samples measured
- Number of sources/receivers p = 90 uniformly distributed with spacing 150m
- Data is split into 17 overlapping windows of 10 sources/receivers each (1.5km max offset)
- Reflecting boundary conditions
- No data filtering, everything used as is (surface wave, reflections from the boundaries, multiples)

Backprojection imaging: Marmousi model

Backprojection imaging: Marmousi model

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 9.3 9.6 9.910.210.510.811.111.411.7 12 12.312.612.913.2 x=4.50 km

3.5

2.5

3.5

3

2.5

Mamonov, Druskin, Thaler, Zaslavsky

Backprojection imaging

25/32

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6 6.3 66.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 9.3 9.6 9.910.210.510.811.111.411.7 12 12.312.612.913.2 x=6.00 km

Mamonov, Druskin, Thaler, Zaslavsky

Backprojection imaging

26/32

3.5

2.5

3.5

3

2.5

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 9.3 9.6 9.910.210.510.811.111.411.7 12 12.312.612.913.2 x=6.90 km

Mamonov, Druskin, Thaler, Zaslavsky

Backprojection imaging

3.5

3

2.5

3.5

3

2.5

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 9.3 9.6 9.910.210.510.811.111.411.7 12 12.312.612.913.2 x=7.65 km

3.5

2.5

3.5

3

2.5

Mamonov, Druskin, Thaler, Zaslavsky

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 9.3 9.6 9.910.210.510.811.111.411.7 12 12.312.612.9132 x=10.50 km

Mamonov, Druskin, Thaler, Zaslavsky

Backprojection imaging

29/32

3.5

3

2.5

3.5

3

2.5

2

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9 9.3 9.6 9.910.210.510.811.111.411.7 12 12.312.612.913.2 x=12.00 km

Mamonov, Druskin, Thaler, Zaslavsky

Backprojection imaging

30/32

3.5

2.5

3.5

3

2.5

Other possible applications: ultrasound tomography

- Ultrasound screening for early detection of breast cancer
- Conventional ultrasound imaging techniques are rather crude, advanced methods originating in geophysics are in demand

Conclusions and future work

- Novel approach to acoustic imaging using reduced order models
- Time domain formulation is essential, makes use of causality (linear algebraic analogues - Gram-Schmidt, Cholesky decomposition)
- Nonlinear imaging: strong suppression of multiple reflection artifacts; improved resolution compared to RTM

Future work:

- Non-symmetric forward model and ROM for non-collocated sources/receivers
- Better theoretical understanding, relation of \mathcal{I} to c
- Use for ROMs for full waveform inversion

References:

[1] A.V. Mamonov, V. Druskin, M. Zaslavsky, *Nonlinear seismic imaging via reduced order model backprojection*, SEG Technical Program Expanded Abstracts 2015: pp. 4375–4379.

[2] V. Druskin, A. Mamonov, A.E. Thaler and M. Zaslavsky, Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model reduction. arXiv:1509.06603 [math.NA], 2015.

