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Motivation: seismic oil and gas exploration

Seismic exploration

Seismic waves in the
subsurface induced by
sources (shots)

Measurements of seismic
signals on the surface or
in a well bore

Determine the acoustic or
elastic parameters of
the subsurface
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Forward model: acoustic wave equation

Consider an acoustic wave equation in the time domain

utt = Au in Ω, t ∈ [0,T ]

with initial conditions

u|t=0 = u0, ut |t=0 = 0

The spatial operator A ∈ RN×N is a fine grid discretization of

A(c) = c2∆

with the appropriate boundary conditions
The solution is

u(t) = cos(t
√
−A)u0
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Source model

We stack all p sources in a single tall skinny matrix S ∈ RN×p and
introduce them in the initial condition

u|t=0 = S, ut |t=0 = 0

The solution matrix u(t) ∈ RN×p is

u(t) = cos(t
√
−A)S

We assume the form of the source matrix

S = q2(A)CE,

where p columns of E are point sources on the surface, q2(ω) is
the Fourier transform of the source wavelet and C = diag(c)

Here we take q2(ω) = eσω with small σ so that S is localized
near E
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Receiver and data model

For simplicity assume that the sources and receivers are
collocated
Then the receiver matrix R ∈ RN×p is

R = C−1E

Combining the source and receiver we get the data model

F(t ; c) = RT cos(t
√
−A(c))S,

a p × p matrix function of time
The data model can be fully symmetrized

F(t) = BT cos
(

t
√
−Â
)

B,

with Â = C∆C and B = q(Â)E
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Seismic inversion and imaging

1 Seismic inversion: determine c from the knowledge of measured
data F?(t) (full waveform inversion, FWI); highly nonlinear since
F( · ; c) is nonlinear in c

Conventional approach: non-linear least squares (output least
squares, OLS)

minimize
c

‖F? − F( · ; c)‖2
2

Abundant local minima

Slow convergence

Low frequency data needed
2 Seismic imaging: estimate c or its discontinuities given F(t) and

also a smooth kinematic model c0
Conventional approach: linear migration (Kirchhoff, reverse time
migration - RTM)

Major difficulty: multiple reflections
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Reduced order models
The data is always discretely sampled, say uniformly at tk = kτ
The choice of τ is very important, optimally we want τ around
Nyquist rate
The discrete data samples are

Fk = F(kτ) = BT cos
(

kτ
√
−Â
)

B =

= BT cos
(

k arccos
(

cos τ
√
−Â
))

B = BT Tk (P)B,

where Tk is Chebyshev polynomial and the propagator is

P = cos
(
τ

√
−Â
)

We want a reduced order model (ROM) P̃, B̃ that fits the
measured data

Fk = BT Tk (P)B = B̃T Tk (P̃)B̃, k = 0,1, . . . ,2n − 1
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Projection ROMs
Projection ROMs are obtained from

P̃ = VT PV, B̃ = VT B,

where V is an orthonormal basis for some subspace
How do we get a ROM that fits the data?
Consider a matrix of solution snapshots

U = [u0,u1, . . . ,un−1] ∈ RN×np, uk = Tk (P)B

Theorem (ROM data interpolation)

If span(V) = span(U) and VT V = I then

Fk = BT Tk (P)B = B̃T Tk (P̃)B̃, k = 0,1, . . . ,2n − 1,

where P̃ = VT PV ∈ Rnp×np and B̃ = VT B ∈ Rnp×p.
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ROM from measured data

We do not know the solutions in the whole domain U and thus V is
unknown
How do we obtain the ROM from just the data Fk?
The data does not give us U, but it gives us the inner products!
A basic property of Chebyshev polynomials is

Ti(x)Tj(x) =
1
2

(Ti+j(x) + T|i−j|(x))

Then we can obtain

(UT U)i,j = uT
i uj =

1
2

(Fi+j + Fi−j),

(UT PU)i,j = uT
i Puj =

1
4

(Fj+i+1 + Fj−i+1 + Fj+i−1 + Fj−i−1)
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ROM from measured data

Suppose U is orthogonalized by a block QR (Gram-Schmidt)
procedure

U = VLT , equivalently V = UL−T ,

where L is a block Cholesky factor of the Gramian UT U known
from the data

UT U = LLT

The projection is given by

P̃ = VT PV = L−1
(

UT PU
)

L−T ,

where UT PU is also known from the data
The use of Cholesky for orthogonalization is essential, (block)
lower triangular structure is the linear algebraic equivalent of
causality
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Image from the ROM

How to extract an image form the ROM?
ROM is a projection, we can use backprojection
If span(U) is suffiently rich, then columns of VVT should be good
approximations of δ-functions, hence

P ≈ VVT PVVT = VP̃VT

Problem: snapshots U in the whole domain are unknown, so are
orthogonalized snapshots V
In imaging we have a rough idea of kinematics, i.e. we know
approximately the travel times
This is equivalent to knowing a kinematic model, a smooth
non-reflective sound speed c0

Once c0 is fixed, we know everything associated with it

Â0, P0, U0, V0, P̃0
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Approximate backprojection

We take the backprojection P ≈ VP̃VT and make another
approximation replacing unknown V with the kinematic model
basis V0:

P ≈ V0P̃VT
0

For the kinematic model we know the basis exactly

P0 ≈ V0P̃0VT
0

If δx is a δ-function centered at point x , then

Pδx = cos
(
τ

√
−Â
)
δx = w(τ),

where w(t) is a solution to

wtt = Âw , w(0) = δx , wt (0) = 0,

i.e. it is a Green’s function G(x , · , τ)
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Green’s function and imaging

Diagonal entries of P are Green’s function evaluated at the same
point

G(x , x , τ) = δT
x Pδx

By taking the diagonals of backprojections we may extract the
approximate Green’s functions

G( · , · , τ)−G0( · , · , τ) = diag(P−P0) ≈ diag
(

V0(P̃− P̃0)VT
0

)
= I

Approximation quality depends only on how well columns of VVT
0

and V0VT
0 approximate δ-functions

It appears that I works well as an imaging functional to image
the discontinuities of c
Despite the name “backprojection” our method is nonlinear in the
data since obtaining P̃ from Fk is a nonlinear procedure (block
Lanczos and matrix inversion)
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Simple example: layered model
True sound speed c Backprojection: c0 + αI

RTM imageA simple layered model, p = 32
sources/receivers (black ×)
Constant velocity kinematic
model c0 = 1500 m/s
Multiple reflections from waves
bouncing between layers and
surface
Each multiple creates an RTM
artifact below actual layers
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Why ROM backprojection imaging works?

Suppression of multiples: implicit causal orhthogonalization
(block Gram-Schmidt) of snapshots U removes the “tail” with
reflections and produces a focused, localized pulse
Compare U and V for various times
Approximation

G( · , · , τ)−G0( · , · , τ) ≈ diag
(

V0(P̃− P̃0)VT
0

)
only works if columns of VVT

0 and V0VT
0 are good approximations

of δ-functions
Plot columns of VVT

0 and V0VT
0 for various points in the domain

ROM computation resolves the dynamics fully, so image
imperfections are mostly due to deficiencies of the kinematic
model
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V

t = 10τ

t = 15τ

t = 20τ
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V

t = 25τ

t = 30τ

t = 35τ

Mamonov, Druskin, Thaler, Zaslavsky Backprojection imaging 17 / 32



Approximation of δ-functions
Columns of V0VT

0 Columns of VVT
0

y = 345 m

y = 510 m

y = 675 m
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Approximation of δ-functions
Columns of V0VT

0 Columns of VVT
0

y = 840 m

y = 1020 m

y = 1185 m
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High contrast example: hydraulic fractures
True c Backprojection image I

Important application: acoustic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures

Strong reflections, any linearized image dominated with multiplesMamonov, Druskin, Thaler, Zaslavsky Backprojection imaging 20 / 32



High contrast example: hydraulic fractures
True c RTM image

Important application: acoustic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures

Strong reflections, any linearized image dominated with multiplesMamonov, Druskin, Thaler, Zaslavsky Backprojection imaging 21 / 32



Large scale example: Marmousi model

Standard Marmousi model, 13.5km × 2.7km

Forward problem is discretized on a 15m grid with
N = 900× 180 = 162,000 nodes

Kinematic model c0: smoothed out true c (465m horizontally, 315m
vertically)

Time domain data sample rate τ = 33.5ms, source frequency about
15Hz, n = 35 data samples measured

Number of sources/receivers p = 90 uniformly distributed with spacing
150m

Data is split into 17 overlapping windows of 10 sources/receivers each
(1.5km max offset)

Reflecting boundary conditions

No data filtering, everything used as is (surface wave, reflections from
the boundaries, multiples)
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Backprojection imaging: Marmousi model
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Backprojection imaging: Marmousi model

Mamonov, Druskin, Thaler, Zaslavsky Backprojection imaging 24 / 32



Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Marmousi backprojection image: well log
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Other possible applications: ultrasound tomography
True c Backprojection image

Ultrasound screening for early detection of breast cancer
Conventional ultrasound imaging techniques are rather crude,
advanced methods originating in geophysics are in demand
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Conclusions and future work
Novel approach to acoustic imaging using reduced order models
Time domain formulation is essential, makes use of causality (linear
algebraic analogues - Gram-Schmidt, Cholesky decomposition)
Nonlinear imaging: strong suppression of multiple reflection artifacts;
improved resolution compared to RTM

Future work:

Non-symmetric forward model and ROM for non-collocated
sources/receivers
Better theoretical understanding, relation of I to c
Use for ROMs for full waveform inversion
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